Phytochemicals: Key to Effective Anticancer Drugs

Author(s): Munawar Hussain*, Rasheed Ahmad Khera*, Javed Iqbal, Muhammad Khalid, Muhammad Asif Hanif.

Journal Name: Mini-Reviews in Organic Chemistry

Volume 16 , Issue 2 , 2019

Submit Manuscript
Submit Proposal

Graphical Abstract:


Abstract:

Cancer is considered one of the globally top lethal and never-ending public health troubles which affects the humankind population that mainly suffers from bone marrow tumor, breast cancer and lung cancer. Many health professionals and scientists have developed conventional therapies with a number of different modules of medicines obtainable from drugstores to cure diversified cancer disease despite the fact that none of these drugs have been found to be fully effective and safe. So, there is a great potential for the study of medicinal plants to reveal powerful anticancer activities. This coherent review is focused on an extensive investigation of frequently incited therapies through naturally occurring medicinal plants that cover a large number of pharmacological anticancer activities. During recent years, research has been focused on the structural modifications to accomplish anticancer medicines, drugs and complex physical therapies. Nevertheless, all reported therapies crafted improvements in the quality of cancer patients’ life issues however; these efforts are required to be escalated at a large scale and in high level clinical trials. The review covers the literature from 1985-2016.

Keywords: Cancer cells, plants, natural products, antitumor, cytotoxicity, proliferation, phytochemicals.

[1]
Ejaz, S.; Akram, W.; Lim, C.W.; Lee, J.J.; Hussain, I. Endocrine disrupting pesticides: A leading cause of cancer among rural people in Pakistan. Exp. Oncol., 2004, 26(2), 98-105.
[2]
Lobstein, T.; Baur, L.; Uauy, R. Obesity in children and young people: A crisis in public health. Obes. Rev., 2004, 5(s1), 4-85.
[3]
Organization, W.H. The World Health Report: 2001: Mental health: New Understanding, New Hope 2001.
[4]
Clark, C.E.; Hingorani, S.R.; Mick, R.; Combs, C.; Tuveson, D.A.; Vonderheide, R.H. Dynamics of the immune reaction to pancreatic Cancer from inception to invasion. Cancer Res., 2007, 67(19), 9518-9527.
[5]
De Vos, P.; Van Straaten, J.; Nieuwenhuizen, A.G.; de Groot, M.; Ploeg, R.J.; De Haan, B.J.; Van Schilfgaarde, R. Why do microencapsulated islet grafts fail in the absence of fibrotic overgrowth? Diabetes, 1999, 48(7), 1381-1388.
[6]
Early, B. Cancer Trialists’ Collaborative Group Systemic treatment of early breast cancer by hormonal, cytotoxic, or immune therapy: 133 randomised trials involving 31000 recurrences and 24000 deaths among 75000 women. Lancet, 1992, 339, 1-5.
[7]
Kirk, P.; Kirk, I.; Kristjanson, L.J. What do patients receiving palliative care for cancer and their families want to be told? A Canadian and Australian qualitative study. BMJ, 2004, 328(7452), 1343.
[8]
Yancik, R. Cancer burden in the aged. Cancer, 1997, 80(7), 1273-1283.
[9]
Jemal, A.; Murray, T.; Ward, E.; Samuels, A.; Tiwari, R.C.; Ghafoor, A.; Feuer, E.J.; Thun, M. J. Cancer statistics. Cancer J. Clin., 2005, 55(1), 10-30.
[10]
Manosroi, A.; Akazawa, H.; Akihisa, T.; Jantrawut, P.; Kitdamrongtham, W.; Manosroi, W.; Manosroi, J. In vitro anti-proliferative activity on colon cancer cell line (HT-29) of Thai medicinal plants selected from Thai/Lanna medicinal plant recipe database “MANOSROI III”. J. Ethnopharmacol., 2015, 161, 11-17.
[11]
Pegg, A.E. Multifaceted roles of alkyltransferase and related proteins in DNA repair, DNA damage, resistance to chemotherapy, and research tools. Chem. Res. Toxicol., 2011, 24(5), 618-639.
[12]
Ramsey, D.T. Trigger of coverage for cancer: When does genetic mutation become bodily injury, sickeness, or disease. Santa Clara L Rev., 2000, 41, 293.
[13]
Weinberg, R.A. How cancer arises. Sci. Am., 1996, 275(3), 62-71.
[14]
Doll, R.; Peto, R. The causes of cancer: Quantitative estimates of avoidable risks of cancer in the United States today. J. Natl. Cancer Inst., 1981, 66(6), 1192-1308.
[15]
Khoo, C.; Karthik, M.; Bailey, T.D.; Chica, M.R.; Pedro, N.D.; Koyyalamudi, S.R.; Cantizani, J.; Ravipati, A.S.; Zhang, L.; Vicente, F. Antiproliferative and apoptotic potential of Chinese medicinal plants against MCF-7 (luminal A), HCC1954 (HER2+) and Hs578t breast cancer cells. Phytopharmacol., 2015, 4(3), 454.
[16]
Waxman, A. Why a global strategy on diet, physical activity and health? World Rev. Nutr. Diet, 2005. 95(R), 162
[17]
Stewart, B.W.; Kleihues, P. World Cancer Report; IARC Press: Lyon, 2003, p. 57.
[18]
Carvalho, A.A.; Andrade, L.N.; de Sousa, É.B.V.; de Sousa, D.P. Antitumor phenylpropanoids found in essential oils. BioMed Res. Int., 2015, 2015, Article ID: 392674.
[19]
Esteller, M.; Toyota, M.; Sanchez-Cespedes, M.; Capella, G.; Peinado, M.A.; Watkins, D.N.; Issa, J-P.J.; Sidransky, D.; Baylin, S.B.; Herman, J.G. Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation is associated with G to A mutation in K-ras in colorectal tumorigenesis. Cancer Res., 2000, 60(9), 2368-2371.
[20]
Li, E.; Bestor, T.H.; Jaenisch, R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell, 1992, 69(6), 915-926.
[21]
Reid, S.; Schindler, D.; Hanenberg, H.; Barker, K.; Hanks, S.; Kalb, R.; Neveling, K.; Kelly, P.; Seal, S.; Freund, M. Biallelic mutations in PALB2 cause Fanconi anemia subtype FA-N and predispose to childhood cancer. Nat. Genet., 2007, 39(2), 162-164.
[22]
Rao, M.R.; Raghuram, N.; Nagendra, H.; Gopinath, K.; Srinath, B.; Diwakar, R.B.; Patil, S.; Bilimagga, S.R.; Rao, N.; Varambally, S. Anxiolytic effects of a yoga program in early breast cancer patients undergoing conventional treatment: A randomized controlled trial. Complement. Ther. Med., 2009, 17(1), 1-8.
[23]
Van der Hage, J.A.; Van de Velde, C.J.; Julien, J-P.; Tubiana-Hulin, M.; Vandervelden, C.; Duchateau, L. Preoperative chemotherapy in primary operable breast cancer: Results from the European Organization for Research and Treatment of Cancer trial 10902. J. Clin. Oncol., 2001, 19(22), 4224-4237.
[24]
Foley, K.M. The treatment of cancer pain. N. Engl. J. Med., 1985, 313(2), 84-95.
[25]
Steel, G.G. Growth kinetics of tumours: Cell population kinetics in relation to the growth and treatment of cancer; Oxford University Press: USA, 1977.
[26]
Cragg, G.M.; Newman, D.J. Plants as a source of anti-cancer agents. J. Ethnopharmacol., 2005, 100(1), 72-79.
[27]
Leitao, V.M.; Moroni, R.M.; Seko, L.M.; Nastri, C.O.; Martins, W.P. Cabergoline for the prevention of ovarian hyperstimulation syndrome: Systematic review and meta-analysis of randomized controlled trials. Fertil. Steril, 2014. 01(3), 664-675. e7.
[28]
Verma, A.; Laakso, I.; Seppänen-Laakso, T.; Huhtikangas, A.; Riekkola, M-L. A simplified procedure for indole alkaloid extraction from Catharanthus roseus combined with a semi-synthetic production process for vinblastine. Molecules, 2007, 12(7), 1307-1315.
[29]
Gajalakshmi, S.; Vijayalakshmi, S.; Devi, R.V. Pharmacological activities of Catharanthus roseus: A perspective review. Int. J. Pharma Bio Sci., 2013, 4(2), 431-439.
[30]
Garrett, K.; Dendy, S.; Frank, E.; Rouse, M.; Travers, S. Climate change effects on plant disease: Genomes to ecosystems. Annu. Rev. Phytopathol., 2006, 44, 489-509.
[31]
Mukherjee, A.K.; Basu, S.; Sarkar, N.; Ghosh, A.C. Advances in cancer therapy with plant based natural products. Curr. Med. Chem., 2001, 8(12), 1467-1486.
[32]
Cragg, G.M.; Grothaus, P.G.; Newman, D.J. Impact of natural products on developing new anti-cancer agents. Chem. Rev., 2009, 109(7), 3012-3043.
[33]
Cragg, G.M.; Newman, D.J. Antineoplastic agents from natural sources: Achievements and future directions. Expert Opin. Investig. Drugs, 2000, 9(12), 2783-2797.
[34]
Cragg, G.M.; Katz, F.; Newman, D.J.; Rosenthal, J. The impact of the United Nations convention on biological diversity on natural products research. Nat. Prod. Rep., 2012, 29(12), 1407-1423.
[35]
Fojo, T.; Farrell, N.; Ortuzar, W.; Tanimura, H.; Weinstein, J.; Myers, T.G. Identification of non-cross-resistant platinum compounds with novel cytotoxicity profiles using the NCI anticancer drug screen and clustered image map visualizations. Crit. Rev. Oncol. Hematol., 2005, 53(1), 25-34.
[36]
Balunas, M.J.; Kinghorn, A.D. Drug discovery from medicinal plants. Life Sci., 2005, 78(5), 431-441.
[37]
Shoemaker, R.H. The NCI60 human tumour cell line anticancer drug screen. Nat. Rev. Cancer, 2006, 6(10), 813-823.
[38]
Shoeb, M. Anticancer agents from medicinal plants. Bangladesh J. Pharmacol., 2006, 1(2), 35-41.
[39]
Vieira, R.F. Conservation of medicinal and aromatic plants in Brazil.In: Perspectives on new crops and new uses Janick, J. ed.,; ASHS Press: Alexandria, 1999, pp. 152-159.
[40]
Patwardhan, B.; Vaidya, A.D.; Chorghade, M. Ayurveda and natural products drug discovery. Curr. Sci. Bangalore, 2004, 86(6), 789-799.
[41]
Raskin, I.; Ribnicky, D.M.; Komarnytsky, S.; Ilic, N.; Poulev, A.; Borisjuk, N.; Brinker, A.; Moreno, D.A.; Ripoll, C.; Yakoby, N. Plants and human health in the twenty-first century. Trends Biotechnol., 2002, 20(12), 522-531.
[42]
Marmot, M.; Friel, S.; Bell, R.; Houweling, T.A.; Taylor, S. Commission on social determinants of health. Closing the gap in a generation: Health equity through action on the social determinants of health. Lancet, 2008, 372(9650), 1661-1669.
[43]
Johnston, L.D. Review of general population surveys of drug abuse; World Health Organization, 1980.
[44]
Mimeault, M.; Hauke, R.; Batra, S. Stem cells: A revolution in therapeutics-recent advances in stem cell biology and their therapeutic applications in regenerative medicine and cancer therapies. Clin. Pharmacol. Ther., 2007, 82(3), 252-264.
[45]
Greer, S.; Silberfarb, P.M. Psychological concomitants of cancer: Current state of research. Psychol. Med., 1982, 12(03), 563-573.
[46]
Saklani, A.; Kutty, S.K. Plant-derived compounds in clinical trials. Drug Discov. Today, 2008, 13(3), 161-171.
[47]
Simone, C.B. Cancer and nutrition: A ten-point plan to reduce your risk of getting cancer. Princeton University Press: New Jersy,; , 1992.
[48]
Terman, D.S. Compositions and methods for treatment of cancer. Google Patents, US4699783A, 2011.
[49]
Rao, G.V.; Kumar, S.; Islam, M.; Mansour, S.E. Folk medicines for anticancer therapy-a current status. Cancer Ther., 2008, 6(2), 913-921.
[50]
Cochrane, C.B.; Nair, P.R.; Melnick, S.J.; Resek, A.; Ramachandran, C. Anticancer effects of Annona glabra plant extracts in human leukemia cell lines. Anticancer Res., 2008, 28(2A), 965-971.
[51]
Fernando, W.; Rupasinghe, H.V. Anticancer properties of phytochemicals present in medicinal plants of North America using old solutions to new problems, Marianna Kulka; IntechOpen, 2013.
[http://dx.doi.org/10.5772/55859]
[52]
Gidding, C.; Kellie, S.; Kamps, W.; De Graaf, S. Vincristine revisited. Crit. Rev. Oncol. Hematol., 1999, 29(3), 267-287.
[53]
Jordan, M.A.; Wilson, L. Microtubules as a target for anticancer drugs. Nat. Rev. Cancer, 2004, 4(4), 253-265.
[54]
Kalman, D.; Villani, L.J. Nutritional aspects of cancer-related fatigue. J. Am. Diet. Assoc., 1997, 97(6), 650-654.
[55]
Deangelis, L.M.; Gnecco, C.; Taylor, L.; Warrell, R.P. Evolution of neuropathy and myopathy during intensive vincristine/corticosteroid chemotherapy for non-Hodgkin’s lymphoma. Cancer, 1991, 67, 2241-2246.
[56]
Sandier, S.G.; Tobin, W.; Henderson, E.S. Vincristine-induced neuropathy: A clinical study of fifty leukemic patients. Neurology, 1969, 19(4), 367-367.
[57]
Noble, R.L. The discovery of the vinca alkaloids-chemotherapeutic agents against cancer. Biochem. Cell Biol., 1990, 68(12), 1344-1351.
[58]
Johnson, I.S.; Wright, H.F.; Svoboda, G.H.; Vlantis, J. Antitumor principles derived from Vinca rosea Linn I. Vincaleukoblastine and leurosine. Cancer Res., 1960, 20(7), 1016-1022.
[59]
Neuss, N.; Mallett, G.; Brannon, D.; Mabe, J.; Horton, H.; Huckstep, L. Vinca Alkaloids XXXIII. Microbiological conversions of vincaleukoblastine (VLB, Vinblastine), an Antitumor alkaloid from Vinca rosea. Linn. Helv. Chim. Acta, 1974, 57(6), 1886-1890.
[60]
Gurib-Fakim, A. Medicinal plants: Traditions of yesterday and drugs of tomorrow. Mol. Aspects Med., 2006, 27(1), 1-93.
[61]
Botta, B.; Monache, G.; Misiti, D.; Vitali, A.; Zappia, G. Aryltetralin lignans: Chemistry, pharmacology and biotransformations. Curr. Med. Chem., 2001, 8(11), 1363-1381.
[62]
Kuri-Brena, F. Studies on plant cell cultures of Podophyllum peltatum and Tripterygium wilfordii for biosynthesis of biologically active compounds; University of British Columbia, 1992.
[63]
Qian , L. Y.; Yang, L.; Tian, X. Podophyllotoxin: Current perspectives. Curr. Bioact. Compd., 2007, 3(1), 37-66.
[64]
Cragg, G.M. 1.; Boyd, M.R.; Cardellina, J.H.; Newman, D.J.; Snader, K.M.; McCloud, T.G. Ethnobotany and drug discovery: The experience of the US National Cancer Institute. Ciba Found. Symp., 1994, 185, 178-190.
[65]
Farombi, E.O. African indigenous plants with chemotherapeutic potentials and biotechnological approach to the production of bioactive prophylactic agents. Afr. J. Biotechnol., 2004, 2(12), 662-671.
[66]
Gangadevi, V.; Muthumary, J. Isolation of Colletotrichum gloeosporioides, a novel endophytic taxol-producing fungus from the leaves of a medicinal plant, Justicia gendarussa. Mycologia Balc., 2008, 5, 1-4.
[67]
Cragg, G.; Newman, D. Nature: A vital source of leads for anticancer drug development. Phytochem. Rev., 2009, 8(2), 313-331.
[68]
Grothaus, P.; Cragg, G.; Newman, D. Plant natural products in anticancer drug discovery. Curr. Org. Chem., 2010, 14(16), 1781-1791.
[69]
Wang, A.Z.; Langer, R.; Farokhzad, O.C. Nanoparticle delivery of cancer drugs. Annu. Rev. Med., 2012, 63, 185-198.
[70]
Singh, S.; Sharma, B.; Kanwar, S.S.; Kumar, A. Lead phytochemicals for anticancer drug development. Front. Plant Sci., 2016, 7, 1667.
[71]
Prasad, R. In: Basic Res. Applicat. Mycorrhizae, Podila, G.K.; Varma, A.; Eds., IK International Publishing House: Delhi, 2005, 1, 363.
[72]
Brattlie, J.; Xiec, J.; Belding, E. In: Traditional Chinese Medicine: Scientific Basis for its Use, Adams, J.D.; Lien, E.J.; Eds., Royal Society of Chemistry: London, 2013, 31, 81
[73]
Herzog, T.J. Update on the role of topotecan in the treatment of recurrent ovarian cancer. Oncologist, 2002, 7(5), 3-10.
[74]
Douillard, J.; Cunningham, D.; Roth, A.; Navarro, M.; James, R.; Karasek, P.; Jandik, P.; Iveson, T.; Carmichael, J.; Alakl, M. Irinotecan combined with fluorouracil compared with fluorouracil alone as first-line treatment for metastatic colorectal cancer: A multicentre randomised trial. Lancet, 2000, 355(9209), 1041-1047.
[75]
Ortega, S.; Malumbres, M.; Barbacid, M. Cyclin D-dependent kinases, INK4 inhibitors and cancer. Biochim Biophys Acta (BBA)-. Rev. Can., 2002, 1602(1), 73-87.
[76]
Meijer, L.; Raymond, E. Roscovitine and other purines as kinase inhibitors. From starfish oocytes to clinical trials. Acc. Chem. Res., 2003, 36(6), 417-425.
[77]
Newman, D.J. Natural products as leads to potential drugs: An old process or the new hope for drug discovery? J. Med. Chem., 2008, 51(9), 2589-2599.
[78]
Cassady, J.M.; Douros, J.D. Anticancer agents based on natural product models; Academic Press: Cambridge, 1980.
[79]
Cragg, G.M.; Newman, D.J. Natural products: A continuing source of novel drug leads. Biochim Biophys Acta (BBA)-. General Subjects, 2013, 1830(6), 3670-3695.
[80]
Kintzios, S.E. Terrestrial plant-derived anticancer agents and plant species used in anticancer research. Crit. Rev. Plant Sci., 2006, 25(2), 79-113.
[81]
Pietersz, G.A.; McKenzie, I.F. Antibody conjugates for the treatment of cancer. Immunol. Rev., 1992, 129(1), 57-80.
[82]
Yu, T.W.; Floss, H.G.; Cragg, G.M.; Newman, D.J. Ansamitocins (maytansinoids).Anticancer agents from natural products; CRC Press: Florida, 2011, pp. 422-443.
[83]
Senter, P.D. Potent antibody drug conjugates for cancer therapy. Curr. Opin. Chem. Biol., 2009, 13(3), 235-244.
[84]
Adolf, G.; Baumann, M.; Heider, K.-H. Antibodies conjugated to cytotoxic compounds and radiotherapy in cancer therapy. Google Patents WO2002094325A3,, 2003.
[85]
Hollingsworth, M.A.; Swanson, B.J. Mucins in cancer: Protection and control of the cell surface. Nat. Rev. Cancer, 2004, 4(1), 45-60.
[86]
Lakshmi, V.; Pandey, K.; Kapil, A.; Singh, N.; Samant, M.; Dube, A. In vitro and in vivo leishmanicidal activity of Dysoxylum binectariferum and its fractions against Leishmania donovani. Phytomed., 2007, 14(1), 36-42.
[87]
Jain, S.K.; Meena, S.; Gupta, A.P.; Kushwaha, M.; Shaanker, R.U.; Jaglan, S.; Bharate, S.B.; Vishwakarma, R.A. Dysoxylum binectariferum bark as a new source of anticancer drug camptothecin: Bioactivity-guided isolation and LCMS-based quantification. Bioorg. Med. Chem. Lett., 2014, 24(14), 3146-3149.
[88]
Barbosa-Filho, J.M.; Piuvezam, M.R.; Moura, M.D.; Silva, M.S.; Lima, K.V.B.; da-Cunha, E.V.L.; Fechine, I.M.; Takemura, O.S. Anti-inflammatory activity of alkaloids: A twenty-century review. Rev. Bras. Farmacogn., 2006, 16(1), 109-139.
[89]
Heinrich, M.C.; Griffith, D.J.; Druker, B.J.; Wait, C.L.; Ott, K.A.; Zigler, A.J. Inhibition of c-kit receptor tyrosine kinase activity by STI 571, a selective tyrosine kinase inhibitor. Blood, 2000, 96(3), 925-932.
[90]
Sausville, E.A.; Zaharevitz, D.; Gussio, R.; Meijer, L.; Louarn-Leost, M.; Kunick, C.; Schultz, R.; Lahusen, T.; Headlee, D.; Stinson, S. Cyclin-dependent kinases: Initial approaches to exploit a novel therapeutic target. Pharmacol. Ther., 1999, 82(2), 285-292.
[91]
Grever, M.R.; Schepartz, S.A.; Chabner, B.A. The National Cancer Institute: Cancer drug discovery and development program. Semin. Oncol., 1992, 19(6), 622-638.
[92]
Hooper, S.D.; Bork, P. Medusa: A simple tool for interaction graph analysis. Bioinformatics, 2005, 21(24), 4432-4433.
[93]
Stevenson, J.P.; Rosen, M.; Sun, W.; Gallagher, M.; Haller, D.G.; Vaughn, D.; Giantonio, B.; Zimmer, R.; Petros, W.P.; Stratford, M. Phase I trial of the antivascular agent combretastatin A4 phosphate on a 5-day schedule to patients with cancer: Magnetic resonance imaging evidence for altered tumor blood flow. J. Clin. Oncol., 2003, 21(23), 4428-4438.
[94]
Thastrup, O.; Cullen, P.J.; Drøbak, B.; Hanley, M.R.; Dawson, A.P. Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2(+)-ATPase. Proc. Natl. Acad. Sci., 1990, 87(7), 2466-2470.
[95]
Hanahan, D.; Folkman, J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell, 1996, 86(3), 353-364.
[96]
Zhao, Y.; Duan, S.; Zeng, X.; Liu, C.; Davies, N.M.; Li, B.; Forrest, M.L. Prodrug strategy for PSMA-targeted delivery of TGX-221 to prostate cancer cells. Mol. Pharm., 2012, 9(6), 1705-1716.
[97]
Zawilska, J.B.; Wojcieszak, J.; Olejniczak, A.B. Prodrugs: A challenge for the drug development. Pharmacol. Rep., 2013, 65(1), 1-14.
[98]
Kratz, F.; Müller, I.A.; Ryppa, C.; Warnecke, A. Prodrug strategies in anticancer chemotherapy. ChemMedChem, 2008, 3(1), 20-53.
[99]
Butler, L.M.; Agus, D.B.; Scher, H.I.; Higgins, B.; Rose, A.; Cordon-Cardo, C.; Thaler, H.T.; Rifkind, R.A.; Marks, P.A.; Richon, V.M. Suberoylanilide hydroxamic acid, an inhibitor of histone deacetylase, suppresses the growth of prostate cancer cells in vitro and in vivo. Cancer Res., 2000, 60(18), 5165-5170.
[100]
Ciardiello, F.; Tortora, G. A novel approach in the treatment of cancer: Targeting the epidermal growth factor receptor. Clin. Cancer Res., 2001, 7(10), 2958-2970.
[101]
Denmeade, S.R.; Jakobsen, C.M.; Janssen, S.; Khan, S.R.; Garrett, E.S.; Lilja, H.; Christensen, S.B.; Isaacs, J.T. Prostate-specific antigen-activated thapsigargin prodrug as targeted therapy for prostate cancer. J. Natl. Cancer Inst., 2003, 95(13), 990-1000.
[102]
Carl, P.L.; Chakravarty, P.K.; Katzenellenbogen, J.A. A novel connector linkage applicable in prodrug design. J. Med. Chem., 1981, 24(5), 479-480.
[103]
Cuendet, M.; Pezzuto, J.M. Antitumor activity of bruceantin: An old drug with new promise. J. Nat. Prod., 2004, 67(2), 269-272.
[104]
Hoeflich, K.P.; Gray, D.C.; Eby, M.T.; Tien, J.Y.; Wong, L.; Bower, J.; Gogineni, A.; Zha, J.; Cole, M.J.; Stern, H.M. Oncogenic BRAF is required for tumor growth and maintenance in melanoma models. Cancer Res., 2006, 66(2), 999-1006.
[105]
Edinger, M.; Cao, Y-A.; Verneris, M.R.; Bachmann, M.H.; Contag, C.H.; Negrin, R.S. Revealing lymphoma growth and the efficacy of immune cell therapies using in vivo bioluminescence imaging. Blood, 2003, 101(2), 640-648.
[106]
de Melo, C.L.; Queiroz, M.G.R.; Fonseca, S.G.; Bizerra, A.M.; Lemos, T.L.; Melo, T.S.; Santos, F.A.; Rao, V.S. Oleanolic acid, a natural triterpenoid improves blood glucose tolerance in normal mice and ameliorates visceral obesity in mice fed a high-fat diet. Chem. Biol. Interact., 2010, 185(1), 59-65.
[107]
Miles, J.; Young, W. The effects on heathland and moorland soils in Scotland and northern England following colonization by birch (Betula spp.). Bull. d'Ecol.,, 1980. 11(3/4), 233-242
[108]
Baker, D.D.; Chu, M.; Oza, U.; Rajgarhia, V. The value of natural products to future pharmaceutical discovery. Nat. Prod. Rep., 2007, 24(6), 1225-1244.
[109]
Zuco, V.; Supino, R.; Righetti, S.C.; Cleris, L.; Marchesi, E.; Gambacorti-Passerini, C.; Formelli, F. Selective cytotoxicity of betulinic acid on tumor cell lines, but not on normal cells. Cancer Lett., 2002, 175(1), 17-25.
[110]
Franchi, G.C.; Moraes, C.S.; Toreti, V.C.; Daugsch, A.; Nowill, A.E.; Park, Y.K. Comparison of effects of the ethanolic extracts of brazilian propolis on human leukemic cells as assessed with the MTT assay. Evid. Based Complement. Alternat. Med., 2011, 2012, Article ID: 918956.
[111]
Li, W.L.; Zheng, H.C.; Bukuru, J.; De Kimpe, N. Natural medicines used in the traditional Chinese medical system for therapy of diabetes mellitus. J. Ethnopharmacol., 2004, 92(1), 1-21.
[112]
Petersen, M.; Kiener, A. Biocatalysis. Green Chem., 1999, 1(2), 99-106.
[113]
Meijer, L.; Skaltsounis, A-L.; Magiatis, P.; Polychronopoulos, P.; Knockaert, M.; Leost, M.; Ryan, X.P.; Vonica, C.A.; Brivanlou, A.; Dajani, R. GSK-3-selective inhibitors derived from Tyrian purple indirubins. Chem. Biol., 2003, 10(12), 1255-1266.
[114]
Korankye, O. Extraction and application of plant dyes to serve as colourants for food and textiles; School of Graduate Studies, Kwame Nkrumah University of Science and Technology: Kumasi, 2010.
[115]
Hoessel, R.; Leclerc, S.; Endicott, J.A.; Nobel, M.E.; Lawrie, A.; Tunnah, P.; Leost, M.; Damiens, E.; Marie, D.; Marko, D. Indirubin, the active constituent of a Chinese antileukaemia medicine, inhibits cyclin-dependent kinases. Nat. Cell Biol., 1999, 1(1), 60-67.
[116]
Serrano, M.; Hannon, G.J.; Beach, D. A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature, 1993, 366(6456), 704-707.
[117]
Newman, M.G.; Zuellig, A.R.; Kachin, K.E.; Constantino, M.J.; Przeworski, A.; Erickson, T.; Cashman-McGrath, L. Preliminary reliability and validity of the generalized anxiety disorder questionnaire-IV: A revised self-report diagnostic measure of generalized anxiety disorder. Behav. Ther., 2002, 33(2), 215-233.
[118]
Goetz, M.P.; Knox, S.K.; Suman, V.J.; Rae, J.M.; Safgren, S.L.; Ames, M.M.; Visscher, D.W.; Reynolds, C.; Couch, F.J.; Lingle, W.L. The impact of cytochrome P450 2D6 metabolism in women receiving adjuvant tamoxifen. Breast Cancer Res. Treat., 2007, 101(1), 113-121.
[119]
Ikeda, Y.; Murakami, A.; Ohigashi, H. Ursolic acid: An anti-and pro-inflammatory triterpenoid. Mol. Nutr. Food Res., 2008, 52(1), 26-42.
[120]
Burger, R.A.; Brady, M.F.; Bookman, M.A.; Walker, J.L.; Homesley, H.D.; Fowler, J.; Monk, B.J.; Greer, B.E.; Boente, M.; Liang Iii, S.X. Phase III trial of bevacizumab in the primary treatment of advanced epithelial ovarian, primary peritoneal, or fallopian tube cancer: A Gynecologic Oncology Group (GOG) study. J. Clin. Oncol., 2010, 28(18s) PMID: 27937479
[121]
Suffness, M. Taxol: Science and Applications; CRC Press: Florida, 1995.
[122]
Lewis, W.H.; Okunade, A.L.; Elvin-Lewis, M.P. Pau d’Arco or Lapacho (Tabebuia).Encyclopedia of Dietary Supplements; Taylor & Francis: Milton Park, 2005, pp. 527-535.
[123]
Ríos-Luci, C.; Bonifazi, E.L.; León, L.G.; Montero, J.C.; Burton, G.; Pandiella, A.; Misico, R.I.; Padron, J.M. β-Lapachone analogs with enhanced antiproliferative activity. Eur. J. Med. Chem., 2012, 53, 264-274.
[124]
Suffness, M.; Douros, J. Anticancer agents based on natural product models. Anticancer Agents Based on Natural Product Models; Academic Press: Cambridge, 1980.
[125]
Ravelo, G.; Estévez-Braun, A.; Chávez-Orellana, A.; Pérez-Sacau, H.; Mesa-Siverio, E. Recent studies on natural products as anticancer agents. Curr. Top. Med. Chem., 2004, 4(2), 241-265.
[126]
Mi, Q.; Cui, B.; Lantvit, D.; Reyes-Lim, E.; Chai, H.; Pezzuto, J.M.; Kinghorn, A.D.; Swanson, S.M. Pervilleine F, a new tropane alkaloid aromatic ester that reverses multidrug resistance. Anticancer Res., 2002, 23(5A), 3607-3615.
[127]
Hantash, B.M.; Bedi, V.P.; Kapadia, B.; Rahman, Z.; Jiang, K.; Tanner, H.; Chan, K.F.; Zachary, C.B. In vivo histological evaluation of a novel ablative fractional resurfacing device. Lasers Surg. Med., 2007, 39(2), 96-107.
[128]
Chakraborty, A.; McKenzie, K. Does racial discrimination cause mental illness? Br. J. Psychiatry, 2002, 180(6), 475-477.
[129]
Knowles, L.M.; Milner, J.A. Possible mechanism by which allyl sulfides suppress neoplastic cell proliferation. J. Nutr., 2001, 131(3), 1061S-1066S.
[130]
Thomson, M.; Ali, M. Garlic [Allium sativum]: A review of its potential use as an anti-cancer agent. Curr. Cancer Drug Targets, 2003, 3(1), 67-81.
[131]
Prakash, O.; Kumar, A.; Kumar, P. Anticancer potential of plants and natural products: A review. Am. J. Pharmacol. Sci., 2013, 1(6), 104-115.
[132]
Geethangili, M.; Rao, Y.K.; Fang, S.H.; Tzeng, Y.M. Cytotoxic constituents from Andrographis paniculata induce cell cycle arrest in Jurkat cells. Phytother. Res., 2008, 22(10), 1336-1341.
[133]
Kumar, K.; Gupta, S.; Baidoo, S.; Chander, Y.; Rosen, C. Antibiotic uptake by plants from soil fertilized with animal manure. J. Environ. Qual., 2005, 34(6), 2082-2085.
[134]
Kamakura, M.; Moriyama, T.; Sakaki, T. Changes in hepatic gene expression associated with the hypocholesterolaemic activity of royal jelly. J. Pharm. Pharmacol., 2006, 58(12), 1683-1689.
[135]
Lee, Y-J.; Han, B-K.; Hwang, C-H. Smart phone. Google Patents, USD548, 713. 2007
[136]
Hamzaoglu, I.; Saribeyoglu, K.; Durak, H.; Karahasanoglu, T.; Bayrak, I.; Altug, T.; Sirin, F.; Sarıyar, M. Protective covering of surgical wounds with honey impedes tumor implantation. Arch. Surg., 2000, 135(12), 1414-1417.
[137]
Hamzaoglu, F.; Stan, M.R. Circuit-level techniques to control gate leakage for sub-100nm CMOS. Proceedings of the 2002 International Symposium on Low Power Electronics and Design, 2002, , pp. 60-63.
[138]
Wang, Q.; Shen, J.; Splawski, I.; Atkinson, D.; Li, Z.; Robinson, J.L.; Moss, A.J.; Towbin, J.A.; Keating, M.T. SCN5A mutations associated with an inherited cardiac arrhythmia, long QT syndrome. Cell, 1995, 80(5), 805-811.
[139]
Chu, H.W.; Halliday, J.L.; Martin, R.J.; Leung, D.Y.; Szefler, S.J.; Wenzel, S.E. Collagen deposition in large airways may not differentiate severe asthma from milder forms of the disease. Am. J. Respir. Crit. Care Med., 1998, 158(6), 1936-1944.
[140]
Kasprowicz, V.; zur Wiesch, J.S.; Kuntzen, T.; Nolan, B.E.; Longworth, S.; Berical, A.; Blum, J.; McMahon, C.; Reyor, L.L.; Elias, N. High level of PD-1 expression on Hepatitis C Virus (HCV)-specific CD8+ and CD4+ T cells during acute HCV infection, irrespective of clinical outcome. J. Virol., 2008, 82(6), 3154-3160.
[141]
Kumari, M.; Mukherjee, A.; Chandrasekaran, N. Genotoxicity of silver nanoparticles in Allium cepa. Sci. Total Environ., 2009, 407(19), 5243-5246.
[142]
Sundararajan, S.; Jiang, Q.; Heneka, M.; Landreth, G. PPARγ as a therapeutic target in central nervous system diseases. Neurochem. Int., 2006, 49(2), 136-144.
[143]
Yu, S-B.; Chen, H-Y.; Kuo, L-C. Velocity field of GPS stations in the Taiwan area. Tectonophysics, 1997, 274(1), 41-59.
[144]
Galve-Roperh, I.; Sánchez, C.; Cortés, M.L.; del Pulgar, T.G.; Izquierdo, M.; Guzmán, M. Anti-tumoral action of cannabinoids: Involvement of sustained ceramide accumulation and extracellular signal-regulated kinase activation. Nat. Med., 2000, 6(3), 313-319.
[145]
Najjar, S.S.; Scuteri, A.; Shetty, V.; Wright, J.G.; Muller, D.C.; Fleg, J.L.; Spurgeon, H.P.; Ferrucci, L.; Lakatta, E.G. Pulse wave velocity is an independent predictor of the longitudinal increase in systolic blood pressure and of incident hypertension in the Baltimore Longitudinal Study of Aging. J. Am. Coll. Cardiol., 2008, 51(14), 1377-1383.
[146]
Ghantous, A.; Gali-Muhtasib, H.; Vuorela, H.; Saliba, N.A.; Darwiche, N. What made sesquiterpene lactones reach cancer clinical trials? Drug Discov. Today, 2010, 15(15), 668-678.
[147]
Akao, Y.; Nakagawa, Y.; Nozawa, Y. Anti-cancer effects of xanthones from pericarps of mangosteen. Int. J. Mol. Sci., 2008, 9(3), 355-370.
[148]
Moriyama, M.; Osawa, M.; Mak, S-S.; Ohtsuka, T.; Yamamoto, N.; Han, H.; Delmas, V.; Kageyama, R.; Beermann, F.; Larue, L. Notch signaling via Hes1 transcription factor maintains survival of melanoblasts and melanocyte stem cells. J. Cell Biol., 2006, 173(3), 333-339.
[149]
Bagnato, B. L’Europa e il mondo: origini, sviluppo e crisi dell’imperialismo coloniale; Mondadori Education: Milan, 2006.
[150]
Hwang, E.; Adam, S.; Sarma, S.D. Carrier transport in two-dimensional graphene layers. Phys. Rev. Lett., 2007, 98(18), 186806.
[151]
Hu, Q.; Sommerfeld, M.; Jarvis, E.; Ghirardi, M.; Posewitz, M.; Seibert, M.; Darzins, A. Microalgal triacylglycerols as feedstocks for biofuel production: Perspectives and advances. Plant J., 2008, 54(4), 621-639.
[152]
Higashide, E.; Asai, M.; Ootsu, K.; Tanida, S.; Kozai, Y.; Hasegawa, T.; Kishi, T.; Sugino, Y.; Yoneda, M. Ansamitocin, a group of novel maytansinoid antibiotics with antitumour properties from Nocardia. Nature, 1977, 270(5639), 721-722.
[153]
Dowd, M.K.; Pelitire, S.M. Isolation of 6-methoxy gossypol and 6, 6 ‘-dimethoxy gossypol from Gossypium barbadense sea island cotton. J. Agric. Food Chem., 2006, 54(9), 3265-3270.
[154]
Stein, R.C.; Joseph, A.E.A.; Matlin, S.A.; Cunningham, D.C.; Ford, H.T.; Coombes, R.C. A preliminary clinical study of gossypol in advanced human cancer. Cancer Chemother. Pharmacol., 1992, 30(6), 480-482.
[155]
Pittella, F.; Dutra, R.C.; Junior, D.D.; Lopes, M.T.P.; Barbosa, N.R. Antioxidant and cytotoxic activities of Centella asiatica (L) Urb. Int. J. Mol. Sci., 2009, 10(9), 3713-3721.
[156]
Park, B.C.; Bosire, K.O.; Lee, E-S.; Lee, Y.S.; Kim, J-A. Asiatic acid induces apoptosis in SK-MEL-2 human melanoma cells. Cancer Lett., 2005, 218(1), 81-90.
[157]
Al-Mofleh, I.A.; Alhaider, A.A.; Mossa, J.S.; Al-Sohaibani, M.O.; Rafatullah, S.; Qureshi, S. Protection of gastric mucosal damage by Coriandrum sativum L. pretreatment in Wistar albino rats. Environ. Toxicol. Pharmacol., 2006, 22(1), 64-69.
[158]
Barnes, J.; Anderson, L.A.; Phillipson, J.D. St John’s wort (Hypericum perforatum L.): A review of its chemistry, pharmacology and clinical properties. J. Pharm. Pharmacol., 2001, 53(5), 583-600.
[159]
Weller, M.; Trepel, M.; Grimmel, C.; Schabet, M.; Bremen, D.; Krajewski, S.; Reed, J. Hypericin-induced apoptosis of human malignant glioma cells is light-dependent, independent of bcl-2 expression, and does not require wild-type p53. Neurol. Res., 1997, 19(5), 456-470.
[160]
Goldhirsch, A.; Wood, W.C.; Coates, A.S.; Gelber, R.D.; Thürlimann, B.; Senn, H.J. Strategies for subtypes-dealing with the diversity of breast cancer: Highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011. Ann. Oncol., 2011, 22(8), 1736-1747.
[161]
Prakash, O.M.; Kumar, A.; Kumar, P. Anticancer potential of plants and natural products: A review. Am. J. Pharmacol. Sci., 2013, 1(6), 104-115.
[162]
Zhou, Y-Q.; Zhang, Q-W.; Li, S-L.; Yin, Z-Q.; Zhang, X-Q.; Ye, W-C. Quality evaluation of semen oroxyli through simultaneous quantification of 13 components by high performance liquid chromatography. Curr. Pharm. Anal., 2012, 8(2), 206-213.
[163]
Kumar Roy, M.; Nakahara, K.; Na Thalang, V.; Trakoontivakorn, G.; Takenaka, M.; Isobe, S.; Tsushida, T. Baicalein, a flavonoid extracted from a methanolic extract of Oroxylum indicum inhibits proliferation of a cancer cell line in vitro via induction of apoptosis. Pharmbit, 2007, 62(2), 149-153.
[164]
Lee, H.S.; Yoo, C.B.; Ku, S.K. Hypolipemic effect of water extracts of Picrorrhiza kurroa in high fat diet treated mouse. Fitoterapia, 2006, 77(7), 579-584.
[165]
Rajkumar, V.; Guha, G.; Ashok Kumar, R. Antioxidant and anti-cancer potentials of Rheum emodi rhizome extracts. Evid. Based Complement. Alternat. Med., 2011, 2011, 697986.
[166]
Jeena, K.J.; Joy, K.L.; Kuttan, R. Effect of Emblica officinalis, Phyllanthus amarus and Picrorrhiza kurroa on N-nitrosodiethylamine induced hepatocarcinogenesis. Cancer Lett., 1999, 136(1), 11-16.
[167]
Itokawa, H.; Mihara, K.; Takeya, K. Studies on a novel anthraquinone and its glycosides isolated from Rubia cordifolia and R- Akane. Chem. Pharm. Bull., 1983, 31(7), 2353-2358.
[168]
Kim, H-K.; Woo, E-R.; Lee, H-W.; Park, H-R.; Kim, H-N.; Jung, Y-K.; Choi, J-Y.; Chae, S-W.; Kim, H-R.; Chae, H-J. The correlation of Salvia miltiorrhiza extract-induced regulation of osteoclastogenesis with the amount of components tanshinone I, tanshinone IIA, cryptotanshinone, and dihydrotanshinone. Immunopharmacol. Immunotoxicol., 2008, 30(2), 347-364.
[169]
Lee, C-Y.; Sher, H-F.; Chen, H-W.; Liu, C-C.; Chen, C-H.; Lin, C-S.; Yang, P-C.; Tsay, H-S.; Chen, J.J.W. Anticancer effects of tanshinone I in human non-small cell lung cancer. Mol. Cancer Ther., 2008, 7(11), 3527-3538.
[170]
Li-Weber, M. New therapeutic aspects of flavones: The anticancer properties of Scutellaria and its main active constituents Wogonin, Baicalein and Baicalin. Cancer Treat. Rev., 2009, 35(1), 57-68.
[171]
Sonnenbichler, J.; Scalera, F.; Sonnenbichler, I.; Weyhenmeyer, R. Stimulatory effects of silibinin and silicristin from the milk thistle Silybum marianum on kidney cells. J. Pharmacol. Exp. Ther., 1999, 290(3), 1375-1383.
[172]
Singh, S.; Mehta, A.; Baweja, S.; Ahirwal, L.; Mehta, P. Anticancer activity of Andrographispaniculata and Silybummarianum of five human cancer cell lines. J. Pharmacol. Toxicol., 2013, 8(1), 42-48.
[173]
Frédérich, M.; Choi, Y.H.; Angenot, L.; Harnischfeger, G.; Lefeber, A.W.M.; Verpoorte, R. Metabolomic analysis of Strychnos nux-vomica, Strychnos icaja and Strychnos ignatii extracts by 1 H nuclear magnetic resonance spectrometry and multivariate analysis techniques. Phytochemistry, 2004, 65(13), 1993-2001.
[174]
Xu, W.; Liu, J.; Li, C.; Wu, H-Z.; Liu, Y-W. Kaempferol-7-O-β-d-glucoside (KG) isolated from Smilax china L. rhizome induces G 2/M phase arrest and apoptosis on HeLa cells in a p53-independent manner. Cancer Lett., 2008, 264(2), 229-240.
[175]
Tu, L-Y.; Pi, J.; Jin, H.; Cai, J-Y.; Deng, S-P. Synthesis, characterization and anticancer activity of kaempferol-zinc (II) complex. Bioorg. Med. Chem. Lett., 2016, 26(11), 2730-2734.
[176]
Visen, P.K.S.; Saraswat, B.; Raj, K.; Bhaduri, A.P.; Dubey, M.P. Prevention of galactosamine-induced hepatic damage by the natural product loganin from the plant strychnos nux-vomica: Studies on isolated hepatocytes and bile flow in rat. Phytother. Res., 1998, 12(6), 405-408.
[177]
Sigstedt, S.C.; Hooten, C.J.; Callewaert, M.C.; Jenkins, A.R.; Romero, A.E.; Pullin, M.J.; Kornienko, A.; Lowrey, T.K.; Slambrouck, S.V.; Steelant, W.F.A. Evaluation of aqueous extracts of Taraxacum officinale on growth and invasion of breast and prostate cancer cells. Int. J. Oncol., 2008, 32(5), 1085-1090.
[178]
Ahuja, R.; Agrawal, N.; Mukerjee, A. Evaluation of anticancer potential of Terminalia chebula fruits against ehrlich ascites carcinoma induced cancer in mice. J. Sci. Innov. Res., 2013, 2(3), 549-554.
[179]
Gbile, Z.O. Indigenous and adapted African vegetables. Acta Hortic., 1981, (123), 71-80.
[180]
Fero, M.L.; Rivkin, M.; Tasch, M.; Porter, P.; Carow, C.E.; Firpo, E.; Polyak, K.; Tsai, L-H.; Broudy, V.; Perlmutter, R.M. A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis, and female sterility in p27Kip1-deficient mice. Cell, 1996, 85(5), 733-744.
[181]
Benson, J.R.; Colletta, A.A. Changes in expression of transforming growth factor beta mRNA isoforms in patients undergoing tamoxifen therapy. Br. J. Cancer, 1997, 75(5), 776.
[182]
Mishra, L-C.; Singh, B.B.; Dagenais, S. Scientific basis for the therapeutic use of Withania somnifera (ashwagandha): A review. Altern. Med. Rev., 2000, 5(4), 334-346.
[183]
Balachandran, P.; Govindarajan, R. Cancer-an ayurvedic perspective. Pharmacol. Res., 2005, 51(1), 19-30.
[184]
Singh, N.; Bhalla, M.; de Jager, P.; Gilca, M. An overview on ashwagandha: A Rasayana (Rejuvenator) of Ayurveda. Afr. J. Tradit. Complement. Altern. Med., 2011, 8(5S)
[185]
Cutler, D.M.; McClellan, M. Is technological change in medicine worth it? Health Aff., 2001, 20(5), 11-29.
[186]
Prakash, J.; Gupta, S.K.; Dinda, A.K. Withania somnifera root extract prevents DMBA-induced squamous cell carcinoma of skin in Swiss albino mice. Nutr. Cancer, 2002, 42(1), 91-97.
[187]
Arora, A.; Siddiqui, I.A.; Shukla, Y. Modulation of p53 in 7, 12-dimethylbenz [a] anthracene-induced skin tumors by diallyl sulfide in Swiss albino mice. Mol. Cancer Ther., 2004, 3(11), 1459-1466.
[188]
Smith, A.H.; Hopenhayn-Rich, C.; Bates, M.N.; Goeden, H.M.; Hertz-Picciotto, I.; Duggan, H.M.; Wood, R.; Kosnett, M.J.; Smith, M.T. Cancer risks from arsenic in drinking water. Environ. Health Perspect., 1992, 97, 259.
[189]
Jayaprakasam, B.; Zhang, Y.; Seeram, N.P.; Nair, M.G. Growth inhibition of human tumor cell lines by withanolides from Withania somnifera leaves. Life Sci., 2003, 74(1), 125-132.
[190]
Zhang, Y.; Vareed, S.K.; Nair, M.G. Human tumor cell growth inhibition by nontoxic anthocyanidins, the pigments in fruits and vegetables. Life Sci., 2005, 76(13), 1465-1472.
[191]
Mulabagal, V.; Subbaraju, G.V.; Rao, C.V.; Sivaramakrishna, C.; DeWitt, D.L.; Holmes, D.; Sung, B.; Aggarwal, B.B.; Tsay, H.S.; Nair, M.G. Withanolide sulfoxide from Aswagandha roots inhibits nuclear transcription factor‐kappa‐B, cyclooxygenase and tumor cell proliferation. Phytother. Res., 2009, 23(7), 987-992.
[192]
Singh, N.; Singh, S.; Nath, R.; Singh, D.; Gupta, M.; Kohli, R.; Bhargava, K. Prevention of urethane-induced lung adenomas by Withania somnifera (L.) Dunal in albino mice. Int. J. Crude Drug Res., 1986, 24(2), 90-100.
[193]
Powles, T.J.; Clark, S.A.; Easty, D.M.; Easty, G.C.; Neville, A.M. The inhibition by aspirin and indomethacin of osteolytic tumour deposits and hypercalcaemia in rats with Walker tumour, and its possible application to human breast cancer. Br. J. Cancer, 1973, 28(4), 316.
[194]
Scartezzini, P.; Speroni, E. Review on some plants of Indian traditional medicine with antioxidant activity. J. Ethnopharmacol., 2000, 71(1), 23-43.
[195]
Shukla, Y.; Singh, M. Cancer preventive properties of ginger: A brief review. Food Chem. Toxicol., 2007, 45(5), 683-690.
[196]
Katiyar, S.K.; Agarwal, R.; Mukhtar, H. Inhibition of tumor promotion in SENCAR mouse skin by ethanol extract of Zingiber officinale rhizome. Cancer Res., 1996, 56(5), 1023-1030.
[197]
Rao, C.V.; Simi, B.; Reddy, B.S. Inhibition by dietary curcumin of azoxymethane-induced ornithine decarboxylase, tyrosine protein kinase, arachidonic acid metabolism and aberrant crypt foci formation in the rat colon. Carcinogenesis, 1993, 14(11), 2219-2225.
[198]
Klein, G. Tumor-specific transplantation antigens: GHA Clowes memorial lecture. Cancer Res., 1968, 28(4), 625-635.
[199]
Li, A.; Dubey, S.; Varney, M.L.; Dave, B.J.; Singh, R.K. IL-8 directly enhanced endothelial cell survival, proliferation, and matrix metalloproteinases production and regulated angiogenesis. J. Immunol., 2003, 170(6), 3369-3376.
[200]
Vos, T.; Flaxman, A.D.; Naghavi, M.; Lozano, R.; Michaud, C.; Ezzati, M.; Shibuya, K.; Salomon, J.A.; Abdalla, S.; Aboyans, V. Years Lived with Disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990-2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet, 2013, 380(9859), 2163-2196.
[201]
Weir, N.M.; Selvendiran, K.; Kutala, V.K.; Tong, L.; Vishwanath, S.; Rajaram, M.; Tridandapani, S.; Anant, S.; Kuppusamy, P. Curcumin induces G2/M arrest and apoptosis in cisplatin-resistant human ovarian cancer cells by modulating Akt and p38 MAPK. Cancer Biol. Ther., 2007, 6(2), 178-184.
[202]
Rastogi, N.; Duggal, S.; Singh, S.K.; Porwal, K.; Srivastava, V.K.; Maurya, R.; Bhatt, M.L.B.; Mishra, D.P. Proteasome inhibition mediates p53 reactivation and anti-cancer activity of 6-Gingerol in cervical cancer cells. Oncotarget, 2015, 6(41), 43310.
[203]
Ren, K.; Zhang, W.; Wu, G.; Ren, J.; Lu, H.; Li, Z.; Han, X. Synergistic anti-cancer effects of galangin and berberine through apoptosis induction and proliferation inhibition in oesophageal carcinoma cells. Biomed. Pharmacother., 2016, 84, 1748-1759.
[204]
Liu, Z.; Li, H.; Fan, Y.; Liu, Y.; Man, S.; Yu, P.; Gao, W. Combination treatment with Rhizoma paridis and Rhizoma curcuma longa extracts and 10-hydroxycamptothecin enhances the antitumor effect in H22 tumor model by increasing the plasma concentration. Biomed. Pharmacother., 2016, 83, 627-634.
[205]
Gach, K.; Długosz, A.; Janecka, A. The role of oxidative stress in anticancer activity of sesquiterpene lactones. Naunyn Schmiedebergs Arch. Pharmacol., 2015, 388(5), 477-486.
[206]
Lin, X.; Peng, Z.; Su, C. Potential anti-cancer activities and mechanisms of costunolide and dehydrocostuslactone. Int. J. Mol. Sci., 2015, 16(5), 10888-10906.


Rights & PermissionsPrintExport Cite as


Article Details

VOLUME: 16
ISSUE: 2
Year: 2019
Page: [141 - 158]
Pages: 18
DOI: 10.2174/1570193X15666180626113026
Price: $58

Article Metrics

PDF: 15
HTML: 1