Science and Technological Understanding of Nano-ionic Resistive Memories (RRAM)

Author(s): C.S. Dash, S.R.S. Prabaharan*.

Journal Name: Nanoscience & Nanotechnology-Asia

Volume 9 , Issue 4 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Ion transport in the solid state has been regarded as imperative with regards to high energy density electrochemical storage devices (for instance, batteries) for efficient electric mobility. Of late, there is another niche application involving ion transport in solid state which manifested itself as nonvolatile memory namely memristor. Such memories are classified under the emerging category of novel solid state Resistive Random Access Memories (RRAM). In 2008, HP labs unveiled the first practical memristor device employing TiO2 and non-stoichiometric titania as bilayer stack structure and on both sides of two titania layers platinum (pt) are used as blocking electrode for ions. It is understood that switching fundamentals are correlated to the filamentary conduction in metal oxide memristors owing to the formation and rupture of the filament-like nano-dendrites, one of the key mechanisms widely accepted in the arena of memristor analysis. This paper critically reviews the fundamental materials being employed in novel memristor memories. It is believed that solid electrolytes (fast ion conductors) are the fundamental building blocks of these memories. We have chosen a few archetypes, solid electrolytes are considered and their impact on the state-of-art research in this domain is discussed in detail. An indepth analysis of the fundamentals of resistive switching mechanism involved in various classes of memristive devices viz., Electrochemical Metallization Memories (ECM) and Valence Change Memories (VCM) is elucidated. A few important applications of memristors such as neuristor and artificial synapse in neuromorphic computing are reviewed as well.

Keywords: Memristor, resistive switching, neuromorphic computing, nanoionics, Valence Change Memories (VCM), Electrochemical Metallization Memories (ECM).

[1]
International Technology Roadmap for Semiconductors. 2013. Available from: www.itrs.net
[2]
Waser, R.; and Aono, M. Nanoionics-based resistive switching memories. Nat. Mater., 2007, 6(11), 833-840.
[3]
Waser, R.; Dittmann, R.; Staikov, G.; Szot, K. Redox-based resistive switching memories-nanoionic mechanisms, prospects, and challenges. Adv. Mater., 2009, 21(25-26), 2632-2663.
[4]
Fujisaki, Y. Review of emerging new solid-state non-volatile memories. Jpn. J. Appl. Phys., 2013, 52 040001
[5]
Akerman, J. Toward a universal memory. Science, 2005, 308, 508-510.
[6]
Marrows, C.H.; Chapon, L.C.; Langridge, S. Spintronics and functional materials. Mater. Today, 2009, 12(7-8), 70-77.
[7]
Bhatti, S.; Sbiaa, R.; Hirohata, A.; Ohno, H.; Fukami, S.; Piramanayagam, S.N. Spintronics based random access memory: A review. Mater. Today, 2017, 20, 530-548.
[8]
Chen, A. A review of emerging non-volatile memory (NVM) technologies and applications. Solid-State Electron., 2016, 125, 25-38.
[9]
Meena, J.S.; Sze, S.M.; Chand, U.; Tseng, T-Y. Overview of emerging nonvolatile memory technologies. Nanoscale Res. Lett., 2014, 9, 526.
[10]
Hamann, H-F.; O’Boyle, M.; Martin, Y-C.; Rooks, M.; Wickramasinghe, H-K. Ultra-high-density phase-change storage and memory. Nat. Mater., 2006, 5, 383-387.
[11]
Wuttig, M.; Yamada, N. Phase change materials for rewriteable data storage. Nat. Mater., 2007, 6, 824-832.
[12]
Bruyere, J.C.; Chakraverty, B.K. Switching and negative resistance in thin films of nickel oxide. Appl. Phys. Lett., 1970, 16(1), 40-43.
[13]
Chua, L-O. Memristor-the missing circuit element. IEEE Trans. Circuit Theory, 1971, 18(5), 507-519.
[14]
Chua, L-O.; Kang, S-M. Memristive devices and systems. Proc. IEEE, 1976, 64, 209-223.
[15]
Yang, J-J.; Strukov, D-B.; Stewart, D-R. Memristive devices for computing. Nat. Nanotechnol., 2013, 8, 13-24.
[16]
Strukov, D-B.; Snider, G-S.; Stuwart, D-R.; Williams, R-S. The missing Memristor found. Nature, 2008, 453, 80-83.
[17]
Valov, I.; Linn, E.; Tappertzhofen, S.; Schmelzer, S.; van den Hurk, J.; Lentz, F.; Waser, R. Nanobatteries in redox-based resistive switches require extension of memristor theory. Nat. Commun., 2013, 4, 1771.
[18]
Beaulieu, R.P.; Sulway, D.V.; Cox, C.D. The detection of current filaments in VO2 thin-film switches using the scanning electron microscope. Solid-State Electron., 1973, 3, 428-429.
[19]
Hirose, Y.; Hirose, H. Polarity-dependent memory switching and behavior of Ag dendrite in Ag-photodoped amorphous As2S3 films. J. Appl. Phys., 1976, 47, 2767-2772.
[20]
Kozicki, M.N.; Yun, M.; Hilt, L.; Singh, A. Applications of programmable resistance changes in metal-doped chalcogenides. J. Electrochem. Soc., 1999, 146, 298.
[21]
Kund, M.; Beitel, G.; Pinnow, C.U.; Rohr, T.; Schumann, J.; Symanczyk, R.; Ufert, K.; Muller, G. Conductive bridging RAM (CBRAM): An emerging non-volatile memory technology scalable to sub 20 nm. IEDM Tech. Digest., 2005, 2005, 754-757.
[22]
Yang, J-J.; Pickett, M-D.; Li, X.; Ohlberg, D-A-A.; Stewart, D-R.; Williams, R-S. Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nanotechnol., 2008, 3, 429-433.
[23]
Chua, L-O. Resistance switching memories are memristors. Appl. Phys., A., 2011, 102, 765-783.
[24]
Sung, H.J.; Chang, T.; Ebong, I.; Bhadviya, B.B.; Mazumder, P.; Lu, W. Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett., 2010, 10, 1297-1301.
[25]
Pickett, M-D.; Medeiros-Ribeiro, G.; Williams, R.S. A scalable neuristor built with Mott memristors. Nat. Mater., 2012, 12, 114-117.
[26]
Chowdari, B.V.R.; Prabaharan, S.R.S.; Yahaya, M.; Talib, I.A. Solid State Ionics: Trends in the New Millenium; World Scientific Publishing: Singapore, 2002.
[27]
Joshua, Y.J.; Miao, F.; Pickett, M.D.; Ohlberg, D.A.; Stewart, D.R.; Lau, C.N.; Williams, R.S. The mechanism of electroforming of metal oxide memristive switches. Nanotechnology, 2009, 20215201
[28]
Strachan, J.P.; Yang, J.J.; Montoro, L.A.; Ospina, C.A.; Ramirez, A.J.; Kilcoyne, A.L.D.; Medeiros-Ribeiro, G.; Williams, R.S. Characterization of electroforming-free titanium dioxide memristors. Beilstein J. Nanotechnol., 2013, 4, 467-473.
[29]
Kwon, D.H.; Kim, K.M.; Jang, J.H.; Jeon, J.M.; Lee, M.H.; Kim, G.H.; Li, X.S.; Park, G.S.; Lee, B.; Han, S.; Kim, M.; Hwang, C.S. Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nat. Nanotech., 2010, 5, 148-153.
[30]
Miao, F.; Joshua, Y.J.; Borghetti, J.; Medeiros-Ribeiro, G.; Stanley Williams, R. Observation of two resistance switching modes in TiO2 memristive devices electroformed at low current. Nanotechnology, 2011, 22254007
[31]
Yang, J.J.; Borghetti, J.; Murphy, D.; Stewart, D.R.; Williams, R.S. A Family of electronically reconfigurable nanodevices. Adv. Mater., 2009, 21, 3754-3758.
[32]
Strukov, D.B.; Williams, R.S. Exponential ionic drift: Fast switching and low volatility of thin-film memristors. Appl. Phys., A Mater. Sci. Process., 2009, 94, 515-519.
[33]
Strukov, D.B.; Borghetti, J.L.; Williams, R.S. Coupled ionic and electronic transport model of thin-film semiconductor memristive behavior. Small, 2009, 5, 1058-1063.
[34]
Mazady, A.; Anwar, M. Part I-The underlying physics and conduction mechanism. IEEE Trans. Electron Devices., 2014, 61, 1054-1061.
[35]
Do, Y.H.; Kwak, J.S.; Bae, Y.C.; Jung, K.; Im, H.; Hong, J.P. Hysteretic bipolar resistive switching characteristics in TiO2/TiO2x multilayer homojunctions. Appl. Phys. Lett., 2009, 95093507
[36]
Cao, X.; Li, X.; Yu, W.; Zhang, Y.; Yang, R.; Liu, X.; Kong, J.; Shen, W. Structural characteristics and resistive switching properties of thermally prepared TiO2 thin films. J. Alloy Compd., 2009, 486, 458-461.
[37]
Hirose, S.; Nakayama, A.; Niimi, H.; Kageyama, K.; Takagi, H. Improvement in resistance switching and retention properties of Pt/TiO2 Schottky junction devices. J. Electrochem. Soc., 2011, 1583, 261-266.
[38]
Jeong, H.Y.; Lee, J.Y.; Choi, S.Y. Direct observation of microscopic change induced by oxygen vacancy drift in amorphous TiO2 thin films. Appl. Phys. Lett., 2010, 97 042109
[39]
Kannan, V.; Rhee, J.K. A solution processed nonvolatile resistive memory device with Ti/CdSe quantum dot/Ti-TiOx/CdSe quantum dot/indium tin-oxide structure. J. Appl. Phys., 2011, 110 074505
[40]
Cao, X.; Li, X.; Yu, W.; Liu, X.; He, X. Bipolar resistive switching properties of microcrystalline TiO2 thin films deposited by pulsed laser deposition. Mater. Sci. Eng. B, 2009, 157, 36-39.
[41]
Koza, J.A.; Schroen, I.P.; Willmering, M.M.; Switzer, J.A. Electrochemical synthesis and nonvolatile resistance switching of Mn3O4 thin films. Chem. Mater., 2014, 26(15), 4425-4432.
[42]
Barbera, S.L.; Vuillaume, D.; Alibart, F. Filamentary switching: Synaptic plasticity through device volatility. ACS Nano, 2015, 9(1), 941-949.
[43]
Strachan, J.P.; Pickett, M.D.; Yang, J.J.; Aloni, S.; Kilcoyne, A.L.D.; Medeiros-Ribeiro, G.; Williams, R.S. Direct identification of the conducting channels in a functioning memristive device. Adv. Mater., 2010, 22, 3573-3577.
[44]
Liu, D.; Cheng, H.; Zhu, X.; Wang, G.; Wang, N. Analog memristors based on thickening/thinning of Ag nanofilaments in amorphous manganite thin films. ACS Appl. Mater. Interfaces, 2013, 5, 11258-11264.
[45]
Yang, Y.; Gao, P.; Gaba, S.; Chang, T.; Pan, X.; Lu, W. Observation of conducting filament growth in nanoscale resistive memories. Nat. Commun., 2012, 3, 732.
[46]
Yang, Y.; Gao, P.; Li, L.; Pan, X.; Tappertzhofen, S.; Choi, S.H.; Waser, R.; Valov, I.; Lu, W.D. Electrochemical dynamics of nanoscale metallic inclusions in dielectrics. Nat. Commun., 2014, 5, 4232.
[47]
Xu, Z.; Bando, Y.; Wang, W.; Bai, X.; Golberg, D. Real-time in situ HRTEM-resolved resistance switching of Ag2S nanoscale ionic conductor. ACS Nano, 2010, 4, 2515-2522.
[48]
Celano, U.; Goux, L.; Belmonte, A.; Opsomer, K.; Franquet, A.; Schulze, A.; Detavernier, C.; Richard, O.; Bender, H.; Jurczak, M.; Vandervorst, W. Three-dimensional observation of the conductive filament in nanoscaled resistive memory devices. Nano Lett., 2014, 14, 2401-2406.
[49]
Hubbard, W.A.; Kerelsky, A.; Jasmin, G.; White, E.R.; Lodico, J.; Mecklenburg, M.; Regan, B.C. Nanofilament formation and regeneration during Cu/Al2O3 resistive memory switching. Nano Lett., 2015, 15, 3983-3987.
[50]
Celano, U.; Goux, L.; Belmonte, A.; Opsomer, K.; Degraeve, R.; Detavernier, C.; Jurczak, M.; Vandervorst, W. Understanding the dual nature of the filament dissolution in conductive bridging devices. J. Phys. Chem. Lett., 2015, 6, 1919-1924.
[51]
Gubicza, A.; Csontos, M.; Halbrittera, A.; Mihály, G. Resistive switching in metallic Ag2S memristors due to a local overheating induced phase transition. Nanoscale, 2015, 7, 11248-11254.
[52]
Gubicza, A.; Csontos, M.; Halbrittera, A.; Mihály, G. Non-exponential resistive switching in Ag2S memristors: A key to nanometer-scale non-volatile memory devices. Nanoscale, 2015, 7, 4394-4399.
[53]
Zhao, X.; Li, M.; Xu, H.; Wang, Z.; Zhang, C.; Liu, W.; Ma, J.; Liu, Y. Forming-free electrochemical metallization resistive memory devices based on nanoporous TiOxNy thin film. J. Alloys Compd., 2016, 656, 612-617.
[54]
Liu, Q.; Long, S.; Lv, H.; Wang, W.; Niu, J.; Huo, Z.; Chen, J.; Liu, M. Controllable growth of nanoscale conductive filaments in solid-electrolyte-based ReRAM by using a metal nanocrystal covered bottom electrode. ACS Nano, 2010, 4(10), 6162-6168.
[55]
Devulder, W.; Opsomer, K.; Meersschaut, J.; Deduytsche, D.; Jurczak, M.; Goux, L.; Detavernier, C. Combinatorial study of Ag-Te thin films and their application as cation supply layer in CBRAM Cells. ACS Comb. Sci., 2015, 17, 334-340.
[56]
Devulder, W.; Opsomer, K.; Seidel, F.; Belmonte, A.; Muller, R.; Schutter, B.D.; Hugo, B.; Wilfried, V.; VanElshocht, S.; Jurczak, M.; Goux, L.; Detavernier, C. Influence of carbon alloying on the thermal stability and resistive switching behavior of copper-telluride based CBRAM cells. ACS Appl. Mater. Interfaces, 2013, 5, 6984-6989.
[57]
Liang, X.F.; Chen, Y.; Chen, L.; Yin, J.; Liu, Z.G. Electric switching and memory devices made from RbAg4I5 films. Appl. Phys. Lett., 2007, 90 022508
[58]
Valov, I.; Sapezanskaia, I.; Nayak, A.; Tsuruoka, T.; Bredow, T.; Hasegawa, T.; Staikov, G.; Aono, M.; Waser, R. Atomically controlled electrochemical nucleation at superionic solid electrolyte surfaces. Nat. Mater., 2012, 11, 530-535.
[59]
Lee, W.; Park, J.; Son, M.; Lee, J.; Jung, S.; Kim, S.; Park, S.; Shin, J.; Hwang, H. Excellent state stability of Cu/SiC/Pt programmable metallization cells for nonvolatile memory applications. IEEE Electron Device Lett., 2011, 32, 680-682.
[60]
Sakamoto, T.; Sunamura, H.; Kawaura, H. Nanometer-scale switches using copper sulfide. Appl. Phys. Lett., 2003, 82, 3032-3034.
[61]
Lee, M-J.; Lee, C.B.; Lee, D.; Lee, S.R.; Chang, M.; Hur, J.H.; Kim, Y-B.; Kim, C-J.; Seo, D.H.; Seo, S.; Chung, U-I.; Yoo, I-K.; Kim, K. A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5-x/TaO2-x bilayer structures. Nat. Mater., 2011, 10, 625-630.
[62]
Park, G-S.; Kim, Y.B.; Park, S.Y.; Li, X.S.; Heo, S.; Lee, M-J.; Chang, M.; Kwon, J.H.; Kim, M. Chung, U-In, Dittmann, R.; Waser, R.; Kim, K. In situ observation of filamentary conducting channels in an asymmetric Ta2O5- x/TaO 2-x bilayer structure. Nat. Commun., 2013, 4, 2382.
[63]
Chen, J.Y.; Hsin, C.L.; Huang, C.W.; Chiu, C.H.; Huang, Y.T.; Lin, S.J.; Wu, W.W.; Chen, L.J. Dynamic evolution of conducting nanofilament in resistive switching memories. Nano Lett., 2013, 13, 3671-3677.
[64]
Zhang, S.; Long, S.; Guan, W.; Liu, Q.; Wang, Q.; Liu, M. Resistive switching characteristics of MnOx-based ReRAM. J. Phys. D Appl. Phys., 2009, 42 055112
[65]
Hu, Q.; Park, M.; Abbas, Y.; Kim, J.S.; Yoon, T-S.; Choi, Y.J.; Kang, C.J. Resistive switching properties of manganese oxide nanoparticles with hexagonal shape. Semicond. Sci. Technol., 2015, 30 015017
[66]
Hu, Q.; Shim, J.H.; Abbas, Y.; Song, W.; Yoon, T-S.; Choi, Y.J.; Kang, C.J. Resistive switching characteristics of manganese oxide nanoparticle assembly with crossbar arrays. J. Nanosci. Nanotechnol., 2014, 14, 8182-8186.
[67]
Xu, J.; Yang, Z.; Zhang, Y.; Zhang, X.; Wang, H. Bipolar resistive switching behaviours in ZnMn2O4 film deposited on p+-Si substrate by chemical solution deposition. Bull. Mater. Sci., 2014, 37(7), 1657-1662.
[68]
Abbas, H.; Park, M.R.; Abbas, Y.; Hu, Q.; Kang, T.S.; Yoon, T-S.; Kang, C.J. Resistive switching characteristics of manganese oxide thin film and nanoparticle assembly hybrid devices. Jpn. J. Appl. Phys., 2018, 5706HC03
[69]
Goux, L.; Valov, I. Electrochemical processes and device improvement in conductive bridge RAM cells. Phys. Status Solid A, 2016, 213, 274-288.
[70]
Fu, D.; Xie, D.; Feng, T.; Zhang, C.; Niu, J.; Qian, H.; Liu, L. Unipolar resistive switching properties of diamondlike carbon-based RRAM devices. IEEE Electron Device Lett., 2011, 32, 803-805.
[71]
Raeber, T.J.; Zhao, Z.C.; Murdoch, B.J.; McKenzie, D.R.; McCulloch, D.G.; Partridge, J.G. Resistive switching and transport characteristics of an all-carbon memristor. Carbon, 2018, 136, 280-285.
[72]
Chai, Y.; Wu, Y.; Takei, K.; Chen, H-Y.; Yu, S.; Chan, P.C.H.; Javey, A.; Wong, H-S.P. Nanoscale bipolar and complementary resistive switching memory based on amorphous carbon. IEEE Trans. Electron Devices., 2011, 58, 3933-3939.
[73]
Zhuge, F.; Dai, W.; He, C.L.; Wang, A.Y.; Liu, Y.W.; Li, M.; Wu, Y.H.; Cui, P.; Li, R-W. Nonvolatile resistive switching memory based on amorphous carbon. Appl. Phys. Lett., 2010, 96163505
[74]
Zhao, X.; Xu, H.; Wang, Z.; Zhang, L.; Ma, J.; Liu, Y. Nonvolatile/volatile behaviors and quantized conductance observed in resistive switching memory based on amorphous carbon. Carbon, 2015, 91, 38-44.
[75]
Zhang, L.; Xu, H.; Wang, Z.; Zhao, X.; Ma, J.; Liu, Y. Improved resistive switching characteristics by introducing Ag-nanoclusters in amorphous-carbon memory. Mater. Lett., 2015, 154, 98.
[76]
Santini, C.A.; Sebastian, A.; Marchiori, C.; Jonnalagadda, V.P.; Dellmann, L.; Koelmans, W.W.; Rossell, M.D.; Rossel, C.P.; Eleftheriou, E. Oxygenated amorphous carbon for resistive memory applications. Nat. Commun., 2015, 6, 8600.
[77]
Bachmann, T.A.; Koelman, W.W.; Jonnalagadda, V.P.; Gallo, M.L.; Santini, C.A.; Sebastian, A.; Eleftheriou, E.; Craciun, M.F.; Wright, C.D. Memristive effects in oxygenated amorphous carbon nanodevices. Nanotechnology, 2018, 29 035201
[78]
Chen, H.; Zhuge, F.; Fu, B.; Li, J.; Wang, J.; Wang, W.; Wang, Q.; Li, L.; Li, F.; Zhang, H.; Liang, L.; Luo, H.; Wang, M.; Gao, J.; Cao, H.; Zhang, H.; Li, Z. Forming-free resistive switching in a nanoporous nitrogen-doped carbon thin film with ready-made metal nanofilaments. Carbon, 2014, 76, 459-463.
[79]
Sanetra, N.; Karipidou, Z.; Wirtz, R.; Knorr, N.; Rosselli, S.; Nelles, G.; Offenhaeusser, A.; Mayer, D. Adv. Funct. Mater., 2012, 22, 1129.
[80]
Meng, F.; Sana, B.; Li, Y.; Liu, Y.; Lim, S.; Chen, X. Bioengineered tunable memristor based on protein nanocage. Small, 2014, 10, 277-283.
[81]
Talukdar, S.; Mandal, M.; Hutmacher, D.W.; Russell, P.; Soekmadji, C.; Kundu, S.C. Biomaterials, 2011, 32, 2149.
[82]
Bhardwaj, N.; Nguyen, Q.T.; Chen, A.C.; Sah, R.T.; Kundu, S.C. Effect of initial cell seeding density on 3D-engineered silk fibroin scaffolds for articular cartilage tissue engineering. Biomaterials, 2011, 32, 5773.
[83]
Hota, M.K.; Bera, M.K.; Kundu, B.; Kundu, S.C.; Maiti, C.K. A natural silk fibroin protein-based ransparent bio-memristor. Adv. Funct. Mater., 2012, 22, 4493-4499.
[84]
Koo, H-J.; So, J-H.; Dickey, M.D.; Velev, O.D. Towards all-soft matter circuits: Prototypes of quasi-liquid devices with memristor characteristics. Adv. Mater., 2011, 23, 3559-3564.
[85]
Chen, Y.C.; Yu, H-C.; Huang, C-Y.; Chung, W-L.; Wu, S-L.; Su, Y-K. Nonvolatile bio-memristor fabricated with egg albumen flm. Sci. Reports., 2015, 5, 10022.
[86]
Sun, B.; Zhang, X.; Zhou, G.; Li, P.; Zhang, Y.; Wang, H.; Xia, Y.; Zhao, Y. An organic nonvolatile resistive switching memory device fabricated with natural pectin from fruit peel. Org. Electron., 2017, 42, 181-186.
[87]
Chen, C.; Yang, Y.C.; Zeng, F.; Pan, F. Bipolar resistive switching in Cu/AlN/Pt nonvolatile memory device. Appl. Phys. Lett., 2010, 97 083502
[88]
Chen, C.; Gao, S.; Tang, G.; Fu, H.; Wang, G.; Song, C.; Zeng, F.; Pan, F. Effect of electrode materials on AlN-based bipolar and complementary resistive switching. ACS Appl. Mater. Interfaces, 2013, 5, 1793-1799.
[89]
Liu, X.; Sadaf, S.M.; Park, S.; Kim, S.; Lee, E.C.; Gun-Young, D.J.; Hwang, H. Complementary resistive switching in niobium oxide-based resistive memory devices. IEEE Electron Device Lett., 2013, 34, 235-237.
[90]
Liu, X.; Sadaf, S.M.; Son, M.; Shin, J.; Park, J.; Lee, J.; Park, S.; Hwang, H. Diode-less bilayer oxide (WOx-NbOx) device for cross-point resistive memory applications. Nanotechnology, 2011, 22475702
[91]
Kim, S.; Choi, S.H.; Lee, J.; Lu, W.D. Tuning resistive switching characteristics of tantalum oxide memristors through si doping. ACS Nano, 2014, 8, 10262-10269.
[92]
Choi, B.J.; Torrezan, A.C.; Norris, K.J.; Miao, F.; Strachan, J.P.; Zhang, M-X.; Ohlberg, D.A.A.; Kobayashi, N.P.; Yang, J.J.; Williams, R.S. Electrical performance and scalability of Pt dispersed SiO2 nanometallic resistance switch. Nano Lett., 2013, 13, 3213-3217.
[93]
Choi, B.J.; Chen, A.B.K.; Yang, X.; Chen, I-W. Purely electronic switching with high uniformity, resistance tunability, and good retention in Pt-dispersed SiO2 thin films for ReRAM. Adv. Mater., 2011, 23, 3847-3852.
[94]
Xu, D.L.; Xiong, Y.; Tang, M.H.; Zeng, B.W.; Li, J.Q.; Liu, L.; Li, L.Q.; Yan, S.A.; Tang, Z.H. Bipolar resistive switching behaviors in Cr-doped ZnO films. Microelectron. Eng., 2014, 116, 22-25.
[95]
Xu, H.; Kim, D.H.; Xiahou, Z.; Li, Y.; Zhu, M.; Lee, B.; Liu, C. Effect of Co doping on unipolar resistance switching in Pt/Co:ZnO/Pt structures. J. Alloys Compd., 2016, 658, 806-812.
[96]
Zhang, L.; Xu, H.; Wang, Z.; Yu, H.; Ma, J.; Liu, Y. Coexistence of bipolar and unipolar resistive switching behaviors in the double-layer Ag/ZnS-Ag/CuAlO2/Pt memory device. Appl. Surface. Sci., 2016, 360, 338-341.
[97]
Kuo, C.C.; Chen, I.C.; Shih, C.C.; Chang, K.C.; Huang, C.H.; Chen, P.H.; Chang, T-C.; Tsai, T.M.; Chang, J.S.; Huang, J.C. Galvanic effect of Au-Ag electrodes for conductive bridging resistive switching memory. IEEE Electron Device Lett., 2015, 36, 1321-1324.
[98]
Zhang, H.; Liu, L.; Gao, B.; Qiu, Y.; Liu, X.; Lu, J.; Han, R.; Kang, J.; Yu, B. Gd-doping effect on performance of HfO2 based resistive switching memory devices using implantation approach. Appl. Phys. Lett., 2011, 98 042105
[99]
Mondal, S.; Her, J-L.; Chen, F-H.; Shih, S-J.; Pan, T-M. Improved resistance switching characteristics in Ti-doped Yb2O3 for resistive nonvolatile memory devices. IEEE Electron Device Lett., 2012, 33, 1069-1071.
[100]
Mead, C. Analog VLSI and neural systems; Adison-Wesley: Reading, MA, 1989.
[101]
Yu, S.; Wu, Y.; Jeyasingh, R.; Kuzum, D.; Wong, H-S.P. An electronic synapse device based on metal oxide resistive switching memory for neuromorphic computation. IEEE Trans. Electron Devices., 2011, 58, 2729-2737.
[102]
Alibart, F.; Pleutin, S.; Bichler, O.; Gamrat, C.; Gotarredona, T.S.; Linares-Barranco, B. Vuillaume, D. A Memristive nanoparticle/organic hybrid synapstor for neuro-inspired computing. Adv. Funct. Mater., 2012, 22, 609-616.
[103]
Graupner, M.; Brunel, N. Calcium-based plasticity model explains sensitivity of synaptic changes to spike pattern, rate, and dendritic location. Proc. Natl. Acad. Sci. USA, 2012, 109, 3991-3996.
[104]
Kim, S.; Du, C.; Sheridan, P.; Ma, W.; Choi, S.H.; Lu, W.D. Experimental demonstration of a second-order memristor and its ability to biorealistically implement synaptic plasticity. Nano Lett., 2015, 15, 2203-2211.
[105]
Wang, Z.Q.; Xu, H.Y.; Li, X.H.; Yu, H.; Liu, Y.C.; Zhu, X.J. Synaptic learning and memory functions achieved using oxygen ion migration/diffusion in an amorphous InGaZnO memristor. Adv. Funct. Mater., 2012, 22, 2759-2765.
[106]
Chang, T.; Jo, S-H.; Lu, W. Short-term memory to long-term memory transition in a nanoscale memristor. ACS Nano, 2011, 5, 7669-7676.
[107]
Du, C.; Ma, W.; Chang, T.; Sheridan, P.; Lu, W.D. Biorealistic implementation of synaptic functions with oxide memristors through internal ionic dynamics. Adv. Funct. Mater., 2015, 25, 4290-4299.
[108]
Ohno, T.; Hasegawa, T.; Tsuruoka, T.; Terabe, K.; Gimzewski, J.K.; Aono, M. Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. Nature. Mater., 2011, 10, 591-595.
[109]
Li, S.; Zeng, F.; Chen, C.; Liu, H.; Tang, G.; Gao, S.; Song, C.; Lin, Y.; Pan, F.; Guob, D. Synaptic plasticity and learning behaviours mimicked through Ag interface movement in an Ag/conducting polymer/Ta memristive system. J. Mater. Chem. C, 2013, 1, 5292-5298.
[110]
Mai, V.H.; Moradpour, A.; Auban Senzier, P.; Pasquier, C.; Wang, K.; Rozenberg, M.J.; Giapintzakis, J.; Mihailescu, C.N.; Orfanidou, C.M.; Svoukis, E.; Breza, A.; Lioutas, C.B.; Franger, S.; Revcolevschi, A.; Maroutian, T.; Lecoeur, P.; Aubert, P.; Agnus, G.; Salot, R.; Albouy, P.A.; Weil, R.; Alamarguy, D.; March, K.; Jomard, F.; Chre’tien, P.; Schneegans, O. Memristive and neuromorphic behavior in a LixCoO2 nanobattery. Sci. Rep., 2015, 5, 7761.
[111]
Moradpour, A.; Schneegans, O.; Franger, S.; Revcolevschi, A.; Salot, R.; Auban-Senzier, P.; Pasquier, C.; Svoukis, E.; Giapintzakis, J.; Dragos, O.; Ciomaga, V-C.; Chrétien, P. Resistive switching phenomena in LixCoO2 thin films. Adv. Mater., 2011, 23, 4141-4145.
[112]
Van de Burgt, Y.; Lubberman, E.; Fuller, E.J.; Keene, S.T.; Faria, G.C.; Agarwal, S.; Marinella, M.J.; Alec Talin, A.; Salleo, A. A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing. Nat. Mater., 2017, 16, 414-418.
[113]
Yang, J.J.; Xia, Q. Battery-like artificial synapses. Nat. Mater., 2017, 16, 396-397.
[114]
Hodgkin, A-L.; Huxley, A-F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol., 1952, 117, 500-544.
[115]
Crane, H.D. Neuristor-A novel device and system concept. Proc. IRE, 1962, 50, pp. 2048-2060.
[116]
Chua, L.; Sbitnev, V.; Kim, H. Hodgkin-huxley axon is made of memristors. Int. J. Bifur. Chaos, 2012, 22, 1230011-1-1230011-48.
[117]
Izhikevich, E.M. Simple model of spiking neurons. IEEE Trans. Neural Netw., 2003, 14, 1569-1572.
[118]
Izhikevich, E.M. Which model to use for cortical spiking neurons? IEEE Trans. Neural Netw., 2004, 15, 1063-1070.
[119]
Tan, Z-H.; Yin, X-B.; Yang, R.; Mi, S-B.; Jia, C-L.; Guo, X. Pavlovian conditioning demonstrated with neuromorphic memristive devices. Sci. Rep., 2017, 7, 713.
[120]
Lim, H.; Kornijcuk, V.; Seek, J.Y.; Kim, S.K.; Kim, I.; Hwang, C.S.; Jeong, D.S. Reliability of neuronal information conveyed by unreliable neuristor based leaky integrate-and-fire neurons: A model study. Sci. Rep., 2015, 5, 9776.
[121]
Pickett, M.D.; Williams, R.S. Sub-100 fJ and sub-nanosecond thermally driven threshold switching in niobium oxide crosspoint nanodevices. Nanotechnology, 2012, 23215202
[122]
Pickett, M.D.; Williams, R.S. Phase transitions enable computational universality in neuristor-based cellular automata. Nanotechnology, 2013, 24 384002
[123]
Pickett, M.D. Logic circuits using Neuristors. U.S. Patent 8669785B2 2014
[124]
Pickett, M.D. Neuristor-based reservoir computing devices. U.S. Patent 2014/0214738 A1 2014
[125]
Muthulakshmi, S.; Dash, C.S.; Prabaharan, S.R.S. Memristor augmented approximate adders and subtractors for image processing applications: An approach. Int. J. Electron. Commun (AEÜ),., 2018, 91, 91-102.
[126]
Hui, S.; Roller, J.; Yick, S.; Hang, Z.; Zhang, X.; Deces-Petit, C.; Xie, Y.; Maric, R.; Ghosh, D. A brief review of the ionic conductivity enhancement for selected oxide electrolytes. J. Power Sources, 2007, 172, 493-502.
[127]
Lee, M.H.; Kim, K.M.; Kim, G.H.; Seek, J.Y.; Song, S.J.; Yoon, J.H.; Seong Hwang, C. Study on the electrical conduction mechanism of bipolar resistive switching TiO2 thin films using impedance spectroscopy. Appl. Phys. Lett., 2010, 96 152909
[128]
Qingjiang, L.; Khiat, A.; Salaoru, I.; Papavassiliou, C.; Hui, X.; Prodromakis, T. Memory impedance in TiO2 based metal-insulator-metal devices. Sci. Rep., 2014, 4, 4522.
[129]
Dash, C.S.; Sahoo, S.; Prabaharan, S.R.S. Resistive switching and impedance characteristics of M/TiO2-x/TiO2/M nano-ionic memristor. Solid State Ionics., 2018, 324, 218.
[130]
You, Y-H.; So, B-S.; Hwang, J-H.; Cho, W.; Lee, S.S.; Chung, T-M.; Kim, C.G.; An, K-S. Impedance spectroscopy characterization of resistance switching NiO thin films prepared through atomic layer deposition. Appl. Phys. Lett., 2006, 89 222105
[131]
Kim, C.H.; Jang, Y.H.; Hwang, H.J.; Sun, Z.H.; Moon, H.B.; Cho, J.H. Observation of bistable resistance memory switching in CuO thin films. Appl. Phys. Lett., 2009, 94102107
[132]
Koza, J.A.; Bohannan, E.W.; Switzer, J.A. Superconducting filaments formed during nonvolatile resistance switching in electrodeposited δ-Bi2O3. ACS Nano, 2013, 7, 9940-9946.
[133]
Mehonic, A.; Cueff, S.; Wojdak, M.; Hudziak, S.; Jambois, O.; Labbé, C.; Garrido, B.; Rizk, R.; Kenyon, A.J. Resistive switching in silicon suboxide films. J. Appl. Phys., 2012, 111 074507
[134]
Yu, S.; Philip Wong, H-S. A phenomenological model for the reset mechanism of metal oxide RRAM. IEEE Electron Device Lett., 2010, 31, 1455-1457.
[135]
Ielmini, D. Modeling the universal set/reset characteristics of bipolar RRAM by Field- and temperature-driven filament growth. IEEE Trans. Electron Devices., 2011, 58, 4309-4317.
[136]
Larentis, S.; Nardi, F.; Balatti, S.; Gilmer, D.C.; Ielmini, D. Resistive switching by voltage-driven ion migration in bipolar RRAM-Part I: Experimental study. IEEE Trans. Electron Devices., 2012, 59, 2461-2467.
[137]
Larentis, S.; Nardi, F.; Balatti, S.; Gilmer, D.C.; Ielmini, D. Resistive switching by voltage-driven ion migration in bipolar RRAM—Part II: Modeling. IEEE Trans. Electron Devices., 2012, 59, 2468-2475.
[138]
Ambrogio, S.; Balatti, S.; Gilmer, D.C.; Ielmini, D. Analytical modeling of oxide-based bipolar resistive memories and complementary resistive switches. IEEE Trans. Electron Devices., 2014, 61, 2378-2386.
[139]
Kim, S.; Choi, S.H.; Lee, J.; Lu, W.D. Comprehensive physical model of dynamic resistive switching in an oxide memristor. ACS Nano, 2014, 8, 10262-10269.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 9
ISSUE: 4
Year: 2019
Page: [444 - 461]
Pages: 18
DOI: 10.2174/2210681208666180621095241
Price: $25

Article Metrics

PDF: 29
HTML: 2
EPUB: 1
PRC: 1

Special-new-year-discount