Electrochemical Evaluation of the Total Antioxidant Capacity of Yam Food Samples on a Polyglycine-Glassy Carbon Modified Electrode

Author(s): Ersin Demir*, Ahmet Senocak, Mouhoum F. Tassembedo-Koubangoye, Erhan Demirbas, Hassan Y. Aboul-Eneın*.

Journal Name: Current Analytical Chemistry

Volume 16 , Issue 2 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: The total antioxidant capacity of yam food grown in southern African regions was investigated by a polyglycine-glassy carbon modified electrode. The modified electrode was fabricated using glycine solution on glassy carbon electrode by electrodeposition method. The proposed modified electrode is found to be nearly 3.15-fold more sensitive than the bare electrode. For the measurement of the total antioxidants of yam, differential pulse stripping voltammetry (DPSV) was employed with standard quercetin compound.

Methods: The total antioxidant capacity of yam was deduced by DPSV and cyclic voltammetry (CV) methods. The basic parameters for the stripping technique such as pH, accumulation time and accumulation potential were optimized as 20 s, 200 mV and a pH of 3 Britton-Robinson (B-R) buffer solutions in 0.5 mg quercetin/L, respectively.

Results: In the optimization condition, the linear working range was determined between 5.0 μg/L and 80.0 µg/L for the quercetin. The detection (LOD) and quantification (LOQ) limits of quercetin were found to be 0.39 µg/L and 1.39 µg/L on the modified electrode by DPSV, respectively. The procedure was also applied to natural yam samples and total antioxidant capacity of 0.1 kg of yam was determined as 96.15 ± 0.85 µg/L of equivalent quercetin at 95% confidence level with the relative standard deviations of 0.88%.

Conclusion: Sensitive and selective voltammetric method was developed for the determination of total antioxidant capacity in yam. Moreover, the modified polyglycine-glassy carbon electrode was constructed more selectively for quercetin. As a result, a simple, sensitive and rapid new voltammetric method for the determination of antioxidants has been developed using the modified electrode.

Keywords: Antioxidant capacity, differential pulse stripping voltammetry, modified electrode, yam, food samples, Polyglycine- Glassy Carbon Modified Electrode.

[1]
Sies, H. Oxidative stress: Oxidants and antioxidants. Exp. Physiol., 1997, 82, 291-295.
[2]
Prior, R.L.; Wu, X. Diet antioxidant capacity: Relationships to oxidative stress and health. Am. J. Biomed. Life Sci., 2013, 5, 126-139.
[http://dx.doi.org/10.5099/aj130200126]
[3]
Finkel, T.; Holbrook, N.J. Oxidants, oxidative stress and the biology of ageing. Nature, 2000, 408(6809), 239-247.
[http://dx.doi.org/10.1038/35041687] [PMID: 11089981]
[4]
Villanueva, C.; Kross, R.D. Antioxidant-induced stress. Int. J. Mol. Sci., 2012, 13(2), 2091-2109.
[http://dx.doi.org/10.3390/ijms13022091] [PMID: 22408440]
[5]
Peksel, A.; Imamoglu, S.; Kiymaz, N.; Orhan, N. Antioxidant and radical scavenging activities of asphodelus aestivus brot. Extracts. Int. J. Food Prop., 2013, 16, 1339-1350.
[http://dx.doi.org/10.1080/10942912.2011.587622]
[6]
Pohanka, M.; Hynek, D.; Kracmarova, A.; Kruseova, J.; Ruttkay-Nedecky, B.; Sochor, J.; Adam, V.; Hubalek, J.; Masarik, M.; Eckschlager, T.; Kizek, R. Voltammetry assay for assessment of oxidative stress linked pathologies in brain tumor suffered childhood patients. Int. J. Electrochem. Sci., 2012, 7, 11978-11992.
[7]
Pekal, A.; Drozdz, P.; Pyrzynska, K. Comparison of the antioxidant properties of commonly consumed commercial teas. Int. J. Food Prop., 2012, 15, 1101-1109.
[http://dx.doi.org/10.1080/10942912.2010.514642]
[8]
Ervin, M.E.; Kariuki, J.K. Demonstrating the minimal impact of cultivation conditions on antioxidants in fruits and vegetables by differential pulse voltammetry. Int. J. Food Prop., 2016, 19, 826-836.
[http://dx.doi.org/10.1080/10942912.2015.1048354]
[9]
Pham-Huy, L.A.; He, H.; Pham-Huy, C. Free radicals, antioxidants in disease and health. Int. J. Biomed. Sci., 2008, 4(2), 89-96.
[PMID: 23675073]
[10]
Liao, W.; Chen, L.; Ma, X.; Jiao, R.; Li, X.; Wang, Y. Protective effects of kaempferol against reactive oxygen species-induced hemolysis and its antiproliferative activity on human cancer cells. Eur. J. Med. Chem., 2016, 114, 24-32.
[http://dx.doi.org/10.1016/j.ejmech.2016.02.045] [PMID: 26974372]
[11]
Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: FOOD sources and bioavailability. Am. J. Clin. Nutr., 2004, 79(5), 727-747.
[http://dx.doi.org/10.1093/ajcn/79.5.727] [PMID: 15113710]
[12]
Pérez-Jiménez, J.; Neveu, V.; Vos, F.; Scalbert, A. Identification of the 100 richest dietary sources of polyphenols: An application of the Phenol-Explorer database. Eur. J. Clin. Nutr., 2010, 64(Suppl. 3), S112-S120.
[http://dx.doi.org/10.1038/ejcn.2010.221] [PMID: 21045839]
[13]
Yiannakopoulou, E.Ch. Recent patents on antibacterial, antifungal and antiviral properties of tea. Recent Pat. Antiinfect Drug Discov, 2012, 7(1), 60-65.
[http://dx.doi.org/10.2174/157489112799829738] [PMID: 22353001]
[14]
Boyer, J.; Liu, R.H. Apple phytochemicals and their health benefits. Nutr. J., 2004, 3, 5.
[http://dx.doi.org/10.1186/1475-2891-3-5] [PMID: 15140261]
[15]
Rupasinghe, H.V.; Wang, L.; Huber, G.M.; Pitts, N.L. Effect of baking on dietary fiber and phenolics of muffins incorporated with apple skin powder. Food Chem., 2008, 107, 1217-1224.
[16]
Ghasemzadeh, A.; Omidvar, V.; Jaafar, H.Z.E. Polyphenolic content and their antioxidant activity in leaf extract of sweet potato. J. Med. Plants Res., 2012, 6, 2971-2976.
[http://dx.doi.org/10.5897/JMPR11.1353]
[17]
Jessie, S. What Are Flavonoids Live Science 2015.
[18]
Terao, J. Flavonols; metabolism, bioavailability and health impacts; Flavonols; metabolism, bioavailability and health impacts, 2009, p. 185-196.
[http://dx.doi.org/10.1002/9780470531792.ch8]
[19]
Wanasundera, J.P.D.; Ravindran, G. Nutritional assessment of yam (Dioscorea alata) tubers. Plant Foods Hum. Nutr., 1994, 46(1), 33-39.
[http://dx.doi.org/10.1007/BF01088459] [PMID: 7971785]
[20]
Chen, Y.F.; Zhu, Q.; Wu, S. Preparation of oligosaccharides from Chinese yam and their antioxidant activity. Food Chem., 2015, 173, 1107-1110.
[http://dx.doi.org/10.1016/j.foodchem.2014.10.153] [PMID: 25466131]
[21]
Hahn, S.K. Yam (Dioscorea spp.) Dioscoreaceae. Evolution of crop plants, 2nd ed; Smatt, J.; Simmonds, N.W., Eds.; Longman Scientific and technical: UK. 1995, pp. 112-120.
[22]
Food and agricultural organization FAOSTATDATA, Rome, ITALY, FAO. 2010.
[23]
Adedayo, B.C.; Ademiluyi, A.O.; Oboh, G.; Akindahunsi, A.A. Interaction of aqueous extracts of two varieties of Yam tubers (Dioscorea spp) on some key enzymes linked to type 2 Diabetes in vitro. Int. J. Food Sci. Technol., 2012, 47, 703-709.
[http://dx.doi.org/10.1111/j.1365-2621.2011.02896.x]
[24]
Djeukeu, W.A.; Gouado, I.; Leng, M.S.; Vijaykrishnaraj, M.; Prabhasankar, P. Effect of dried yam flour (Dioscorea schimperiana) on cooking quality, digestibility profile and antioxidant potential of wheat based pasta. Food Measure., 2017, 11, 1421-1429.
[http://dx.doi.org/10.1007/s11694-017-9521-6]
[25]
Zilani, A.H.; Khushi, N.H.S.S. Asaduzzman, Golam, H. Antioxidant, antibacterial potential and HPLC analysis of dioscorea alata bulb. Indones. J. Pharm., 2016, 27, 9-14.
[http://dx.doi.org/10.14499/indonesianjpharm27iss1pp9]
[26]
Liu, Y.; Li, H.; Fan, Y.; Man, S.; Liu, Z.; Gao, W.; Wang, T. Antioxidant and antitumor activities of the extracts from chinese yam (Dioscorea opposite Thunb.) Flesh and peel and the effective compounds. J. Food Sci., 2016, 81(6), H1553-H1564.
[http://dx.doi.org/10.1111/1750-3841.13322] [PMID: 27122252]
[27]
Uslu, B.; Topal, B.D.; Ozkan, S.A. Electroanalytical investigation and determination of pefloxacin in pharmaceuticals and serum at boron-doped diamond and glassy carbon electrodes. Talanta, 2008, 74(5), 1191-1200.
[http://dx.doi.org/10.1016/j.talanta.2007.08.023] [PMID: 18371769]
[28]
Sarigül, T.; İnam, R. A direct method for the polarographic determination of herbicide triasulfuron and application to natural samples and agrochemical formulation. Bioelectrochemistry, 2009, 75(1), 55-60.
[http://dx.doi.org/10.1016/j.bioelechem.2008.11.009] [PMID: 19141372]
[29]
Demir, E.; İnam, R. Square wave voltammetric determination of fomesafen herbicide using modified nanostructure carbon paste electrode as a sensor and application to food samples. Food Anal. Methods, 2017, 10, 74-82.
[http://dx.doi.org/10.1007/s12161-016-0551-1]
[30]
Demir, E.; İnam, R.; Özkan, S.A.; Uslu, B. Electrochemical behavior of tadalafil on TiO2 nanoparticles MWCNT composite paste electrode and determination in pharmaceutical dosage forms and human serum samples using adsorptive stripping square wave voltammetry. J. Solid State Electrochem., 2014, 18, 2709-2720.
[http://dx.doi.org/10.1007/s10008-014-2529-5]
[31]
Bozal-Palabiyik, B.; Uslu, B. Comparative study for voltammetric investigation and trace determination of pramipexole at bare and carbon nanotube-modified glassy carbon electrodes. Ionics, 2016, 22, 2519-2528.
[http://dx.doi.org/10.1007/s11581-016-1774-2]
[32]
Laviron, E.; Roullier, L.; Degrand, C. A multilayer model for the study of space distributed redox modified electrodes: Part II. Theory and application of linear potential sweep voltammetry for a simple reaction. J. Electroanal. Chem., 1980, 112, 11-23.
[http://dx.doi.org/10.1016/S0022-0728(80)80003-9]
[33]
Sun, S.; Zhang, M.; Li, Y.; He, X. A molecularly imprinted polymer with incorporated graphene oxide for electrochemical determination of quercetin. Sensors (Basel), 2013, 13(5), 5493-5506.
[http://dx.doi.org/10.3390/s130505493] [PMID: 23698263]
[34]
Li, Y.; Huang, W. Electrode modified with porous alumina microfibers as a highly sensitive electrochemical sensor for quercetin. Anal. Methods, 2015, 7, 2537-2541.
[http://dx.doi.org/10.1039/C5AY00206K]
[35]
Yao, Y.Y.; Zhang, L.; Wang, Z.F.; Xu, J.K.; Wen, Y.P. Electrochemical determination of quercetin by self-assembled platinum nanoparticles / poly (hydroxymethylated -3,4- ethylenedioxylthiophene) nanocomposite modified glassy carbon electrode. Chin. Chem. Lett., 2014, 25, 505-510.
[http://dx.doi.org/10.1016/j.cclet.2014.01.028]
[36]
Gupta, V.K.; Golestani, F.; Ahmadzadeh, S.; Karimi-Maleh, H.; Fazli, G.; Khosravi, S. NiO/CNTs nanocomposite modified ionic liquid carbon paste electrode as a voltammetric sensor for determination of quercetin. Int. J. Electrochem. Sci., 2015, 10, 3657-3667.
[37]
Miller, J.C.; Miller, J.N. Statistics for analytical chemistry, 2nd ed; John Wiley and Sons: New York, 1988.
[38]
Yola, M.L.; Gupta, V.K.; Eren, T.; Sen, A.E.; Atar, N. A novel electro analytical nanosensor based on graphene oxide/silver nanoparticles for simultaneous determination of quercetin and morin. Electrochim. Acta, 2014, 120, 204-211.
[http://dx.doi.org/10.1016/j.electacta.2013.12.086]
[39]
Gomez, F.J.V.; Espino, M.; de Los Angeles Fernandez, M.; Raba, J.; Silva, M.F. Enhanced electrochemical detection of quercetin by Natural Deep Eutectic Solvents. Anal. Chim. Acta, 2016, 936, 91-96.
[http://dx.doi.org/10.1016/j.aca.2016.07.022] [PMID: 27566343]
[40]
Wang, J. Analytical Electrochemistry; John Wiley & Sons, 2000.
[http://dx.doi.org/10.1002/0471228230]
[41]
Galus, Z. Fundamentals of electrochemical analysis; Ellis Horwood and Polish Scientific Publihers PWN: New York, 1994.
[42]
Bard, A.J.; Faulkner, R.F. Electrochemical methods, 2nd ed; Wiley: New York, 2000.
[43]
Zielinska, D.; Pierozynski, B.; Wiczkowski, W. On the electrooxidation mechanism of quercetin glucosides at glassy carbon electrode. J. Electroanal. Chem., 2010, 640.http://www.sciencedirect. com/ science/journal/15726657/640/123-34
[44]
Prior, R.L.; Wu, X.; Schaich, K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem., 2005, 53(10), 4290-4302.
[http://dx.doi.org/10.1021/jf0502698] [PMID: 15884874]
[45]
Wang, Y.; Cao, J.; Weng, J.H.; Zeng, S. Simultaneous determination of quercetin, kaempferol and isorhamnetin accumulated human breast cancer cells, by high-performance liquid chromatography. J. Pharm. Biomed. Anal., 2005, 39(1-2), 328-333.
[http://dx.doi.org/10.1016/j.jpba.2005.03.016] [PMID: 15905060]
[46]
Coleska, Z.N.; Klisarova, L.J.; Suturkova, L.J.; Dorevski, K. First and second derivative spectrophotometric determination of flavonoids chrysin and quercetin. Anal. Lett., 1996, 29, 97-115.
[http://dx.doi.org/10.1080/00032719608000395]
[47]
Prasongsidh, B.C.; Skurray, G.R. Capillary electrophoresis analysis of trans- and cis-resveratrol, quercetin, catechin and gallic acid in wine. Food Chem., 1998, 62, 355-358.
[http://dx.doi.org/10.1016/S0308-8146(97)00153-2]
[48]
Liu, J.M.; Lin, L.P.; Wang, X.X.; Cai, W.L.; Zhang, L.H.; Lin, S.Q. A highly sensitive coupling technique for the determination of trace quercetin based on solid substrate room temperature phosphorimetry and poly (vinyl alcohol) complex imprinting. Anal. Chim. Acta, 2012, 723, 76-82.
[http://dx.doi.org/10.1016/j.aca.2012.02.029] [PMID: 22444576]
[49]
Farghaly, O.A.; Abdel Hameed, R.S.; Abu-Nawwas, A.H. Analytical application using modern electrochemical techniques. Int. J. Electrochem. Sci., 2014, 9, 3287-3318.
[50]
Ali, A.M. Cathodic adsorptive stripping voltammetric determination of the anti-inflammatory drug indomethacin. J. Pharm. Biomed. Anal., 1999, 18(6), 1005-1012.
[http://dx.doi.org/10.1016/S0731-7085(98)00111-3] [PMID: 9925336]
[51]
Wang, J.; Wang, J. Two-step strategy for the selective and sensitive detection of dopamine with glassy carbon electrodes. Electroanalysis, 2017, 29, 208-212.
[http://dx.doi.org/10.1002/elan.201600349]
[52]
Pisoschi, A.M.; Negulescu, G.P. Methods for total antioxidant activity determination. Biochem. Anal. Biochem., 2011, 1, 2-10.
[53]
Pisoschi, A.M.; Cimpeanu, C.; Predoi, G. Electrochemical methods for total antioxidant capacity and its main contributor’s determination. Open Chem., 2015, 13, 824-856.
[http://dx.doi.org/10.1515/chem-2015-0099]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 2
Year: 2020
Page: [176 - 183]
Pages: 8
DOI: 10.2174/1573411014666180619143729
Price: $65

Article Metrics

PDF: 14
HTML: 4