Anti-Microbial and Free Radical Scavenging Activities of Nigella Sativa Colloidal-Emulgel

Author(s): Ahmad M. Eid*, Nidal A. Jaradat, Nagib A. Elmarzugi, Raed Alkowni, Fatima Hussen, Laila A. Ayyash, Maher Sawafta, Hadeel Danaa.

Journal Name: Letters in Drug Design & Discovery

Volume 16 , Issue 4 , 2019

Submit Manuscript
Submit Proposal

Graphical Abstract:


Abstract:

Background: Nigella sativa L. (N. sativa) has been reported to have biological activities such as anti-bacterial, anti-inflammatory, anti-oxidant and anti-fungal activities.

Objective: This study aims to develop N. Sativa colloidal-emulgel with the evaluation of its antibacterial, anti-oxidant and in-vivo irritation and sensation testing.

Method: Colloidal-emulgel formulations were prepared for N. sativa using different surfactants (Sodium Lauryl Sulphate (S.L.S) and sucrose ester). N. sativa emulsion formulations were prepared using heat inversion technique. After that, the optimum formulation was mixed with Carbopol to produce the colloidal-emulgel. The droplet size, size distribution, and rheological behavior were measured for emulgel formulations. Anti-bacterial and anti-oxidant activities were also reported in the in vivo studies for sensitivity, irritancy and spreadability.

Results: It was found that the sucrose ester was able to produce the optimum emulsion formulation with droplets size of less than 1 μm. In the anti-bacterial test for Staphylococcus aureus, it was found that emulgel has an inhibition zone of 2.5 cm in diameter, but the oil alone being 1.3 cm. According to MRSA, the inhibition zone for emulgel was 1.1 cm, but for oil, it was 0.5 cm in diameter. Emulgel does not show any irritation or sensitivity. Also it has a homogeneous appearance with a smooth texture. In addition, it shows fair mechanical properties, and easy spreadability with acceptable bio-adhesion.

Conclusion: It is concluded that N. sativa emulgel has been prepared with dermatological and cosmeceutical benefits.

Keywords: Nigella sativa L., emulgel, heat inversion technique, sucrose ester, anti-bacterial, anti-oxidant.

[1]
Ahmed, K.; Li, Y.; McClements, D.J.; Xiao, H. Nanoemulsion-and emulsion-based delivery systems for curcumin: Encapsulation and release properties. Food Chem., 2012, 132(2), 799-807.
[2]
Alexander, A.; Khichariya, A.; Gupta, S.; Patel, R.J.; Giri, T.K.; Tripathi, D.K. Recent expansions in an emergent novel drug delivery technology: Emulgel. J. Control. Release, 2013, 171(2), 122-132.
[3]
Eid, A.M.; El-Enshasy, H.A.; Aziz, R.; Elmarzugi, N.A. The preparation and evaluation of self-nanoemulsifying systems containing Swietenia oil and an examination of its anti-inflammatory effects. Int. J. Nanomedicine, 2014, 9, 4685-4695.
[4]
Supriya, U.; Seema, C.B.; Preeti, K. Emulgel: A boon for dermatological diseases. Int. J. Pharm. Res. Allied Sci., 2014, 3(4), 1-9.
[5]
Khalid, A.; Rehman, U.; Sethi, A.; Khilji, S.; Fatima, U.; Khan, M.I.; Waqas, M.K.; Saqib, Q.; Farzana, K.; Asad, M. Antimicrobial activity analysis of extracts of Acacia modesta, Artimisia absinthium, Nigella Sativa and Saussurea lappa against Gram positive and Gram negative microorganisms. Afr. J. Biotechnol., 2011, 10(22), 4574-4580.
[6]
Tasawar, Z.; Siraj, Z.; Ahmad, N.; Lashari, M.H. The effects of Nigella Sativa (Kalonji) on lipid profile in patients with stable coronary artery disease in Multan, Pakistan. Pak. J. Nutr., 2011, 10(2), 162-167.
[7]
Harzallah, H.J.; Kouidhi, B.; Flamini, G.; Bakhrouf, A.; Mahjoub, T. Chemical composition, antimicrobial potential against cariogenic bacteria and cytotoxic activity of Tunisian Nigella Sativa essential oil and thymoquinone. Food Chem., 2011, 129(4), 1469-1474.
[8]
Javed, S.; Shahid, A.A.; Haider, M.S.; Umeera, A.; Ahmad, R.; Mushtaq, S. Nutritional, phytochemical potential and pharmacological evaluation of Nigella Sativa (Kalonji) and Trachyspermum Ammi (Ajwain). J. Med. Plants Res., 2012, 6(5), 768-775.
[9]
Mathur, M.L.; Gaur, J.; Sharma, R.; Haldiya, K.R. Antidiabetic properties of a spice plant Nigella sativa. J. Clin. Endocrinol. Metab., 2011, 1(1), 1-8.
[10]
Forouzanfar, F.; Bazzaz, B.S.F.; Hosseinzadeh, H. Black cumin (Nigella sativa) and its constituent (thymoquinone): A review on antimicrobial effects. Iran. J. Basic Med. Sci., 2014, 17(12), 929-938.
[11]
Gholamnezhad, Z.; Keyhanmanesh, R.; Boskabady, M.H. Anti-inflammatory, antioxidant, and immunomodulatory aspects of Nigella Sativa for its preventive and bronchodilatory effects on obstructive respiratory diseases: A review of basic and clinical evidence. J. Funct. Foods, 2015, 17, 910-927.
[12]
Kale, S.; Ghoge, P.; Ansari, A.; Waje, A.; Sonawane, A. Formulation and in-vitro determination of sun protection factor of Nigella Sativa Linn. seed oil sunscreen cream. Int. J. Pharm. Tech. Res., 2010, 2(4), 2194-2197.
[13]
Chaieb, K.; Kouidhi, B.; Jrah, H.; Mahdouani, K.; Bakhrouf, A. Antibacterial activity of Thymoquinone, an active principle of Nigella Sativa and its potency to prevent bacterial biofilm formation. BMC Complement. Altern. Med., 2011, 11, 29.
[14]
Salem, E.M.; Yar, T.; Bamosa, A.O.; Al-Quorain, A.; Yasawy, M.I.; Alsulaiman, R.M.; Randhawa, M.A. Comparative study of Nigella Sativa and triple therapy in eradication of Helicobacter Pylori in patients with non-ulcer dyspepsia. Saudi J. Gastroenterol., 2010, 16(3), 207-214.
[15]
Islam, M.H.; Ahmad, I.Z.; Salman, M.T. Antibacterial activity of Nigella Sativa seed in various germination phases on clinical bacterial strains isolated from human patients. E3 J. Biotechnol. Pharm. Res., 2013, 4(1), 8-13.
[16]
Jaradat, N.A.; Abualhasan, M. Comparison of phytoconstituents, total phenol contents and free radical scavenging capacities between four Arum species from Jerusalem and Bethlehem. Pharm. Sci., 2016, 22(2), 120-125.
[17]
Yilmaz, E.; Borchert, H.H. Effect of lipid-containing, positively charged nanoemulsions on skin hydration, elasticity and erythema-an in vivo study. Int. J. Pharm., 2006, 307, 232-238.
[18]
More, B.; Sakharwade, S.; Tembhurne, S.; Sakarkar, D. Evaluation for skin irritancy testing of developed formulations containing extract of Butea monosperma for its topical application. Int. J. Toxicol. Appl. Pharmacol., 2013, 3(1), 10-13.
[19]
Mahon, C.R.; Lehman, D.C.; Manuselis, Jr G. Textbook of diagnostic microbiology; Elsevier Health Sciences USA, 2015.
[20]
Neau, S.H.; Chow, M.Y.; Hileman, G.A.; Durrani, M.J.; Gheyas, F.; Evans, B.A. Formulation and process considerations for beads containing Carbopol® 974P, NF resin made by extrusion-spheronization. Int. J. Pharm., 2000, 199(2), 129-140.
[21]
Jain, A.; Gautam, S.P.; Gupta, Y.; Khambete, H.; Jain, S. Development and characterization of ketoconazole emulgel for topical drug delivery. Der. Pharmacia. Sinica, 2010, 1(3), 221-231.
[22]
Singla, V.; Saini, S.; Joshi, B.; Rana, A. Emulgel: A new platform for topical drug delivery. Int. J. Pharma Bio Sci., 2012, 3(1), 485-498.
[23]
Szűts, A.; Láng, P.; Ambrus, R.; Kiss, L.; Deli, M.A.; Szabó-Révész, P. Applicability of sucrose laurate as surfactant in solid dispersions prepared by melt technology. Int. J. Pharm., 2011, 410(1), 107-110.
[24]
Anton, N.; Gayet, P.; Benoit, J.P.; Saulnier, P. Nano-emulsions and nanocapsules by the PIT method: An investigation on the role of the temperature cycling on the emulsion phase inversion. Int. J. Pharm., 2007, 344(1), 44-52.
[25]
Anton, N.; Vandamme, T.F. The universality of low-energy nano-emulsification. Int. J. Pharm., 2009, 377(1), 142-147.
[26]
Rao, J.; McClements, D.J. Food-grade microemulsions, nanoemulsions and emulsions: Fabrication from sucrose monopalmitate & lemon oil. Food Hydrocoll., 2011, 25(6), 1413-1423.
[27]
Rao, J.; McClements, D.J. Stabilization of phase inversion temperature nanoemulsions by surfactant displacement. J. Agric. Food Chem., 2010, 58(11), 7059-7066.
[28]
Leong, W.F.; Man, Y.B.C.; Lai, O.M.; Long, K.; Nakajima, M.; Tan, C.P. Effect of sucrose fatty acid esters on the particle characteristics and flow properties of phytosterol nanodispersions. J. Food Eng., 2011, 104(1), 63-69.
[29]
Robinson, V.C.; Bergfeld, W.F.; Belsito, D.V.; Hill, R.A.; Klaassen, C.D.; Marks, J.G.; Shank, R.C.; Slaga, T.J.; Snyder, P.W.; Andersen, F.A. Final report of the amended safety assessment of sodium laureth sulfate and related salts of sulfated ethoxylated alcohols. Int. J. Toxicol., 2010, 29(4)(Suppl.), 151S-161S.
[30]
Yilmaz, E.; Borchert, H-H. Effect of lipid-containing, positively charged nanoemulsions on skin hydration, elasticity and erythema-an in vivo study. Int. J. Pharm., 2006, 307(2), 232-238.
[31]
Chakraborty, S.; Khandai, M.; Sharma, A.; Khanam, N.; Patra, C.; Dinda, S.; Sen, K. Preparation, in vitro and in vivo evaluation of algino-pectinate bioadhesive microspheres: An investigation of the effects of polymers using multiple comparison analysis. Acta Pharm., 2010, 60(3), 255-266.
[32]
Prasanth, V.; Chakraborty, A.; Mathew, S.T.; Mathappan, R.; Kamalakkannan, V. Formulation and evaluation of Salbutamol sulphate microspheres by solvent evaporation method. J. Appl. Pharm. Sci., 2011, 1, 133-137.
[33]
Jeong, M-W.; Oh, S-G.; Kim, Y.C. Effects of amine and amine oxide compounds on the zeta-potential of emulsion droplets stabilized by phosphatidylcholine. Colloids Surf. A Physicochem. Eng. Asp., 2001, 181(1), 247-253.
[34]
Eid, A.M.; El-Enshasy, H.A.; Aziz, R.; Elmarzugi, N.A. Preparation, characterization and anti-inflammatory activity of Swietenia macrophylla nanoemulgel. J. Nanomed. Nanotechnol., 2014, 5, 190.
[35]
Marslin, G.; Selvakesavan, R.K.; Franklin, G.; Sarmento, B.; Dias, A.C. Antimicrobial activity of cream incorporated with silver nanoparticles biosynthesized from Withania somnifera. Int. J. Nanomedicine, 2015, 10, 5955-5963.
[36]
Lkhagvajav, N.; Yasa, I.; Celik, E.; Koizhaiganova, M.; Sari, O. Antimicrobial activity of colloidal silver nanoparticles prepared by sol-gel method. Dig. J. Nanomater. Biostruct., 2011, 6(1), 149-154.
[37]
Mokarizadeh, M.; Kafil, H.S.; Ghanbarzadeh, S.; Alizadeh, A.; Hamishehkar, H. Improvement of citral antimicrobial activity by incorporation into nanostructured lipid carriers: A potential application in food stuffs as a natural preservative. Res. Pharm. Sci., 2017, 12(5), 409-415.
[38]
Assali, M.; Zaid, A.N.; Abdallah, F.; Almasri, M.; Khayyat, R. Single-walled carbon nanotubes-ciprofloxacin nanoantibiotic: Strategy to improve ciprofloxacin antibacterial activity. Int. J. Nanomedicine, 2017, 12, 6647-6659.


Rights & PermissionsPrintExport Cite as


Article Details

VOLUME: 16
ISSUE: 4
Year: 2019
Page: [408 - 416]
Pages: 9
DOI: 10.2174/1570180815666180620150922
Price: $58

Article Metrics

PDF: 15
HTML: 1