Bioactive Proteins in Panax notoginseng Roots and Other Panax Species

Author(s): Yau Sang Chan*, Jack Ho Wong*, Tzi Bun Ng*.

Journal Name: Current Protein & Peptide Science

Volume 20 , Issue 3 , 2019

Become EABM
Become Reviewer


The genus Panax consists of a group of prized medicinal herbs. Major members of the Panax genus include P. ginseng, P. notoginseng, P. quinquefolius, and P. vietnamensis. They possess various bioactive constituents such as ginsenosides, saponins, polysaccharides and proteins. Many of them were reported to show beneficial effects on human health. Ginsenosides and saponins of ginsengs caught the sight of most researchers. Precise investigations revealed their roles on improvement of the functioning of the nervous system, cardiovascular system, and other functions. In contrast, our knowledge of the bioactive Panax proteins is relatively limited. A number of proteins from P. ginseng, the most valuable member of Panax species, have been investigated and proved to be beneficial to our body. Meanwhile, a few bioactive P. notoginseng proteins, such as ribonucleases and antifungal proteins, have been characterized and reported. We summarize herein the proteins present in P. notoginseng that have been identified, and try to compare them with those from other Panax species with a similar structure or bioactivity, and conclude whether the proteins in P. notoginseng have any distinctive features.

Keywords: Notoginseng, ginseng, proteins, nervous system, cardiovascular system, Panax species.

Ou, X.; Jin, H.; Guo, L.; Yang, Y.; Cui, X.; Xiao, Y.; Liu, D. Status and prospective on nutritional physiology and fertilization of Panax notoginseng. J. Chinese Materia Medica, 2011, 36(19), 2620-2624.
Shaw, P.C.; But, P.P. Authentication of Panax species and their adulterants by random-primed polymerase chain reaction. Planta Med., 1995, 61(5), 466-469.
Yap, K.Y.; Chan, S.Y.; Weng, Chan. Y.; Sing Lim, C. Overview on the analytical tools for quality control of natural product-based supplements: A case study of ginseng. Assay Drug Dev. Technol., 2005, 3(6), 683-699.
Yun, T.K. Brief introduction of Panax ginseng C.A. Meyer. J. Korean Med. Sci., 2001, 16(Suppl.), S3-S5.
He, B.; Zhang, G.; Lu, A.P. Integrative network analysis: Bridging the gap between Western medicine and traditional Chinese medicine. J. Integr. Med., 2015, 13(3), 133-135.
Pritzker, S.E.; Hui, K.K. Introducing considerations in the translation of chinese medicine. J. Integr. Med., 2014, 12(4), 394-396.
Chen, H.Y.; Feng, Y.; Lao, L. Chinese integrative medicine: Inclusion of a Chinese medicine programme in a conventional medical institute. J. Integr. Med., 2014, 12(3), 187-190.
Ye, R.; Li, N.; Han, J.; Kong, X.; Cao, R.; Rao, Z.; Zhao, G. Neuroprotective effects of ginsenoside Rd against oxygen-glucose deprivation in cultured hippocampal neurons. Neurosci. Res., 2009, 64(3), 306-310.
Nah, S.Y. Ginseng ginsenoside pharmacology in the nervous system: Involvement in the regulation of ion channels and receptors. Front. Physiol., 2014, 19(5), 98.
Lei, W.Y. Analgesic and central nervous system inhibiting effects of total saponins extracted from the leaves of Panax notoginseng. Bull. Chinese Materia Medica, 1984, 9(3), 134-137.
Liu, Y.; Zhang, H.G.; Jia, Y.; Li, X.H. Panax notoginseng saponins attenuate atherogenesis accelerated by zymosan in rabbits. Biol. Pharm. Bull., 2010, 33(8), 1324-1330.
Fan, J.S.; Liu, D.N.; Huang, G.; Xu, Z.Z.; Jia, Y.; Zhang, H.G.; Li, X.H.; He, F.T. Panax notoginseng saponins attenuate atherosclerosis via reciprocal regulation of lipid metabolism and inflammation by inducing liver X receptor alpha expression. J. Ethnopharmacol., 2012, 142(3), 732-738.
Yeh, T.S.; Chan, K.H.; Hsu, M.C.; Liu, J.F. Supplementation with soybean peptides, taurine, Pueraria isoflavone, and ginseng saponin complex improves endurance exercise capacity in humans. J. Med. Food, 2011, 14(3), 219-225.
Rimar, S.; Lee-Mengel, M.; Gillis, C.N. Pulmonary protective and vasodilator effects of a standardized Panax ginseng preparation following artificial gastric digestion. Pulm. Pharmacol., 1996, 9(4), 205-209.
Kang, K.A.; Kang, J.H.; Yang, M.P. Ginseng total saponin enhances the phagocytic capacity of canine peripheral blood phagocytes in vitro. Am. J. Chin. Med., 2008, 36(2), 329-341.
Jang, H.I.; Shin, H.M. Wild Panax ginseng (Panax ginseng C.A. Meyer) protects against methotrexate-induced cell regression by enhancing the immune response in RAW 264.7 macrophages. Am. J. Chin. Med., 2010, 38(5), 949-960.
Byeon, S.E.; Lee, J.; Kim, J.H.; Yang, W.S.; Kwak, Y.S.; Kim, S.Y.; Choung, E.S.; Rhee, M.H.; Cho, J.Y. Molecular mechanism of macrophage activation by red ginseng acidic polysaccharide from Korean red ginseng. Mediators Inflamm., 2012, 2012, 732860.
Jeon, C.; Kang, S.; Park, S.; Lim, K.; Hwang, K.W.; Min, H. T cell stimulatory effects of Korean red ginseng through modulation of myeloid-derived suppressor cells. J. Ginseng Res., 2011, 35(4), 462-470.
Liu, J.; Wang, S.; Liu, H.; Yang, L.; Nan, G. Stimulatory effect of saponin from Panax ginseng on immune function of lymphocytes in the elderly. Mech. Ageing Dev., 1995, 83(1), 43-53.
Scaglione, F.; Ferrara, F.; Dugnani, S.; Falchi, M.; Santoro, G.; Fraschini, F. Immunomodulatory effects of two extracts of Panax ginseng C.A. Meyer. Drugs Exp. Clin. Res., 1990, 16(10), 537-542.
Choi, K.T. Botanical characteristics, pharmacological effects and medicinal components of Korean Panax ginseng C A Meyer. Acta Pharmacol. Sin., 2008, 29(9), 1109-1118.
Liu, M. Studies on the anti-aging and nootropic effects of ginsenoside Rg1 and its mechanisms of actions. Sheng Li Ke Xue Jin Zhan, 1996, 27(2), 139-142.
Zhou, X.; Shi, H.; Jiang, G.; Zhou, Y.; Xu, J. Antitumor activities of ginseng polysaccharide in C57BL/6 mice with Lewis lung carcinoma. Tumour Biol., 2014, 35(12), 12561-12566.
Ni, W.; Zhang, X.; Wang, B.; Chen, Y.; Han, H.; Fan, Y.; Zhou, Y.; Tai, G. Antitumor activities and immunomodulatory effects of ginseng neutral polysaccharides in combination with 5-fluorouracil. J. Med. Food, 2010, 13(2), 270-277.
Chang, Y.S.; Seo, E.K.; Gyllenhaal, C.; Block, K.I. Panax ginseng: A role in cancer therapy? Integr. Cancer Ther., 2003, 2(1), 13-33.
Yang, X.; Xiong, X.; Wang, H.; Wang, J. Protective effects of panax notoginseng saponins on cardiovascular diseases: A comprehensive overview of experimental studies. Evid. Based Complement. Alternat. Med., 2014, 2014, 204840.
Chen, C.F.; Chiou, W.F.; Zhang, J.T. Comparison of the pharmacological effects of Panax ginseng and Panax quinquefolium. Acta Pharmacol. Sin., 2008, 29(9), 1103-1108.
Yun, T.K.; Lee, Y.S.; Lee, Y.H.; Kim, S.I.; Yun, H.Y. Anticarcinogenic effect of Panax ginseng C.A. Meyer and identification of active compounds. J. Korean Med. Sci., 2001, 16(Suppl.), S6-S18.
Lam, S.K.; Ng, T.B. Isolation of a novel thermolabile heterodimeric ribonuclease with antifungal and antiproliferative activities from roots of the sanchi ginseng Panax notoginseng. Biochem. Biophys. Res. Commun., 2001, 285(2), 419-423.
Wang, H.X.; Ng, T.B. Quinqueginsin, a novel protein with anti-human immunodeficiency virus, antifungal, ribonuclease and cell-free translation-inhibitory activities from American ginseng roots. Biochem. Biophys. Res. Commun., 2000, 269(1), 203-208.
Ng, T.B.; Wang, H. Panaxagin, a new protein from Chinese ginseng possesses anti-fungal, anti-viral, translation-inhibiting and ribonuclease activities. Life Sci., 2001, 68(7), 739-749.
Ho, W.K.; Liu, S.C.; Shaw, P.C.; Yeung, H.W.; Ng, T.B.; Chan, W.Y. Cloning of the cDNA of alpha-momorcharin: A ribosome inactivating protein. Biochim. Biophys. Acta, 1991, 1088(2), 311-314.
Shaw, P.C.; Zhu, R.H.; Yung, M.H.; Yeung, H.W.; Ho, W.K. Cloning and expression of trichosanthin and alpha-momorcharin cDNA. Targeted Diagn. Ther., 1992, 7, 213-221.
Kim, S.I.; Kweon, S.M.; Kim, E.A.; Kim, J.Y.; Kim, S.; Yoo, J.S.; Park, Y.M. Characterization of RNase-like major storage protein from the ginseng root by proteomic approach. J. Plant Physiol., 2004, 161(7), 837-845.
Bariola, P.A.; Howard, C.J.; Taylor, C.B.; Verburg, M.T.; Jaglan, V.D.; Green, P.J. The Arabidopsis ribonuclease gene RNS1 is tightly controlled in response to phosphate limitation. Plant J., 1994, 6(5), 673-685.
Ma, R.C.; Oliveira, M.M. The RNase PD2 gene of almond (Prunus dulcis) represents an evolutionarily distinct class of S-like RNase genes. Mol. Gen. Genet., 2000, 263(6), 925-933.
Lam, S.K.; Ng, T.B. Isolation of a small chitinase-like antifungal protein from Panax notoginseng (sanchi ginseng) roots. Int. J. Biochem. Cell Biol., 2001, 33(3), 287-292.
Bishop, J.G.; Dean, A.M.; Mitchell-Olds, T. Rapid evolution in plant chitinases: Molecular targets of selection in plant-pathogen coevolution. Proc. Natl. Acad. Sci. USA, 2000, 97(10), 5322-5327.
Ye, X.Y.; Wang, H.X.; Ng, T.B. Dolichin, a new chitinase-like antifungal protein isolated from field beans (Dolichos lablab). Biochem. Biophys. Res. Commun., 2000, 269(1), 155-159.
Lam, S.K.; Ng, T.B. Pananotin, a potent antifungal protein from roots of the traditional Chinese medicinal herb Panax notoginseng. Planta Med., 2002, 68(11), 1024-1028.
Pulla, R.K.; Lee, O.R.; In, J.G.; Parvin, S.; Kim, Y.J.; Shim, J.S.; Sun, H.; Kim, Y.J.; Senthil, K.; Yang, D.C. Identification and characterization of class I chitinase in Panax ginseng C. A. Meyer. Mol. Biol. Rep., 2011, 38(1), 95-102.
Xiao, Y.H.; Li, X.B.; Yang, X.Y.; Luo, M.; Hou, L.; Guo, S.H.; Luo, X.Y.; Pei, Y. Cloning and characterization of a balsam pear class I chitinase gene (Mcchit1) and its ectopic expression enhances fungal resistance in transgenic plants. Biosci. Biotechnol. Biochem., 2007, 71(5), 1211-1219.
Busam, G.; Kassemeyer, H.H.; Matern, U. Differential expression of chitinases in Vitis vinifera L. responding to systemic acquired resistance activators or fungal challenge. Plant Physiol., 1997, 115(3), 1029-1038.
Moon, J.K.; Han, B.K.; Kim, T.D.; Jo, D.H. Distribution of chitinases and characterization of two chitinolytic enzymes from one-year-old Korean Ginseng (Panax ginseng C.A. Meyer) roots. BMB Rep., 2010, 43(11), 726-731.
Lam, S.K.; Ng, T.B. A xylanase from roots of sanchi ginseng (Panax notoginseng) with inhibitory effects on human immunodeficiency virus-1 reverse transcriptase. Life Sci., 2002, 70(25), 3049-3058.
Millward-Sadler, S.J.; Davidson, K.; Hazlewood, G.P.; Black, G.W.; Gilbert, H.J.; Clarke, J.H. Novel cellulose-binding domains, NodB homologues and conserved modular architecture in xylanases from the aerobic soil bacteria Pseudomonas fluorescens subsp. cellulosa and Cellvibrio mixtus. Biochem. J., 1995, 312(Pt 1), 39-48.
Fontes, C.M.; Gilbert, H.J.; Hazlewood, G.P.; Clarke, J.H.; Prates, J.A.; McKie, V.A.; Nagy, T.; Fernandes, T.H.; Ferreira, L.M. A novel Cellvibrio mixtus family 10 xylanase that is both intracellular and expressed under non-inducing conditions. Microbiology, 2000, 146(Pt 8), 1959-1967.
Cai, J.M.; Wu, K.; Zhang, J.; Pan, R.R. Production, properties, and application of xylanase from Aspergillus niger A3. Ann. N. Y. Acad. Sci., 1998, 864, 214-218.
Oh, H.W.; Heo, S.Y. Kim do, Y.; Park, D.S.; Bae, K.S.; Park, H.Y. Biochemical characterization and sequence analysis of a xylanase produced by an exo-symbiotic bacterium of Gryllotalpa orientalis, Cellulosimicrobium sp. HY-12. Antonie van Leeuwenhoek, 2008, 93(4), 437-442.
Padilla-Hurtado, B.; Flórez-Ramos, C.; Aguilera-Gálvez, C.; Medina-Olaya, J.; Ramírez-Sanjuan, A.; Rubio-Gómez, J.; Acuña-Zornosa, R. Cloning and expression of an endo-1,4-β-xylanase from the coffee berry borer, Hypothenemus hampei. BMC Res. Notes, 2012, 5, 23.
Benjavongkulchai, E.; Spencer, M.S. Purification and characterization of barley-aleurone xylanase. Planta, 1986, 169(3), 415-419.
Bragina, T.V.; Martinovich, L.I.; Rodionova, N.A.; Bezborodov, A.M.; Grineva, G.M. Ethylene-induced activation of xylanase in adventitious roots of maize as a response to the stress effect of root submersion. Prikl. Biokhim. Mikrobiol., 2001, 37(6), 722-725.
Sathiyaraj, G.; Srinivasan, S.; Subramanium, S.; Kim, Y.J.; Kim, Y.J.; Kwon, W.S.; Yang, D.C. Polygalacturonase inhibiting protein: Isolation, developmental regulation and pathogen related expression in Panax ginseng C.A. Meyer. Mol. Biol. Rep., 2010, 37(7), 3445-3454.
Chen, Z.K.; Fan, C.X.; Ye, Y.H.; Yang, L.; Jiang, Q.; Xing, Q.Y. Isolation and characterization of a group of oligopeptides related to oxidized glutathione from the root of Panax ginseng. J. Pept. Res., 1998, 52(2), 137-142.
Yagi, A.; Akita, K.; Ueda, T.; Okamura, N.; Itoh, H. Effect of a peptide from Panax ginseng on the proliferation of baby hamster kidney-21 cells. Planta Med., 1994, 60(2), 171-173.
Sun, H.; Kim, M.K.; Pulla, R.K.; Kim, Y.J.; Yang, D.C. Isolation and expression analysis of a novel major latex-like protein (MLP151) gene from Panax ginseng. Mol. Biol. Rep., 2010, 37(5), 2215-2222.
Nam, M.H.; Heo, E.J.; Kim, J.Y.; Kim, S.I.; Kwon, K.H.; Seo, J.B.; Kwon, O.; Yoo, J.S.; Park, Y.M. Proteome analysis of the responses of Panax ginseng C. A. Meyer leaves to high light: Use of electrospray ionization quadrupole-time of flight mass spectrometry and expressed sequence tag data. Proteomics, 2003, 3(12), 2351-2367.
Herrera-Rodríguez, M.B.; Pérez-Vicente, R.; Maldonado, J.M. Expression of asparagine synthetase genes in sunflower (Helianthus annuus) under various environmental stresses. Plant Physiol. Biochem., 2007, 45(1), 33-38.
Nagashima, A.; Hanaoka, M.; Shikanai, T.; Fujiwara, M.; Kanamaru, K.; Takahashi, H.; Tanaka, K. The multiple-stress responsive plastid sigma factor, SIG5, directs activation of the psbD blue light-responsive promoter (BLRP) in Arabidopsis thaliana. Plant Cell Physiol., 2004, 45(4), 357-368.
Takashima, N.; Arakawa, Y.; Kataoka, K.; Kurokawa, N.; Yanaihara, C.; Yanaihara, N. Characterization of a PACAP-like immunoreactive component in red ginseng root. Ann. N. Y. Acad. Sci., 1998, 865, 561-565.
Yan, Y.; Chen, J.; Li, J. Overexpression of a small medicinal peptide from ginseng in the yeast Pichia pastoris. Protein Expr. Purif., 2003, 29, 161-166.
Kim, C.; Park, S.Y. Effects of ginseng protein on relative survival and chromosome aberration of UV irradiated cells. Arch. Pharm. Res., 1988, 11, 225-229.
Kim, C.; Choi, J.E. Effects of radioprotective ginseng protein on UV induced sister chromatid exchanges. Arch. Pharm. Res., 1988, 11, 93-98.
Kim, Y.J.; Shim, J.S.; Lee, J.H.; Jung, D.Y.; Sun, H.; In, J.G.; Yang, D.C. Isolation and characterization of a novel short-chain alcohol dehydrogenase gene from Panax ginseng. BMB Rep., 2009, 42, 673-678.
Purev, M.; Kim, Y.J.; Kim, M.K.; Pulla, R.K.; Yang, D.C. Isolation of a novel catalase (Cat1) gene from Panax ginseng and analysis of the response of thisgene to various stresses. Plant Physiol. Biochem., 2010, 48(6), 451-660.
Lee, J.H.; Kim, Y.J.; Jeong, D.Y.; Sathiyaraj, G.; Pulla, R.K.; Shim, J.S.; In, J.G.; Yang, D.C. Isolation and characterization of a glutamate decarboxylase (GAD) gene and their differential expression in response to abiotic stresses from Panax ginseng C. A. Meyer. Mol. Biol. Rep., 2009, 37(7), 3455-3463.
Parvin, S.; Kim, Y.J.; Pulla, R.K.; Sathiyamoorthy, S.; Miah, M.G.; Kim, Y.J.; Wasnik, N.G.; Yang, D.C. Identification and characterization of spermidine synthase gene from Panax ginseng. Mol. Biol. Rep., 2010, 37(2), 923-932.
Hwang, H.J.; Kim, E.H.; Cho, Y.D. Isolation and properties of arginase from a shade plant, ginseng (Panax ginseng C.A. Meyer) roots. Phytochemistry, 2001, 58, 1015-1024.
Ber, E.; Muszyńska, G.; Cechová, D. The lack of free SH groups in rat liver arginase. Bull. Acad. Pol. Sci. Biol., 1979, 26(10), 665-668.
Muszyńska, G.; Severina, L.O.; Lobyreva, L.W. Characteristics of arginases from plant, ureotelic and uricotelic organisms. Acta Biochim. Pol., 1972, 19(2), 109-116.
Kang, J.H.; Cho, Y.D. Purification and properties of arginase from soybean, glycine max, axes. Plant Physiol., 1990, 93(3), 1230-1234.
Desai, H.V. Purification & properties of arginase from Arachis hypogea L. seedlings. Indian J. Biochem. Biophys., 1983, 20(4), 236-237.
Brusdeilins, M.; Hapke, C.; Huberts, H.H.; Schumacher, K. Identification of the apparently lymphocyte-specific human Liver-derived Inhibitory Protein (LIP) as cytoplasmic liver L-arginase. J. Immunol., 1983, 131(5), 2427-2431.
Reddy, S.R.; Campbell, J.W. A low molecular weight arginase in the earthworm. Biochim. Biophys. Acta, 1968, 159(3), 557-560.
Boeker, E.A. Arginine decarboxylase from Escherichia coli B: Mechanism of dissociation from the decamer to the dimer. Biochemistry, 1978, 17(2), 258-263.
Fujimoto, M.; Kameji, T.; Kanaya, A.; Hagihira, H. Purification and properties of rat small intestinal arginase. Biochemistry, 1976, 79(2), 441-449.
Kanyo, Z.F.; Scolnick, L.R.; Ash, D.E.; Christianson, D.W. Structure of a unique binuclear manganese cluster in arginase. Nature, 1996, 383(6600), 554-557.
Gui, Y.; Ryu, G.H. Effects of extrusion cooking on physicochemical properties of white and red ginseng (powder). J. Ginseng Res., 2014, 38(2), 146-153.
Hwang, C.R.; Lee, S.H.; Jang, G.Y.; Hwang, I.G.; Kim, H.Y.; Woo, K.S.; Lee, J.; Jeong, H.S. Changes in ginsenoside compositions and antioxidant activities of hydroponic-cultured ginseng roots and leaves with heating temperature. J. Ginseng Res., 2014, 38(3), 180-186.
Kim, W.Y.; Kim, J.M.; Han, S.B.; Lee, S.K.; Kim, N.D.; Park, M.K.; Kim, C.K.; Park, J.H. Steaming of ginseng at high temperature enhances biological activity. J. Nat. Prod., 2000, 63(12), 1702-1704.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Page: [231 - 239]
Pages: 9
DOI: 10.2174/1389203719666180612083650
Price: $58

Article Metrics

PDF: 19