Synthesis, Structure Elucidation and Biological Activities of Some Novel 4(3H)-Quinazolinones as Anti-Biofilm Agents

Author(s): Sevda Türk, Sevgi Karakuş*, Abdulilah Ece, Seyhan Ulusoy, Gülgün Bosgelmez-Tınaz.

Journal Name: Letters in Drug Design & Discovery

Volume 16 , Issue 3 , 2019

Submit Manuscript
Submit Proposal

Graphical Abstract:


Abstract:

Background: Pseudomonas aeruginosa is an opportunistic pathogen that causes chronic infections in immunocompromised patients. The inhibition of Quorum Sensing (QS) system has been recognized as an attractive strategy for the treatment of P. aeruginosa infections. In the present study, a series of novel 2-methyl-3-[4-(substituedaminosulfonyl)phenyl]-4(3H)-quinazolinones (1-8) were synthesized and tested for their biofilm formation and swarming motility inhibitory activities in P. aeruginosa PA01.

Findings: These compounds were found to reduce biofilm formation by 20-32% and swarming motility by 51-62% in P. aeruginosa PA01 at a concentration of 12.5µM. Molecular docking studies were also performed to elucidate the possible key interactions of these compounds with the active site of the P. aeruginosa QS receptor LasR. Furthermore, some molecular properties related to drug likeness and ADME were predicted.

Results and Conclusion: Results of this study demonstrated that compounds 1-8 can influence QS-regulated biofilm formation and swarming motility in P. aeruginosa PA01 by binding LasR protein and could be developed as anti-biofilm agents to treat chronic biofilm associated infections caused by P. aeruginosa and other clinically significant pathogens.

Keywords: 4(3H)-Quinazolinones, structure elucidation, LasR protein, Pseudomonas aeruginosa, quorum sensing, biofilm formation.

[1]
Smith, R.S.; Harris, S.G.; Phipps, R.; Iglewski, B. The Pseudomonas aeruginosa quorum-sensing molecule N-(3-oxododecanoyl) homoserine lactone contributes to virulence and induces inflammation in vivo. J. Bacteriol., 2002, 184, 1132-1139.
[2]
Costerton, J.W.; Stewart, P.S.; Greenberg, E.P. Bacterial biofilms: A common cause of persistent infections. Science, 1999, 284, 1318-1322.
[3]
Hoiby, N.; Bjarnsholt, T.; Givskov, M.; Molin, S.; Ciofu, O. Antibiotic resistance of bacterial biofilms. Int. J. Antimicrob. Agents, 2010, 35, 322-332.
[4]
Butler, M.T.; Wang, Q.F.; Harshey, R.M. Cell density and mobility protect swarming bacteria against antibiotics. Proc. Natl. Acad. Sci. USA, 2010, 107, 3776-3781.
[5]
Overhage, J.; Bains, M.; Brazas, M.D.; Hancock, R.E.W. Swarming of Pseudomonas aeruginosa is a complex adaptation leading to increased production of virulence factors and antibiotic resistance. J. Bacteriol., 2008, 190, 2671-2679.
[6]
Wilder, C.N.; Diggle, S.P.; Schuster, M. Cooperation and cheating in Pseudomonas aeruginosa: The roles of the las, rhl and pqs quorum-sensing systems. Isme J., 2011, 5, 1332-1343.
[7]
Pesci, E.C.; Pearson, J.P.; Seed, P.C.; Iglewski, B.H. Regulation of las and rhl quorum sensing in Pseudomonas aeruginosa. J. Bacteriol., 1997, 179, 3127-3132.
[8]
Pesci, E.C.; Milbank, J.B.J.; Pearson, J.P.; McKnight, S.; Kende, A.S.; Greenberg, E.P.; Iglewski, B.H. Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA, 1999, 96, 11229-11234.
[9]
Nicas, T.I.; Iglewski, B.H. The contribution of exoproducts to virulence of Pseudomonas aeruginosa. Can. J. Microbiol., 1985, 31, 387-392.
[10]
de Kievit, T.R.; Iglewski, B.H. Bacterial quorum sensing in pathogenic relationships. Infect. Immun., 2000, 68, 4839-4849.
[11]
Van Delden, C.; Iglewski, B.H. Cell-to-cell signaling and Pseudomonas aeruginosa infections. Emerging . Infect. Dis., 1998, 4, 551-560.
[12]
Hentzer, M.; Givskov, M. Pharmacological inhibition of quorum sensing for the treatment of chronic bacterial infections. J. Clin. Invest., 2003, 112, 1300-1307.
[13]
Donabedian, H. Quorum sensing and its relevance to infectious diseases. J. Infect., 2003, 46, 207-214.
[14]
Khan, I.; Ibrar, A.; Ahmed, W.; Saeed, A. Synthetic approaches, functionalization and therapeutic potential of quinazoline and quinazolinone skeletons: The advances continue. Eur. J. Med. Chem., 2015, 90, 124-169.
[15]
Uraz, M.; Karakus, S.; Abu Mohsen, U.; Kaplancikli, Z.A.; Rollas, S. The synthesis and evaluation of anti-acetylcholinesterase activity of some 4(3H)-quinazolinone derivatives bearing substituted 1,3,4- thiadiazole. Marmara Pharm. J., 2017, 21, 96-101.
[16]
Truchado, P.; Gil-Izquierdo, A.; Tomas-Barberan, F.; Allende, A. Inhibition by chestnut honey of N-acyl-l-homoserine lactones and biofilm formation in Erwinia carotovora, Yersinia enterocolitica, and Aeromonas hydrophila. J. Agric. Food Chem., 2009, 57, 11186-11193.
[17]
Rashid, M.H.; Kornberg, A. Inorganic polyphosphate is needed for swimming, swarming, and twitching motilities of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA, 2000, 97, 4885-4890.
[18]
Schrödinger Ligprep, 2017-4; LLC, New York: NY. , 2017.
[19]
Schrödinger Maestro, 2017-4; LLC, New York: NY. , 2017.
[20]
Harder, E.; Damm, W.; Maple, J.; Wu, C.J.; Reboul, M.; Xiang, J.Y.; Wang, L.L.; Lupyan, D.; Dahlgren, M.K.; Knight, J.L. Opls3: A force field providing broad coverage of drug-like small molecules and proteins. J. Chem. Theory Comput., 2016, 12, 281-296.
[21]
Sastry, G.M.; Adzhigirey, M.; Day, T.; Annabhimoju, R.; Sherman, W. Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. J. Comput. Aided Mol. Des., 2013, 27, 221-234.
[22]
Schrödinger Protein preparation wizard;epik; impact; prime, 2017-4; LLC, New York: NY. , 2017.
[23]
Friesner, R.A.; Banks, J.L.; Murphy, R.B.; Halgren, T.A.; Klicic, J.J.; Mainz, D.T.; Repasky, M.P.; Knoll, E.H.; Shelley, M.; Perry, J.K. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem., 2004, 47, 1739-1749.
[24]
Friesner, R.A.; Murphy, R.B.; Repasky, M.P.; Frye, L.L.; Greenwood, J.R.; Halgren, T.A.; Sanschagrin, P.C.; Mainz, D.T. Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J. Med. Chem., 2006, 49, 6177-6196.
[25]
Halgren, T.A.; Murphy, R.B.; Friesner, R.A.; Beard, H.S.; Frye, L.L.; Pollard, W.T.; Banks, J.L. Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J. Med. Chem., 2004, 47, 1750-1759.
[26]
Schrödinger Qikprop, 2017-4; LLC, New York: NY. , 2017.
[27]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Delivery . Rev., 1997, 23, 3-25.
[28]
Jatav, V.; Mishra, P.; Kashaw, S.; Stables, J.P. Synthesis and cns depressant activity of some novel 3-[5-substituted 1,3,4-thiadiazole-2-yl]-2-styryl quinazoline-4(3H)-ones. Eur. J. Med. Chem., 2008, 43, 135-141.
[29]
Desai, N.C.; Bhatt, J.J.; Shah, B.R.; Undavia, N.K.; Trivedi, P.B.; Narayanan, V. Synthesis of substituted quinazolone derivatives as potential anti-hiv agents (part III). Farmaco, 1996, 51, 361-366.
[30]
Alagarsamy, V.; Murugananthan, G.; Venkateshperumal, R. Synthesis, analgesic, anti-inflammatory and antibacterial activities of some novel 2-methyl-3-substituted quinazolin-4(3H)-ones. Biol. Pharm. Bull., 2003, 26, 1711-1714.
[31]
Gürsoy, A.; Karalı, N. Synthesis and primary cytotoxicity evaluation of 3-[[(3-phenyl-4(3H)-quinazolinone-2-yl)mercaptoacetyl] hydrazono]-1H-2-indoli-nones. Eur. J. Med. Chem., 2003, 38, 633-643.
[32]
Weng, L.X.; Yang, Y.X.; Zhang, Y.Q.; Wang, L.H. A new synthetic ligand that activates qscr and blocks antibiotic-tolerant biofilm formation in Pseudomonas aeruginosa. Appl. Microbiol. Biotechnol., 2014, 98, 2565-2572.
[33]
Ding, X.; Yin, B.; Qian, L.; Zeng, Z.R.; Yang, Z.L.; Li, H.X.; Lu, Y.J.; Zhou, S.N. Screening for novel quorum-sensing inhibitors to interfere with the formation of Pseudomonas aeruginosa biofilm. J. Med. Microbiol., 2011, 60, 1827-1834.
[34]
Rasmussen, T.B.; Givskov, M. Quorum-sensing inhibitors as anti-pathogenic drugs. Int. J. Med. Microbiol., 2006, 296, 149-161.
[35]
Rabin, N.; Zheng, Y.; Opoku-Temeng, C.; Du, Y.X.; Bonsu, E.; Sintim, H.O. Agents that inhibit bacterial biofilm formation. Future Med. Chem., 2015, 7, 647-671.
[36]
Ulusoy, S.; Şenkardeş, S.; Coşkun, İ.; Boşgelmez-Tınaz, G.; Soulère, L.; Quenau, Y.; Küçükgüzel, Ş.G. Quorum sensing Inhibitor activities of Celecoxib derivatives in Pseudomonas aeruginosa. Lett. Drug Des. Discovery., 2017, 14, 613-618.
[37]
Shrout, J.D.; Chopp, D.L.; Just, C.L.; Hentzer, M.; Givskov, M.; Parsek, M.R. The impact of quorum sensing and swarming motility on Pseudomonas aeruginosa biofilm formation is nutritionally conditional. Mol. Microbiol., 2006, 62, 1264-1277.
[38]
de la Fuente-Nunez, C.; Korolik, V.; Bains, M.; Nguyen, U.; Breidenstein, E.B.M.; Horsman, S.; Lewenza, S.; Burrows, L.; Hancock, R.E.W. Inhibition of bacterial biofilm formation and swarming motility by a small synthetic cationic peptide. Antimicrob. Agents Chemother., 2012, 56, 2696-2704.
[39]
Davies, D.G.; Parsek, M.R.; Pearson, J.P.; Iglewski, B.H.; Costerton, J.W.; Greenberg, E.P. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science, 1998, 280, 295-298.
[40]
Ece, A.; Sevin, F. The discovery of potential cyclin a/cdk2 inhibitors: A combination of 3D-OSAR pharmacophore modeling, virtual screening, and molecular docking studies. Med. Chem. Res., 2013, 22, 5832-5843.
[41]
Mascarenhas, N.M.; Ghoshal, N. An efficient tool for identifying inhibitors based on 3D-OSAR and docking using feature-shape pharmacophore of biologically active conformation - a case study with CDK2/CyclinA. Eur. J. Med. Chem., 2008, 43, 2807-2818.
[42]
Er, M.; Erguven, B.; Tahtaci, H.; Onaran, A.; Karakurt, T.; Ece, A. Synthesis, characterization, preliminary SAR and molecular docking study of some novel substituted imidazo [2,1-b][ 1,3,4] thiadiazole derivatives as antifungal agents. Med. Chem. Res., 2017, 26, 615-630.
[43]
Tahtaci, H.; Karacık, H.; Ece, A.; Er, M.; Şeker, M.G. Design, synthesis, sar and molecular modeling studies of novel imidazo[ 2,1-b][1,3,4]thiadiazole derivatives as highly potent antimicrobial agents. Mol. Inf., 2018, 37
[44]
Yamali, C.; Gul, H.I.; Ece, A.; Taslimi, P.; Gulcin, I. Synthesis, molecular modeling, and biological evaluation of 4-[5-aryl-3-(thiophen-2-yl)-4,5-dihydro-1H-pyrazol-1-yl]benzenesulfonamides toward acetylcholinesterase, carbonic anhydrase I and II enzymes. Chem. Biol. Drug Des., 2018, 91, 857-866.
[45]
Veber, D.F.; Johnson, S.R.; Cheng, H.Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem., 2002, 45, 2615-2623.


Rights & PermissionsPrintExport Cite as


Article Details

VOLUME: 16
ISSUE: 3
Year: 2019
Page: [313 - 321]
Pages: 9
DOI: 10.2174/1570180815666180621101123
Price: $58

Article Metrics

PDF: 14
HTML: 1