Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Research Article

Enhanced Microwave Absorption Properties of FeCo@TiO2 Core-Shell Nanoparticles

Author(s): Abdolrasoul Gharaati and Majid Ebrahimzadeh*

Volume 15, Issue 2, 2019

Page: [163 - 168] Pages: 6

DOI: 10.2174/1573413714666180621110928

Price: $65

Abstract

Background: Microwave absorbing nanocomposite is a kind of material that attenuates the reflection of microwave radiation in the gigahertz frequency range. These materials consist of dielectric and transition nanoparticles tend to exhibit attractive microwave absorption properties due to their high permittivity and permeability loss factors.

Method: The FeCo nanoparticles were prepared from the reduction of iron and cobalt ions with hydrazine. Then, the FeCo@TiO2 core-shell nanoparticles synthesized by co-precipitation method and their microwave absorbing performance are investigated. The phase composition, morphology and coercivity properties of the nanoparticles were studied by X-ray diffraction (XRD), transmission electron microscopy (TEM) and vibrating sample magnetometry (VSM). The composites of FeCo@TiO2 nanoparticles with the ratio of 30 vol.% and paraffin wax (70 vol.%) in different thicknesses were prepared. The microwave absorption properties of these composites were investigated in the frequency range of 2-18 GHz using the vector network analyzer.

Results: These nanocomposites exhibit the excellent microwave absorption characteristics (reflection loss<-20dB) in the bored band frequency range of 6-16 GHz with different absorber thicknesses of 1- 2.2 mm. The maximum absorption capability of -47.76 dB was obtained at the frequency of 7.92 GHz with the thickness of 1.8 mm.

Conclusion: Based on this study, it can be argued that the FeCo@TiO2 nanoparticles can be used for the bored band and thin microwave absorbers.

Keywords: Microwave absorber, FeCo@TiO2, reflection loss, permittivity, permeability, core-shell nanoparticles, coercivity.

Graphical Abstract
[1]
Fang, J.; Liu, T.; Chen, Z.; Wang, Y.; Wei, W.; Yue, X.; Jiang, Z. A wormhole-like porous carbon/magnetic particles composite as an efficient broadband electromagnetic wave absorber. Nanoscale, 2016, 8(16), 8899-8909.
[2]
Sood, D.; Tripathi, C.C. Broadband ultrathin low-profile metamaterial microwave absorber. Appl. Phys., A, 2016, 122(4), 332-339.
[3]
Khajehazad, H.; Ghaffary, T.; Ebrahimzadeh, M. Microwave absorption properties of Fe2O3/paraffin wax nanocomposite. Asian J. Chem., 2013, 25(13), 7651-7653.
[4]
Vinayasree, S.; Soloman, M.A.; Sunny, V.; Mohanan, P.; Kurian, P.; Anantharaman, M.R. A microwave absorber based on strontium ferrite–carbon black–nitrile rubber for S and X-band applications. Compos. Sci. Technol., 2013, 82, 69-75.
[5]
Sunny, V.; Kurian, P.; Mohanan, P.; Joy, P.A.; Anantharaman, M.R. A flexible microwave absorber based on nickel ferrite nanocomposite. J. Alloys Compd., 2010, 489(1), 297-303.
[6]
Ghaforyan, H.; Ebrahimzadeh, M.; Ghaffary, T.; Rezazadeh, H.; Jahromi, Z.S. Microwave absorbing properties of Ni nanowires grown in nanoporous anodic alumina templates. Chinese J. Phys., 2014, 52(1-I), 233-238.
[7]
Li, X.; Feng, J.; Du, Y.; Bai, J.; Fan, H.; Zhang, H.; Peng, Y.; Li, F. One-pot synthesis of CoFe2O4/graphene oxide hybrids and their conversion into FeCo/graphene hybrids for lightweight and highly efficient microwave absorber. J. Mater. Chem. A, 2015, 3(10), 5535-5546.
[8]
Feng, J.; Pu, F.; Li, Z.; Li, X.; Hu, X.; Bai, J. Interfacial interactions and synergistic effect of CoNi nanocrystals and nitrogen-doped graphene in a composite microwave absorber. Carbon, 2016, 104, 214-225.
[9]
Wen, F.; Hou, H.; Xiang, J.; Zhang, X.; Su, Z.; Yuan, S.; Liu, Z. Fabrication of carbon encapsulated Co3O4 nanoparticles embedded in porous graphitic carbon nanosheets for microwave absorber. Carbon, 2015, 89, 372-377.
[10]
Panwar, R.; Puthucheri, S.; Agarwala, V.; Singh, D. Fractal frequency-selective surface embedded thin broadband microwave absorber coatings using heterogeneous composites. IEEE Trans. Microw. Theory Tech., 2015, 63(8), 2438-2448.
[11]
Li, W.; Wu, T.; Wang, W.; Zhai, P.; Guan, J. Broadband patterned magnetic microwave absorber. J. Appl. Phys., 2014, 116(4), 044110.
[12]
Moitra, D.; Chandel, M.; Ghosh, B.K.; Jani, R.K.; Patra, M.K.; Vadera, S.R.; Ghosh, N.N. A simple ‘in situ’ co-precipitation method for the preparation of multifunctional CoFe2O4 reduced graphene oxide nanocomposites: Excellent microwave absorber and highly efficient magnetically separable recyclable photocatalyst for dye degradation. RSC Advances, 2016, 6(80), 76759-76772.
[13]
Ren, X.; Fan, H.; Cheng, Y. Microwave absorption properties of double-layer absorber based on carbonyl iron/barium hexaferrite composites. Appl. Phys., A, 2016, 122(5), 506.
[14]
Huang, X.; Zhang, J.; Lai, M.; Sang, T. Preparation and microwave absorption mechanisms of the NiZn ferrite nanofibers. J. Alloys Compd., 2015, 627, 367-373.
[15]
Jiang, L.; Wang, Z.; Geng, D.; Wang, Y.; An, J.; He, J.; Li, D.; Liu, W.; Zhang, Z. Carbon-encapsulated Fe nanoparticles embedded in organic polypyrrole polymer as a high-performance microwave absorber. J. Phys. Chem. C, 2016, 120(49), 28320-28329.
[16]
Widanarto, W.; Amirudin, F.; Ghoshal, S.K.; Effendi, M.; Cahyanto, W.T. Structural and magnetic properties of La3+ substituted barium− natural nanoferrites as microwave absorber in X-band. J. Magn. Magn. Mater., 2017, 426, 483-486.
[17]
Alam, R.S.; Moradi, M.; Rostami, M.; Nikmanesh, H.; Moayedi, R.; Bai, Y. Structural, magnetic and microwave absorption properties of doped Ba-hexaferrite nanoparticles synthesized by co-precipitation method. J. Magn. Magn. Mater., 2015, 381, 1-9.
[18]
Nikmanesh, H.; Moradi, M.; Bordbar, G.H.; Alam, R.S. Synthesis of multi-walled carbon nanotube/doped barium hexaferrite nanocomposites: An investigation of structural, magnetic and microwave absorption properties. Ceram. Int., 2016, 42(13), 14342-14349.
[19]
Zhao, B.; Guo, X.; Zhao, W.; Deng, J.; Fan, B.; Shao, G.; Bai, Z.; Zhang, R. Facile synthesis of yolk–shell Ni@void@SnO2 (Ni3 Sn2) ternary composites via galvanic replacement/Kirkendall effect and their enhanced microwave absorption properties. Nano Res., 2017, 10(1), 331-343.
[20]
Cheng, Y.; Ji, G.; Li, Z.; Lv, H.; Liu, W.; Zhao, Y.; Cao, J.; Du, Y. Facile synthesis of FeCo alloys with excellent microwave absorption in the whole Ku-band: Effect of Fe/Co atomic ratio. J. Alloys Compd., 2017, 704, 289-295.
[21]
Zhang, Y.; Quan, B.; Liu, W.; Liang, X.; Ji, G.; Du, Y. A facile one-pot strategy for fabrication of carbon-based microwave absorbers: Effects on annealing and paraffin content. Dalton Trans., 2017, 46(28), 9097-9102.
[22]
Ding, D.; Wang, Y.; Li, X.; Qiang, R.; Xu, P.; Chu, W.; Han, X.; Du, Y. Rational design of core-shell Co@C microspheres for high-performance microwave absorption. Carbon, 2017, 111, 722-732.
[23]
Guo, Y.; Liu, S.; Zhang, Z.; Dong, S.; Wang, H. Fabrication of ZnO/Fe rod-like core-shell structure as high-performance microwave absorber. J. Alloys Compd., 2017, 694, 549-555.
[24]
Li, Z.; Li, X.; Zong, Y.; Tan, G.; Sun, Y.; Lan, Y.; He, M.; Ren, Z.; Zheng, X. Solvothermal synthesis of nitrogen-doped graphene decorated by superparamagnetic Fe3O4 nanoparticles and their applications as enhanced synergistic microwave absorbers. Carbon, 2017, 115, 493-502.
[25]
Song, C.; Yin, X.; Han, M.; Li, X.; Hou, Z.; Zhang, L.; Cheng, L. Three-dimensional reduced graphene oxide foam modified with ZnO nanowires for enhanced microwave absorption properties. Carbon, 2017, 116, 50-58.
[26]
Wei, S.; Wang, X.; Zhang, B.; Yu, M.; Zheng, Y.; Wang, Y.; Liu, J. Preparation of hierarchical core-shell C@NiCo2O4@Fe3O4 composites for enhanced microwave absorption performance. Chem. Eng. J., 2017, 314, 477-487.
[27]
Zhang, Y.; Wang, X.; Cao, M. Confinedly implanted NiFe2O4-rGO: Cluster tailoring and highly tunable electromagnetic properties for selective-frequency microwave absorption. Nano Res., 2018, 11(3), 1426-1436.
[28]
Zheng, Y.; Wang, X.; Wei, S.; Zhang, B.; Yu, M.; Zhao, W.; Liu, J. Fabrication of porous graphene-Fe3O4 hybrid composites with outstanding microwave absorption performance. Compos., Part A Appl. Sci. Manuf., 2017, 95, 237-247.
[29]
Arief, I.; Biswas, S.; Bose, S. FeCo anchored reduced graphene oxide framework-based soft composites containing carbon nanotubes as highly efficient microwave absorbers with excellent heat dissipation ability. ACS Appl. Mater. Interfaces, 2017, 9(22), 19202-19214.
[30]
Wang, X.X.; Ma, T.; Shu, J.C.; Cao, M.S. Confinedly tailoring Fe3O4 clusters-NG to tune electromagnetic parameters and microwave absorption with broadened bandwidth. Chem. Eng. J., 2018, 332, 321-330.
[31]
Zhang, N.; Huang, Y.; Zong, M.; Ding, X.; Li, S.; Wang, M. Synthesis of ZnS quantum dots and CoFe2O4 nanoparticles co-loaded with graphene nanosheets as an efficient broad band EM wave absorber. Chem. Eng. J., 2017, 308, 214-221.
[32]
Jia, X.; Wang, J.; Zhu, X.; Wang, T.; Yang, F.; Dong, W.; Wang, G.; Yang, H.; Wei, F. Synthesis of lightweight and flexible composite aerogel of mesoporous iron oxide threaded by carbon nanotubes for microwave absorption. J. Alloys Compd., 2017, 697, 138-146.
[33]
Qiu, X.; Wang, L.; Zhu, H.; Guan, Y.; Zhang, Q. Lightweight and efficient microwave absorbing materials based on walnut shell-derived nano-porous carbon. Nanoscale, 2017, 9(22), 7408-7418.
[34]
Wang, L.; Xing, H.; Gao, S.; Ji, X.; Shen, Z. Porous flower-like NiO@graphene composites with superior microwave absorption properties. J. Mater. Chem. C, 2017, 5(8), 2005-2014.
[35]
Deng, J.; Li, S.; Zhou, Y.; Liang, L.; Zhao, B.; Zhang, X.; Zhang, R. Enhancing the microwave absorption properties of amorphous CoO nanosheet-coated Co (hexagonal and cubic phases) through interfacial polarizations. J. Colloid Interface Sci., 2018, 509, 406-413.
[36]
Yang, H.J.; Cao, W.Q.; Zhang, D.Q.; Su, T.J.; Shi, H.L.; Wang, W.Z.; Yuan, J.; Cao, M.S. NiO hierarchical nanorings on SiC: Enhancing relaxation to tune microwave absorption at elevated temperature. ACS Appl. Mater. Interfaces, 2015, 7(13), 7073-7077.
[37]
Zhang, Y.; Huang, Y.; Chen, H.; Huang, Z.; Yang, Y.; Xiao, P.; Zhou, Y.; Chen, Y. Composition and structure control of ultralight graphene foam for high-performance microwave absorption. Carbon, 2016, 105, 438-447.
[38]
Liu, Q.; Cao, Q.; Bi, H.; Liang, C.; Yuan, K.; She, W.; Yang, Y.; Che, R. CoNi@SiO2@ TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater., 2016, 28(3), 486-490.
[39]
Wang, J.; Zhou, H.; Zhuang, J.; Liu, Q. Magnetic γ-Fe2O3, Fe3O4, and Fe nanoparticles confined within ordered mesoporous carbons as efficient microwave absorbers. Phys. Chem. Chem. Phys., 2015, 17(5), 3802-3812.
[40]
Li, Y.; Cao, W.Q.; Yuan, J.; Wang, D.W.; Cao, M.S. Nd doping of bismuth ferrite to tune electromagnetic properties and increase microwave absorption by magnetic–dielectric synergy. J. Mater. Chem. C, 2015, 3(36), 9276-9282.
[41]
Li, Z.; Li, X.; Zong, Y.; Tan, G.; Sun, Y.; Lan, Y.; He, M.; Ren, Z.; Zheng, X. Solvothermal synthesis of nitrogen-doped graphene decorated by superparamagnetic Fe3O4 nanoparticles and their applications as enhanced synergistic microwave absorbers. Carbon, 2017, 115, 493-502.
[42]
Xiang, J.; Li, J.; Zhang, X.; Ye, Q.; Xu, J.; Shen, X. Magnetic carbon nanofibers containing uniformly dispersed Fe/Co/Ni nanoparticles as stable and high-performance electromagnetic wave absorbers. J. Mater. Chem. A, 2014, 2(40), 16905-16914.
[43]
Ghaforyan, H.; Ebrahimzadeh, M. Self-organized formation of hexagonal pore arrays in anodic alumina fabrication. J. Mater. Sci. Eng. B, 2011, 1(1B), 82-86.
[44]
Jani, R.K.; Patra, M.K.; Saini, L.; Shukla, A.; Singh, C.P.; Vadera, S.R. Tuning of microwave absorption properties and electromagnetic interference (EMI) shielding effectiveness of nanosize conducting black-silicone rubber composites over 8-18 GHz. Prog. Electromagnetics Res., 2017, 58, 193-204.
[45]
Zhang, X.J.; Wang, G.S.; Cao, W.Q.; Wei, Y.Z.; Liang, J.F.; Guo, L.; Cao, M.S. Enhanced microwave absorption property of reduced graphene oxide (RGO)-MnFe2O4 nanocomposites and polyvinylidene fluoride. ACS Appl. Mater. Interfaces, 2014, 6(10), 7471-7478.
[46]
Liu, S.; Li, L.; Zheng, S.; Qi, S. Microwave absorption properties of double-layer absorbers based on spindle magnetite nanoparticles and flower-like copper sulfide microspheres. J. Mater. Sci. Mater. Electron., 2018, 29, 8978-8988.
[47]
Cheng, Y.Z.; Cheng, Z.Z.; Mao, X.S.; Gong, R.Z. Ultra-thin multi-band polarization-insensitive microwave metamaterial absorber based on multiple-order responses using a single resonator structure. Materials, 2017, 10(11), 1241-1253.
[48]
Kuang, D.; Hou, L.; Yu, B.; Liang, B.; Deng, L.; Huang, H.; Ma, S.; He, J.; Wang, S. Gram-scale synthesis, thermal stability, magnetic properties, and microwave absorption application of extremely small Co–C core–shell nanoparticles. Mater. Res. Express, 2017, 4(7), 075044.
[49]
Guo, Y.; Liu, S.; Zhang, Z.; Dong, S.; Wang, H. Fabrication of ZnO/Fe rod-like core-shell structure as high-performance microwave absorber. J. Alloys Compd., 2017, 694, 549-555.
[50]
Wei, S.; Wang, X.; Zhang, B.; Yu, M.; Zheng, Y.; Wang, Y.; Liu, J. Preparation of hierarchical core-shell C@ NiCo2O4@ Fe3O4 composites for enhanced microwave absorption performance. Chem. Eng. J., 2017, 314, 477-487.
[51]
Zhang, S.; Qi, Z.; Zhao, Y.; Jiao, Q.; Ni, X.; Wang, Y.; Chang, Y.; Ding, C. Core/shell structured composites of hollow spherical CoFe2O4 and CNTs as absorbing materials. J. Alloys Compd., 2017, 694, 309-312.
[52]
Feng, C.; Liu, X.; Or, S.W.; Ho, S.L. Exchange coupling and microwave absorption in core/shell-structured hard/soft ferrite-based CoFe2O4/NiFe2O4 nanocapsules. AIP Adv., 2017, 7(5), 056403.
[53]
Liu, Q.; Cao, Q.; Bi, H.; Liang, C.; Yuan, K.; She, W.; Yang, Y.; Che, R. CoNi@ SiO2@ TiO2 and CoNi@ Air@ TiO2 microspheres with strong wideband microwave absorption. Adv. Mater., 2016, 28(3), 486-490.
[54]
Cheng, Y.; He, B.; Zhao, J.; Gong, R. Ultra-thin low-frequency broadband microwave absorber based on magnetic medium and metamaterial. J. Electron. Mater., 2017, 46(2), 1293-1299.
[55]
Wen, F.; Zhang, F.; Liu, Z. Investigation on microwave absorption properties for multiwalled carbon nanotubes/Fe/Co/Ni nanopowders as lightweight absorbers. J. Phys. Chem. C, 2011, 115(29), 14025-14030.
[56]
Liu, J.; Xu, J.; Liu, Z.; Liu, X.; Che, R. Hierarchical magnetic core-shell nanostructures for microwave absorption: Synthesis, microstructure and property studies. Sci. China Chem., 2014, 57(1), 3-12.
[57]
Wei, Y.; Yue, J.; Tang, X.; Huang, X. Enhanced microwave-absorbing properties of FeCo magnetic film-functionalized silicon carbide fibers fabricated by a radio frequency magnetron method. Ceram. Int., 2017, 43(18), 16371-16375.
[58]
Wang, C.; Lv, R.; Huang, Z.; Kang, F.; Gu, J. Synthesis and microwave absorbing properties of FeCo alloy particles/graphite nanoflake composites. J. Alloys Compd., 2011, 509(2), 494-498.
[59]
Xu, J.; Qi, X.; Luo, C.; Qiao, J.; Xie, R.; Sun, Y.; Zhong, W.; Fu, Q.; Pan, C. Synthesis and enhanced microwave absorption properties: A strongly hydrogenated TiO2 nanomaterial. Nanotechnology, 2017, 28(42), 425701-425787.
[60]
Zhu, C.L.; Zhang, M.L.; Qiao, Y.J.; Xiao, G.; Zhang, F.; Chen, Y.J. Fe3O4/TiO2 core/shell nanotubes: Synthesis and magnetic and electromagnetic wave absorption characteristics. J. Phys. Chem. C, 2010, 114(39), 16229-16235.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy