Thermostabilization of BSA in TMAO Water Mixtures by Infrared Spectroscopy

Author(s): Arianna Adamo*, Emanuele Calabrò, Salvatore Magazù.

Journal Name: Current Chemical Biology

Volume 13 , Issue 1 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Trimethylamine-N-Oxide (TMAO) is a small organic molecule derived from the metabolism of L-carnitine and choline after ingestion of animal food. TMAO has many functions such as electron acceptor, an osmolyte, stabilizer of macromolecules folding. It seems that TMAO plays an important role in nature but, in humans, it is a remnant of the evolution of the osmolyte system.

Objective: The present paper is addressed on the study of thermal stability of hydrated Bovine Serum Albumins (BSA) in the presence of water and TMAO water solution by means of InfraRed spectroscopy. In particular, this work has investigated the protein amide I spectral regions, which is sensitive to protein secondary structure, and the intramolecular OH stretching region.

Methods: The analysis has been performed by different approaches, namely by evaluating the Thermal Spectral Distance (SDT), the spectral shift (Δω), the spectral Fractal Dimension (FD) and the Wavelet Cross Correlation temperature variation (ΔTCXWT).

Results: The obtained results revealed for BSA in TMAO, in respect to BSA, smaller values of SDT, Δω, FD and ΔTCXWT. Furthermore, the SDT, Δω and ΔTCXWT temperature trends to follow sigmoid trends that have been modeled by means of logistic functions; in all the above three cases BSA in TMAO shows a higher value of the inflection point temperature.

Conclusion: These results can be interpreted by hypothesizing that TMAO influences the hydrogen bond network of water. In particular, the strengthening of the network intermolecular O-H interactions reduces the protein dynamic fluctuations and in turn leads to the stabilization of the protein tertiary structure.

Keywords: TMAO, BSA, infrared spectroscopy, spectral shift, spectral distance, wavelet cross correlation.

[1]
Ufnal M, Zadlo A, Ostaszewski R. TMAO: A small molecule of great expectations. Nutrition 2015; 31(11-12): 1317-23.
[2]
Yancey PH. Water stress, osmolytes and proteins. Am Zool 2001; 41(4): 699-709.
[3]
Seibel BA, Walsh PJ. Trimethylamine oxide accumulation in marine animals: Relationship to acylglycerol storage. J Exp Biol 2002; 205(Pt 3): 297-306.
[4]
Yancey PH. Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J Exp Biol 2005; 208(Pt 15): 2819-30.
[5]
Lundstrom RC, Racicot LD. Gas chromatographic determination of dimethylamine and trimethylamine in seafoods. J Assoc Off Anal Chem 1983; 66(5): 1158-63.
[6]
Koeth RA, Wang Z, Levison BS, et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med 2013; 19(5): 576-85.
[7]
Zeisel SH, DaCosta KA, Youssef M, Hensey S. Conversion of dietary choline to trimethylamine and dimethylamine in rats: Dose-response relationship. J Nutr 1989; 119(5): 800-4.
[8]
Zeisel SH, Dacosta K, Foxt JG. Endogenous formation of dimethylamine. Biochem J 1985; 232(2): 403-8.
[9]
Zeisel SH, Da Costa KA. Choline: An essential nutrient for public health. Nutr Rev 2009; 67(11): 615-23.
[10]
Tang WH, Wang Z, Levison BS, et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med 2013; 368(17): 1575-84.
[11]
Wang Z, Klipfell E, Bennett BJ, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 2011; 472(7341): 57-63.
[12]
Dambrova M, Latkovskis G, Kuka J, et al. Diabetes is associated with higher trimethylamine n-oxide plasma levels. Exp Clin Endocrinol Diabetes 2016; 124(4): 251-6.
[13]
Barrett EL, Kwan HS. Bacterial reduction of trimethylamine oxide. Annu Rev Microbiol 1985; 39: 131-49.
[14]
Suzuki S, Kubo A, Shinano H, Takama K. Inhibition of the electron transport system in Staphylococcus aureus by trimethylamine-N-oxide. Microbios 1992; 71(287): 145-8.
[15]
Chen Y, Patel N, Crombie A, Scrivens JH, Murrell JC. Bacterial flavin-containing monooxygenase is trimethylamine monooxygenase. Pnas 2011; 108(43): 17791-6.
[16]
Wang A, Bolen DW, February RV, Re V, Recei M, April V. A naturally occurring protective system in urea-rich cells : Mechanism of osmolyte protection of proteins against urea denaturation. Biochemistry 1997; 36(30): 9101-8.
[17]
Magazù S, Calabrò E, Caccamo MT, Cannuli A. The shielding action of disaccharides for typical proteins in aqueous solution against static, 50 Hz and 1800 MHz frequencies electromagnetic fields. Curr Chem Biol 2016; 10(1): 57-64.
[18]
Lehninger AL. Principles of biochemistryvol 1. US: Worth Publisher 1985.
[19]
Dobson CM. The structural basis of protein folding and its links with human disease. Philos Trans R Soc Lond B Biol Sci 2001; 356(1406): 133-45.
[20]
Wang S. Ted Lee JrC. Protein secondary structure controlled with light and photoresponsive surfactants. J Phys Chem B 2006; 110: 16117-23.
[21]
Lesk AM. Introduction to Protein science: architecture, function and genomics. US: Oxford University Press 2004.
[22]
Bondos SE. Methods for measuring protein aggregation. Curr Anal Chem 2006; 2(2): 157-70.
[23]
Alberts B, Johnson A, Lewis J, et al. The shape and structure of proteins. In: Raff M, Roberts K, Walter P, Eds.Molecular biology of the cell. 4th ed. New York: Garland Science Publishing 2002; pp. 129-91.
[24]
Siltberg-Liberles J, Grahnen JA, Liberles DA. The evolution of protein structures and structural ensembles under functional constraint. Genes (Basel) 2011; 2(4): 748-62.
[25]
Nakanishi K, Sakiyama T, Imamura K. On the adsorption of proteins on solid surfaces, a common but very complicated phenomenon. J Biosci Bioeng 2001; 91(3): 233-44.
[26]
Roach P, Farrar D, Perry CC. Surface tailoring for controlled protein adsorp- tion: Effect of topography at the nanometer scale and chemistry. J Am Chem Soc 2006; 128(12): 3939-45.
[27]
Manning MC, Patel K, Borchardt RT. Stability of protein pharmaceuticals. Pharm Res 1989; 6: 903-18.
[28]
Huang TT, Sturgis J, Gomez R, Geng T, Bachir R, Bhunia AK. Composite surface for blocking bacterial adsorption on protein biochips. Biotechnol Bioeng 2003; 81(5): 618-24.
[29]
Auton M, Bolen DW. Predicting the energetics of osmolyte-induced protein folding/unfolding. Proc Natl Acad Sci USA 2005; 102: 15065-8.
[30]
Magazù S, Migliardo F, Telling MTF. Study of the dynamical properties of water in disaccharide solutions. Eur Biophys J 2007; 36(2): 163-71.
[31]
Branca C, Magazù S, Maisano G, Bennington SM, Fåk B. Vibrational studies on disaccharide/H2O systems by inelastic neutron scattering, Raman, and IR spectroscopy. J Phys Chem B 2003; 107(6): 1444-51.
[32]
Branca C, Maccarrone S, Magazù S, Maisano G, Bennington SM, Taylor J. Tetrahedral order in homologous disaccharide-water mixtures. J Chem Phys 2005; 122: 174513.
[33]
Allison SD, Chang B, Randolph TW, Carpenter JF. Hydrogen bonding between sugar and protein is responsible for inhibition of dehydration-induced protein unfolding. Arch Biochem Biophys 1999; 365: 289-98.
[34]
Minutoli L, Altavilla D, Bitto A, et al. The disaccharide trehalose inhibits proinflammatory phenotype activation in macrophages and prevents mortality in experimental septic shock. Shock 2007; 27(1): 91-6.
[35]
Branca C, Magazù S, Maisano G, Bennington SM, Fåk B. Vibrational studies on disaccharide/H2O systems by inelastic neutron scattering, Raman, and IR spectroscopy. J Phys Chem B 2003; 107(6): 1444-51.
[36]
Pagnotta SE, Ricci MA, Bruni F, McLain S, Magazù S. Water structure around trehalose. Chem Phys 2008; 345(2-3): 159-63.
[37]
Minutoli L, Altavilla D, Bitto A. et al. Trehalose: A biophysics approach to modulate the inflammatory response during endotoxic shock. Eur J Pharm 2008; 589(1-3): 272-80.
[38]
Magazù S, Migliardo F, Telling MTF. Structural and dynamical properties of water in sugar mixtures. Food Chem 2008; 106(4): 1460-6.
[39]
Magazù S, Maisano G, Middendorf HD, Migliardo P, Musolino AM, Villari V. α,α-Trehalose-water solutions. II. Influence of hydrogen bond connectivity on transport properties. J Phys Chem B 1998; 102(11): 2060-3.
[40]
Branca C, Magazù S, Maisano G, Migliardo P, Villari V, Sokolov AP. The fragile character and structure-breaker role of α: α-trehalose: Viscosity and Raman scattering findings. J Phys Condens Matter 1999; 11(19): 3823-32.
[41]
Magazù S, Maisano G, Migliardo P, Middendorf HD, Villari V. Hydration and transport properties of aqueous solutions of α-α-trehalose. J Chem Phys 1998; 109(3): 1170-4.
[42]
Ballone P, Marchi M, Branca C, Magazú S. Structural and vibrational properties of trehalose: A density functional study. J Phys Chem B 2000; 104(26): 6313-7.
[43]
Faraone A, Magazù S, Maisano G, Ponterio R, Villari V. Experimental evidence of slow dynamics in semidilute polymer solutions. Macromol 1999; 32(4): 1128-33.
[44]
Caccamo MT, Magazù S. Tagging the oligomer-to-polymer crossover on EG and PEGs by infrared and Raman spectroscopies and by wavelet cross-correlation spectral analysis. Vib Spectrosc 2016; 85: 222-7.
[45]
Arakawa T, Kita Y, Carpenter JF. Protein-solvent interactions in pharmaceutical formulations. Pharm Res 1991; 8: 285-91.
[46]
Grasmeijer N, Stankovic M, de Waard H, Frijlink HW, Hinrichs WLJ. Unraveling protein stabilization mechanisms: vitrification and water replacement in a glass transition temperature controlled system. Biochim Biophys Acta 2013; 1834: 763-9.
[47]
Ignatova Z, Gierasch LM. Effects of osmolytes on protein folding and aggregation in cells. Methods Enzymol 2007; 428: 355-72.
[48]
Lokotosh TV, Magazù S, Maisano G, Malomuzh NP. Nature of self-diffusion and viscosity in supercooled liquid water. Phys Rev E 2000; 62(3A): 3572-80.
[49]
Squire PG, Maser P, O’Konski CT. The hydrodynamic properties of bovine serum albumin monomer and dimmer. Biochem 1968; 7: 4261-72.
[50]
DePaz RA, Dale DA, Barnett CC, Carpenter JF, Gaertner AL, Randolph TW. Effects of drying methods and additives on the structure, function, and storage stability of subtilisin: role of protein conformation and molecular mobility. Enzyme Microb Technol 2002; 31: 765-74.
[51]
Timasheff SN. The control of protein stability and association by weak interactions with water: how do solvents affect these processes? Annu Rev Biophys Biomol Struct 1993; 22: 67-97.
[52]
Militello V, Casarino C, Emanuele A, Giostra A, Pullara F, Leone M. Aggregation kinetics of bovine serum albumin studied by FTIR spectroscopy and light scattering. Biophys Chem 2004; 107(2): 175-87.
[53]
Vera-Avila LE, García-Salgado E, García de Llasera MP, Peña-Alvarez A. Binding characteristics of bovine serum albumin encapsulated in sol-gel glasses: an alternative for protein interaction studies. Anal Biochem 2008; 373: 272-80.
[54]
Li R, Fu N, Wu Z, Wang Y, Wang Y. Protein aggregation in foam fractionation of bovine serum albumin: effect of protein concentration. Biochem Eng J 2015; 103: 234-41.
[55]
Barreca D, Laganà G, Ficarra S, et al. Anti-aggregation properties of trehalose on heat-induced secondary structure and conformation changes of bovine serum albumin. Biophys Chem 2010; 147(3): 146-52.
[56]
Barreca D, Laganà G, Bruno G, Magazù S, Bellocco E. Diosmin binding to human serum albumin and its preventive action against degradation due to oxidative injuries. Biochimie 2013; 95(11): 2042-9.
[57]
Magazù S, Migliardo F, Benedetto A, Mondelli C, Gonzalez MA. Thermal behaviour of hydrated lysozyme in the presence of sucrose and trehalose by EINS. J Non-Cryst Solids 2011; 357(2): 664-70.
[58]
Magazù S, Maisano G, Migliardo F, et al. Characterization of molecular motions in biomolecular systems by elastic incoherent neutron scattering. J Chem Phys 2008; 129(15): article number 155103.
[59]
Caccamo MT, Cannuli A, Calabrò E, Magazù S. Acoustic levitator power device: Study of ethylene-glycol water mixtures. IOP Conf Ser Mater Sci Eng. 2017; 199: 12119.
[60]
Krimm S, Bandekar J. Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins. Adv Protein Chem 1986; 38: 181-364.
[61]
Carpenter JF, Crowe JH. An infrared spectroscopic study of the interactions of carbohydrates with dried proteins. Biochem 1989; 28: 3916-22.
[62]
Branca C, Magazù S, Migliardo F, Migliardo P. Destructuring effect of trehalose on the tetrahedral network of water: A Raman and neutron diffraction comparison. Physica A 2002; 304(1-2): 314-8.
[63]
Magazù S, Maisano G, Migliardo F, Benedetto A. Elastic incoherent neutron scattering on systems of biophysical interest: Mean square displacement evaluation from self-distribution function. J Phys Chem B 2008; 112(30): 8936-42.
[64]
Varga B, Migliardo F, Takacs E, Vertessy B, Magazù S, Mondelli C. Neutron scattering studies on dUTPase complex in the presence of bioprotectant systems. Chem Phys 2008; 345(2-3): 250-8.
[65]
Branca C, Magazù S, Maisano G, Migliardo P, Villari V. Conformational distribution of poly(ethylene oxide) in molten phase and in aqueous solution by quasi-elastic and inelastic light scattering. J Phys Condens Matter 1998; 10(45): 10141-57.
[66]
Jannelli MP, Magazù S, Migliardo P, Aliotta F, Tettamanti E. Transport properties of liquid alcohols investigated by IQENS, NMR and DLS studies. J Phys Cond Matter. J Phys Condens Matter 1996; 8(43): 8157-71.
[67]
Magazù S, Migliardo F, Benedetto A. Elastic incoherent neutron scattering operating by varying instrumental energy resolution: Principle, simulations, and experiments of the resolution elastic neutron scattering (RENS). Rev Sci Instrum 2011; 82(10): 105115.
[68]
Marchese N, Cannuli A, Caccamo MT, Pace C. 2016 New generation non-stationary portable neutron generators for biophysical applications of neutron activation analysis. Biochim Biophys Acta 2017; 1861(1 Pt B): 3661-70.
[69]
Magazù S, Migliardo F, Affouard F, Descamps M, Telling MTF. Study of the relaxational and vibrational dynamics of bioprotectant glass-forming mixtures by neutron scattering and molecular dynamics simulation. J Chem Phys 2010; 132(18): 184512.
[70]
Magazù S, Maisano G, Migliardo F, Benedetto A. Mean square displacement evaluation by elastic neutron scattering self-distribution function. Phys Rev E 2008; 77(6): 061802.
[71]
Migliardo F, Magazù S, Caccamo MT. Infrared, Raman and INS studies of poly-ethylene oxide oligomers. J Mol Struct 2013; 1048: 261-6.
[72]
Magazù S, Migliardo F, Caccamo MT. Upgrading of Resolution Elastic Neutron Scattering (RENS). Adv Mater Sci Eng 2013; 2013: 695405.
[73]
Magazù S, Migliardo F, Benedetto A. Mean square displacements from elastic incoherent neutron scattering evaluated by spectrometers working with different energy resolution on dry and hydrated (H2O and D2O) lysozyme. J Phys Chem B 2010; 114(28): 9268-74.
[74]
Magazù S. IQENS - Dynamic light scattering complementarity on hydrogenous systems. Phys B 1996; 226(1-3): 92-106.
[75]
Hennet L, Cristiglio V, Kozaily J, et al. Aerodynamic levitation and laser heating: Applications at synchrotron and neutron sources. Eur Phys J 2011; 196(1): 151-65.
[76]
Iosin M, Canpean V, Astilean S. Spectroscopic studies on pH- and thermally induced conformational changes of bovine serum albumin adsorbed onto gold nanoparticles. J Photochem Photobiol 2011; 217: 395-401.
[77]
Chalmers J, Griffiths P. Handbook of vibrational spectroscopy. US: Wiley 2002.
[78]
Murayama K, Tomida M. Heat-Induced Secondary Structure and Conformation Change of Bovine Serum Albumin Investigated by Fourier Transform Infrared Spectroscopy. Biochem 2004; 43: 11526-32.
[79]
Kong J, Yu S. Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochim Biophys Sin 2007; 39: 549-59.
[80]
Miyazawa T, Shimanouchi T, Mizushima J. Normal Vibrations of N-Methylacetamide. J Chem Phys 1958; 29: 611-6.
[81]
Fasman GD. Poly-α-Amino Acids. US: Marcel Dekker Publisher 1967; pp. 69-103.
[82]
Barth A, Zscherp C. What Vibrations Tell Us About Proteins? Q Rev Biophys 2002; 35(4): 369-430.
[83]
Krimm S, Bandekar J. Vibrational Spectroscopy and Conformation of Peptides, Polypeptides, and Proteins. Adv Protein Chem 1986; 38: 181-364.
[84]
Carpenter JF, Crowe JH. An infrared spectroscopic study of the interactions of carbohydrates with dried proteins. Biochem 1989; 28: 3916-22.
[85]
Movasaghi Z, Rehman S. Ihtesham ur R. Fourier Transform Infrared (FTIR) Spectroscopy of Biological Tissues. Appl Spec Rev 2008; 43: 134-79.
[86]
Mostaco-Guidolin LB, Bachmann L. Application of FTIR spectroscopy for identification of blood and leukemia biomarkers: A review over the past 15 years. Appl Spec Rev 2011; 46(5): 388-404.
[87]
Jhonsi MA, Kathiravan A, Renganathan R. Spectroscopic studies on the interactionof colloidal capped CdS nanoparticles with bovine serum albumin. Colloids Surf B 2009; 72: 167-72.
[88]
Buijs J, Norde W. Changes in the secondary structure of adsorbed IgG and F(ab′) 2 studied by FTIR spectroscopy. Langmuir 1996; 12(6): 605-1613.
[89]
Kong J, Yu S. Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochim Biophys Sin 2007; 39: 549-59.
[90]
Sontum PC, Christiansen C. Photon correlation spectroscopy applied to characterisationof denaturation and thermal stability of human albumin. J Pharm Biomed Anal 1997; 16: 295-302.
[91]
Magazù S, Calabrò E. Campo S. FTIR spectroscopy studies on the bioprotective effectiveness of trehalose on human hemoglobin aqueous solutions under 50 Hz electromagnetic field exposure. J Phys Chem B 2010; 114(37): 12144-9.
[92]
Condello S, Calabrò E, Caccamo D, et al. Protective effects of agmatine in rotenone-induced damage of human SH-SY5Y neuroblastoma cells: Fourier transform infrared spectroscopy analysis in a model of Parkinson’s disease. Amino Acids 2012; 42(2-3): 775-81.
[93]
Bandekar J. Amide Modes and Protein Conformation. Biochim Biophys Acta 1992; 1120: 123-43.
[94]
Dousseau F, Pezolet M. Determination of the Secondary Structure Content of Proteins in Aqueous Solutions from Their Amide I and Amide II Infrared Bands: Comparison Between Classical and Partial Least-Squares Methods. Biochem 1990; 29: 8771-9.
[95]
Caccamo MT, Magazù S. Thermal restraint on PEG-EG mixtures by FTIR investigations and wavelet cross-correlation analysis. Polym Test 2017; 62: 311-8.
[96]
Caccamo MT, Magazù S. Ethylene Glycol - Polyethylene Glycol (EG-PEG) Mixtures: Infrared Spectra Wavelet Cross-Correlation Analysis. Appl Spectrosc 2017; 71(3): 401-9.
[97]
Gharsallaoui A, Mathlouthi M. Water–disaccharides interactions in saturated solution and the crystallisation conditions. Food Chem 2008; 106: 1329-39.
[98]
Caccamo MT, Magazù S. Variable mass pendulum behaviour processed by wavelet analysis. Eur J Phys 2017; 38(1): 15804.
[99]
Caccamo MT, Magazù S. Multiscaling Wavelet Analysis of Infrared and Raman Data on Polyethylene Glycol 1000 Aqueous Solutions. Spectrosc Lett 2017; 50(3): 130-6.
[100]
Migliardo F, Caccamo MT, Magazù S. Thermal Analysis on Bioprotectant Disaccharides by Elastic Incoherent Neutron Scattering. Food Biophys 2014; 9(2): 99-104.
[101]
Magazù S, Migliardo F, Vertessy BG, Caccamo MT. Investigations of homologous disaccharides by elastic incoherent neutron scattering and wavelet multiresolution analysis. Chem Phys 2013; 424: 55-61.
[102]
Migliardo F, Caccamo MT, Magazù S. Elastic incoherent neutron scatterings wavevector and thermal analysis on glass-forming homologous disaccharides. J Non-Cryst Solids 2013; 378: 144-51.
[103]
Magazù S, Migliardo F, Vertessy BG, Caccamo MT. Investigations of homologous disaccharides by elastic incoherent neutron scattering and wavelet multiresolution analysis. Chem Phys 2013; 424: 56-61.
[104]
Caccamo, Calabrò E, Cannuli A,Magazù S Wavelet Study of Meteorological Data Collected by Arduino- Weather Station: Impact on Solar Energy Collection Technology Matec Web Conf 2016; 55: 02004
[105]
Magazù S, Migliardo F, Caccamo MT. Innovative Wavelet Protocols in Analyzing Elastic Incoherent Neutron Scattering. J Phys Chem B 2012; 116: 9417-23.
[106]
Magazù S, Maisano G, Mallamace F, Micali N. Growth of fractal aggregates in water solutions of macromolecules by light scattering. Phys Rev A 1989; 39(8): 4195-200.
[107]
Rogè B, Gilli R, Mathlouthi M. Fractal analysis of FTIR spectra: Application to the characterization of amorphous carbohydrates. Phys Chem News 2006; 28: 1-8.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 13
ISSUE: 1
Year: 2019
Page: [49 - 59]
Pages: 11
DOI: 10.2174/2212796812666180613082040
Price: $58

Article Metrics

PDF: 53
HTML: 2