Chinese Medicine Protein and Peptide in Gene and Cell Therapy

Author(s): Yinlu Feng , Zifei Yin , Daniel Zhang , Arun Srivastava* , Chen Ling* .

Journal Name: Current Protein & Peptide Science

Volume 20 , Issue 3 , 2019

Become EABM
Become Reviewer

Abstract:

The success of gene and cell therapy in clinic during the past two decades as well as our expanding ability to manipulate these biomaterials are leading to new therapeutic options for a wide range of inherited and acquired diseases. Combining conventional therapies with this emerging field is a promising strategy to treat those previously-thought untreatable diseases. Traditional Chinese medicine (TCM) has evolved for thousands of years in China and still plays an important role in human health. As part of the active ingredients of TCM, proteins and peptides have attracted long-term enthusiasm of researchers. More recently, they have been utilized in gene and cell therapy, resulting in promising novel strategies to treat both cancer and non-cancer diseases. This manuscript presents a critical review on this field, accompanied with perspectives on the challenges and new directions for future research in this emerging frontier.

Keywords: Proteins and peptides, traditional Chinese medicine, gene and cell therapy, China, novel strategies.

[1]
Buckland, K.F.; Bobby Gaspar, H. Gene and cell therapy for children--new medicines, new challenges? Adv. Drug Deliv. Rev., 2014, 73, 162-169.
[2]
Moss, J.A. Gene therapy review. Radiol. Technol., 2014, 86(2), 155-180. quiz 181-184
[3]
Bersenev, A.; Levine, B.L. Convergence of gene and cell therapy. Regen. Med., 2012, 7(6)(Suppl.), 50-56.
[4]
Lee, B.; Davidson, B.L. Gene therapy grows into young adulthood: Special review issue. Hum. Mol. Genet., 2011, 20(R1), R1.
[5]
Watts, K.L.; Adair, J.; Kiem, H.P. Hematopoietic stem cell expansion and gene therapy. Cytotherapy, 2011, 13(10), 1164-1171.
[6]
Abou-El-Enein, M.; Bauer, G.; Reinke, P. Gene therapy: A possible future standard for HIV care. Trends Biotechnol., 2015, 33(7), 374-376.
[7]
Chen, G.X.; Zhang, S.; He, X.H.; Liu, S.Y.; Ma, C.; Zou, X.P. Clinical utility of recombinant adenoviral human p53 gene therapy: Current perspectives. OncoTargets Ther., 2014, 7, 1901-1909.
[8]
Westphal, M.; Yla-Herttuala, S.; Martin, J.; Warnke, P.; Menei, P.; Eckland, D.; Kinley, J.; Kay, R.; Ram, Z. Adenovirus-mediated gene therapy with sitimagene ceradenovec followed by intravenous ganciclovir for patients with operable high-grade glioma (ASPECT): A randomised, open-label, phase 3 trial. Lancet Oncol., 2013, 14(9), 823-833.
[9]
Ferreira, V.; Twisk, J.; Kwikkers, K.; Aronica, E.; Brisson, D.; Methot, J.; Petry, H.; Gaudet, D. Immune responses to intramuscular administration of alipogene tiparvovec (AAV1-LPL(S447X)) in a phase II clinical trial of lipoprotein lipase deficiency gene therapy. Hum. Gene Ther., 2014, 25(3), 180-188.
[10]
Palfi, S.; Gurruchaga, J.M.; Ralph, G.S.; Lepetit, H.; Lavisse, S.; Buttery, P.C.; Watts, C.; Miskin, J.; Kelleher, M.; Deeley, S.; Iwamuro, H.; Lefaucheur, J.P.; Thiriez, C.; Fenelon, G.; Lucas, C.; Brugieres, P.; Gabriel, I.; Abhay, K.; Drouot, X.; Tani, N.; Kas, A.; Ghaleh, B.; Le Corvoisier, P.; Dolphin, P.; Breen, D.P.; Mason, S.; Guzman, N.V.; Mazarakis, N.D.; Radcliffe, P.A.; Harrop, R.; Kingsman, S.M.; Rascol, O.; Naylor, S.; Barker, R.A.; Hantraye, P.; Remy, P.; Cesaro, P.; Mitrophanous, K.A. Long-term safety and tolerability of ProSavin, a lentiviral vector-based gene therapy for Parkinson’s disease: A dose escalation, open-label, phase 1/2 trial. Lancet, 2014, 383(9923), 1138-1146.
[11]
Chambers, J.D.; Neumann, P.J. Listening to Provenge--what a costly cancer treatment says about future Medicare policy. N. Engl. J. Med., 2011, 364(18), 1687-1689.
[12]
Falchook, G. Nivolumab: Another weapon in the growing immunotherapy arsenal. Lancet Oncol., 2015, 16(4), 350-351.
[13]
Macpherson, J.L.; Rasko, J.E. Clinical potential of gene therapy: Towards meeting the demand. Intern. Med. J., 2014, 44(3), 224-233.
[14]
Ling, C.Q.; Wang, L.N.; Wang, Y.; Zhang, Y.H.; Yin, Z.F.; Wang, M.; Ling, C. The roles of traditional Chinese medicine in gene therapy. J. Integr. Med., 2014, 12(2), 67-75.
[15]
Liu, P.; Guo, Y.; Qian, X.; Tang, S.; Li, Z.; Chen, L. China’s distinctive engagement in global health. Lancet, 2014, 384(9945), 793-804.
[16]
Li, H.M.; Ye, Z.H.; Zhang, J.; Gao, X.; Chen, Y.M.; Yao, X.; Gu, J.X.; Zhan, L.; Ji, Y.; Xu, J.L.; Zeng, Y.H.; Yang, F.; Xiao, L.; Sheng, G.G.; Xin, W.; Long, Q.; Zhu, Q.J.; Shi, Z.H.; Ruan, L.G.; Yang, J.Y.; Li, C.C.; Wu, H.B.; Chen, S.D.; Luo, X.L. Clinical trial with traditional Chinese medicine intervention “tonifying the kidney to promote liver regeneration and repair by affecting stem cells and their microenvironment” for chronic hepatitis B-associated liver failure. World J. Gastroenterol., 2014, 20(48), 18458-18465.
[17]
Deng, X.; Jiang, M.; Zhao, X.; Liang, J. Efficacy and safety of traditional Chinese medicine for the treatment of acquired immunodeficiency syndrome: A systematic review. J. Tradit. Chin. Med., 2014, 34(1), 1-9.
[18]
Li, M.; Qiao, C.; Qin, L.; Zhang, J.; Ling, C. Application of traditional Chinese medicine injection in treatment of primary liver cancer: A review. J. Tradit. Chin. Med., 2012, 32(3), 299-307.
[19]
Zhou, Z.Y.; Xu, L.; Li, H.G.; Tian, J.H.; Jiao, L.J.; You, S.F.; Han, Z.F.; Jiang, Y.; Guo, H.R.; Liu, H. Chemotherapy in conjunction with traditional Chinese medicine for survival of elderly patients with advanced non-small-cell lung cancer: Protocol for a randomized double-blind controlled trial. J. Integr. Med., 2014, 12(3), 175-181.
[20]
Guo, J.; Chen, H.; Song, J.; Wang, J.; Zhao, L.; Tong, X. Syndrome differentiation of diabetes by the traditional Chinese medicine according to evidence-based medicine and expert consensus opinion. Evid. Based Complement. Alternat. Med., 2014, 2014, 492193.
[21]
Zhang, W.; Gao, K.; Liu, J.; Zhao, H.; Wang, J.; Li, Y.; Murtaza, G.; Chen, J.; Wang, W. A review of the pharmacological mechanism of traditional Chinese medicine in the intervention of coronary heart disease and stroke. Afr. J. Tradit. Complement. Altern. Med., 2013, 10(6), 532-537.
[22]
Chen, S.L.; Jiang, J.G. Application of gene differential expression technology in the mechanism studies of nature product-derived drugs. Expert Opin. Biol. Ther., 2012, 12(7), 823-839.
[23]
Lu, Q.; Jiang, J.G. Chemical metabolism of medicinal compounds from natural botanicals. Curr. Med. Chem., 2012, 19(11), 1682-1705.
[24]
Gao, J.; Inagaki, Y.; Li, X.; Kokudo, N.; Tang, W. Research progress on natural products from traditional Chinese medicine in treatment of Alzheimer’s disease. Drug Discov. Ther., 2013, 7(2), 46-57.
[25]
Xia, J.; Chen, J.; Zhang, Z.; Song, P.; Tang, W.; Kokudo, N. A map describing the association between effective components of traditional Chinese medicine and signaling pathways in cancer cells in vitro and in vivo. Drug Discov. Ther., 2014, 8(4), 139-153.
[26]
Zhang, T.T.; Jiang, J.G. Active ingredients of traditional Chinese medicine in the treatment of diabetes and diabetic complications. Expert Opin. Investig. Drugs, 2012, 21(11), 1625-1642.
[27]
Wong, K.L.; Wong, R.N.; Zhang, L.; Liu, W.K.; Ng, T.B.; Shaw, P.C.; Kwok, P.C.; Lai, Y.M.; Zhang, Z.J.; Zhang, Y.; Tong, Y.; Cheung, H.P.; Lu, J.; Sze, S.C. Bioactive proteins and peptides isolated from Chinese medicines with pharmaceutical potential. Chin. Med., 2014, 9, 19.
[28]
[No authors listed] Studies on the mechanisms of abortion induction by Trichosanthin Sci. Sin, 1976, 19(6), 811-830.
[29]
Ng, T.B.; Chan, W.Y.; Yeung, H.W. Proteins with abortifacient, ribosome inactivating, immunomodulatory, antitumor and anti-AIDS activities from Cucurbitaceae plants. Gen. Pharmacol., 1992, 23(4), 579-590.
[30]
Mondal, A. A novel extraction of trichosanthin from Trichosanthes kirilowii roots using three-phase partitioning and its in vitro anticancer activity. Pharm. Biol., 2014, 52(6), 677-680.
[31]
Collins, E.J.; Robertus, J.D.; LoPresti, M.; Stone, K.L.; Williams, K.R.; Wu, P.; Hwang, K.; Piatak, M. Primary amino acid sequence of alpha-trichosanthin and molecular models for abrin A-chain and alpha-trichosanthin. J. Biol. Chem., 1990, 265(15), 8665-8669.
[32]
Fang, E.F.; Ng, T.B.; Shaw, P.C.; Wong, R.N. Recent progress in medicinal investigations on trichosanthin and other ribosome inactivating proteins from the plant genus Trichosanthes. Curr. Med. Chem., 2011, 18(28), 4410-4417.
[33]
Schad, F.; Atxner, J.; Buchwald, D.; Happe, A.; Popp, S.; Kroz, M.; Matthes, H. Intratumoral mistletoe (Viscum album L) therapy in patients with unresectable pancreas carcinoma: A retrospective analysis. Integr. Cancer Ther., 2013, 13(4), 332-340.
[34]
Cai, X.; Guo, W. The application of Mistletoe in common cardiovascular diseases. Yunnan J. Trad. Chin. Med. Mater. Medica, 2011, 32(12), 69-70.
[35]
Yau, T.; Dan, X.; Ng, C.C.; Ng, T.B. Lectins with potential for anti-cancer therapy. Molecules, 2015, 20(3), 3791-3810.
[36]
Mockel, B.; Schwarz, T.; Zinke, H.; Eck, J.; Langer, M.; Lentzen, H. Effects of mistletoe lectin I on human blood cell lines and peripheral blood cells. Cytotoxicity, apoptosis and induction of cytokines. Arzneimittelforschung, 1997, 47(10), 1145-1151.
[37]
Thies, A.; Nugel, D.; Pfuller, U.; Moll, I.; Schumacher, U. Influence of mistletoe lectins and cytokines induced by them on cell proliferation of human melanoma cells in vitro. Toxicology, 2005, 207(1), 105-116.
[38]
Kong, J.; Du, X.; Fan, C.; Zhang, J.; Liu, S. Gene cloning and sequencing of a chain of a novel mistletoe protein. J. Med. Mol. Biol, 2005, 2, 403-408.
[39]
Li, L.N.; Zhang, H.D.; Zhi, R.; Yuan, S.J. Down-regulation of some miRNAs by degrading their precursors contributes to anti-cancer effect of mistletoe lectin-I. Br. J. Pharmacol., 2011, 162(2), 349-364.
[40]
Gong, F.; Ma, Y.; Ma, A.; Yu, Q.; Zhang, J.; Nie, H.; Chen, X.; Shen, B.; Li, N.; Zhang, D. A lectin from Chinese mistletoe increases gammadelta T cell-mediated cytotoxicity through induction of caspase-dependent apoptosis. Acta Biochim. Biophys. Sin. (Shanghai), 2007, 39(6), 445-452.
[41]
Xiong, C.; Long, L. The clinical application of Tufuling. Chin. J. Ethnomed. Ethnopharm, 2012, 21(19), 30-31.
[42]
Liu, Y.W.; Sun, W.F.; Zhang, X.X.; Li, J.; Zhang, H.H. Compound Tufuling Granules ([characters: see text]) regulate glucose transporter 9 expression in kidney to influence serum uric acid level in hyperuricemia mice. Chin. J. Integr. Med., 2015, 21(11), 823-829.
[43]
Ng, T.B.; Yu, Y.L. Isolation of a novel heterodimeric agglutinin from rhizomes of Smilax glabra, the Chinese medicinal material tufuling. Int. J. Biochem. Cell Biol., 2001, 33(3), 269-277.
[44]
Chu, K.T.; Ng, T.B. Smilaxin, a novel protein with immunostimulatory, antiproliferative, and HIV-1-reverse transcriptase inhibitory activities from fresh Smilax glabra rhizomes. Biochem. Biophys. Res. Commun., 2006, 340(1), 118-124.
[45]
Ooi, L.S.; Wong, E.Y.; Chiu, L.C.; Sun, S.S.; Ooi, V.E. Antiviral and anti-proliferative glycoproteins from the rhizome of Smilax glabra Roxb (Liliaceae). Am. J. Chin. Med., 2008, 36(1), 185-195.
[46]
Vega-Villa, K.R.; Remsberg, C.M.; Ohgami, Y.; Yanez, J.A.; Takemoto, J.K.; Andrews, P.K.; Davies, N.M. Stereospecific high-performance liquid chromatography of taxifolin, applications in pharmacokinetics, and determination in tu fu ling (Rhizoma smilacis glabrae) and apple (Malus x domestica). Biomed. Chromatogr., 2009, 23(6), 638-646.
[47]
Orsolic, N. Bee venom in cancer therapy. Cancer Metastasis Rev., 2012, 31(1-2), 173-194.
[48]
Tuo, H.; Sun, J.; Chen, X. Recent clinical applications of Bee venom. J. Med. Thero. Prac, 2009, 22(10), 1190-1192.
[49]
Park, D.; Jung, J.W.; Lee, M.O.; Lee, S.Y.; Kim, B.; Jin, H.J.; Kim, J.; Ahn, Y.J.; Lee, K.W.; Song, Y.S.; Hong, S.; Womack, J.E.; Kwon, H.W. Functional characterization of naturally occurring melittin peptide isoforms in two honey bee species, Apis mellifera and Apis cerana. Peptides, 2014, 53, 185-193.
[50]
Raghuraman, H.; Chattopadhyay, A. Melittin: A membrane-active peptide with diverse functions. Biosci. Rep., 2007, 27(4-5), 189-223.
[51]
Leuschner, C.; Hansel, W. Membrane disrupting lytic peptides for cancer treatments. Curr. Pharm. Des., 2004, 10(19), 2299-2310.
[52]
Damianoglou, A.; Rodger, A.; Pridmore, C.; Dafforn, T.R.; Mosely, J.A.; Sanderson, J.M.; Hicks, M.R. The synergistic action of melittin and phospholipase A2 with lipid membranes: Development of linear dichroism for membrane-insertion kinetics. Protein Pept. Lett., 2010, 17(11), 1351-1362.
[53]
Gajski, G.; Garaj-Vrhovac, V. Melittin: A lytic peptide with anticancer properties. Environ. Toxicol. Pharmacol., 2013, 36(2), 697-705.
[54]
Moreno, M.; Giralt, E. Three valuable peptides from bee and wasp venoms for therapeutic and biotechnological use: Melittin, apamin and mastoparan. Toxins (Basel), 2015, 7(4), 1126-1150.
[55]
Zhang, H.; Wang, X.; Gao, X. Recent clinical and experimental research of Hirudo spp. Chin. J. Infor. TCM, 2009, 16(S1), 98-100.
[56]
Barzegar, A.; Azizi, A.; Faridi, P.; Mohagheghzadeh, A. Leech therapy in Iranian traditional medicine. Forsch. Komplement. Med., 2015, 22(1), 50-53.
[57]
Houschyar, K.S.; Momeni, A.; Maan, Z.N.; Pyles, M.N.; Jew, O.S.; Strathe, M.; Michalsen, A. Medical leech therapy in plastic reconstructive surgery. Wien. Med. Wochenschr., 2015, 165(19-20), 419-425.
[58]
Markwardt, F. Hirudin as alternative anticoagulant--a historical review. Semin. Thromb. Hemost., 2002, 28(5), 405-414.
[59]
Rydel, T.J.; Tulinsky, A.; Bode, W.; Huber, R. Refined structure of the hirudin-thrombin complex. J. Mol. Biol., 1991, 221(2), 583-601.
[60]
Lu, Q.; Lv, M.; Xu, E.; Shao, F.; Feng, Y.; Yang, J.; Shi, L. Recombinant hirudin suppresses the viability, adhesion, migration and invasion of Hep-2 human laryngeal cancer cells. Oncol. Rep., 2015, 33(3), 1358-1364.
[61]
Folkers, P.J.; Clore, G.M.; Driscoll, P.C.; Dodt, J.; Kohler, S.; Gronenborn, A.M. Solution structure of recombinant hirudin and the Lys-47----Glu mutant: A nuclear magnetic resonance and hybrid distance geometry-dynamical simulated annealing study. Biochemistry, 1989, 28(6), 2601-2617.
[62]
Long, Y.; Liu, J.Y.; Liu, L.; Wang, Z.R. Construction of phage-displayed library by DNA shuffling and the screening of potent hirudin variants. Chin. J. Cell Mol. Immunol, 2006, 22(2), 167-170.
[63]
Lehman, E.D.; Joyce, J.G.; Bailey, F.J.; Markus, H.Z.; Schultz, L.D.; Dunwiddie, C.T.; Jacobson, M.A.; Miller, W.J. Expression, purification and characterization of multigram amounts of a recombinant hybrid HV1-HV2 hirudin variant expressed in Saccharomyces cerevisiae. Protein Expr. Purif., 1993, 4(3), 247-255.
[64]
Lu, W.F.; Mo, W.; Liu, Z.; Fu, W.G. Guo da, Q.; Wang, Y.Q.; Song, H.Y. The antithrombotic effect of a novel hirudin derivative after reconstruction of carotid artery in rabbits. Thromb. Res., 2010, 126(4), e339-e343.
[65]
Yu, A.P.; Shi, B.X.; Dong, C.N.; Jiang, Z.H.; Wu, Z.Z. Construction and expression of a fusion protein made of tissue-type plasminogen activator and hirudin in Pichia pastoris. Chin. J. Biotechnol., 2005, 21(4), 553-557.
[66]
Han, Y.; Guo, J.; Zheng, Y.; Zang, H.; Su, X.; Wang, Y.; Chen, S.; Jiang, T.; Yang, P.; Chen, J.; Jiang, D.; Jing, Q.; Liang, Z.; Liu, H.; Zhao, X.; Li, J.; Li, Y.; Xu, B.; Stone, G.W. Bivalirudin vs heparin with or without tirofiban during primary percutaneous coronary intervention in acute myocardial infarction: The BRIGHT randomized clinical trial. JAMA, 2015, 313(13), 1336-1346.
[67]
Yuan, Y. The identification and clinical applicaiton of Quanxie. Mod. Med. Hea, 2012, 28(8), 1252.
[68]
Zhang, H.; He, F.; Wang, Q. The machanism for anti-cancer effect of Quanxie and its clinical application. Chin. Pharm, 2013, 22(1), 95-96.
[69]
Zhou, X.H.; Yang, D.; Zhang, J.H.; Liu, C.M.; Lei, K.J. Purification and N-terminal partial sequence of anti-epilepsy peptide from venom of the scorpion Buthus martensii Karsch. Biochem. J., 1989, 257(2), 509-517.
[70]
Wang, C.G.; He, X.L.; Shao, F.; Liu, W.; Ling, M.H.; Wang, D.C.; Chi, C.W. Molecular characterization of an anti-epilepsy peptide from the scorpion Buthus martensi Karsch. Eur. J. Biochem., 2001, 268(8), 2480-2485.
[71]
Wang, Z.; Wang, W.; Shao, Z.; Gao, B.; Li, J.; Ma, J.; Che, H.; Zhang, W. Eukaryotic expression and purification of anti-epilepsy peptide of Buthus martensii Karsch and its protein interactions. Mol. Cell. Biochem., 2009, 330(1-2), 97-104.
[72]
Liu, Y.F.; Ma, R.L.; Wang, S.L.; Duan, Z.Y.; Zhang, J.H.; Wu, L.J.; Wu, C.F. Expression of an antitumor-analgesic peptide from the venom of Chinese scorpion Buthus martensii karsch in Escherichia coli. Protein Expr. Purif., 2003, 27(2), 253-258.
[73]
DeBin, J.A.; Maggio, J.E.; Strichartz, G.R. Purification and characterization of chlorotoxin, a chloride channel ligand from the venom of the scorpion. Am. J. Physiol., 1993, 264(2 Pt 1), C361-C369.
[74]
Zeng, X.C.; Li, W.X.; Zhu, S.Y.; Peng, F.; Zhu, Z.H.; Wu, K.L.; Yiang, F.H. Cloning and characterization of a cDNA sequence encoding the precursor of a chlorotoxin-like peptide from the Chinese scorpion Buthus martensii Karsch. Toxicon, 2000, 38(8), 1009-1014.
[75]
Zang, M.; Liu, X.; Chen, L.; Xiao, Q.; Yuan, L.; Yang, J. Determination of BmKCT-13, a chlorotoxin-like peptide, in rat plasma by LC-MS/MS: Application to a preclinical pharmacokinetic study. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2014, 947-948, 125-131.
[76]
Dardevet, L.; Rani, D.; Aziz, T.A.; Bazin, I.; Sabatier, J.M.; Fadl, M.; Brambilla, E.; De Waard, M. Chlorotoxin: A helpful natural scorpion peptide to diagnose glioma and fight tumor invasion. Toxins (Basel), 2015, 7(4), 1079-1101.
[77]
Cheng, S.; Sliva, D. Ganoderma lucidum for cancer treatment: We are close but still not there. Integr. Cancer Ther., 2015, 14(3), 249-257.
[78]
Batra, P.; Sharma, A.K.; Khajuria, R. Probing Lingzhi or Reishi medicinal mushroom Ganoderma lucidum (higher Basidiomycetes): A bitter mushroom with amazing health benefits. Int. J. Med. Mushrooms, 2013, 15(2), 127-143.
[79]
Sanodiya, B.S.; Thakur, G.S.; Baghel, R.K.; Prasad, G.B.; Bisen, P.S. Ganoderma lucidum: A potent pharmacological macrofungus. Curr. Pharm. Biotechnol., 2009, 10(8), 717-742.
[80]
Paterson, R.R. Ganoderma - a therapeutic fungal biofactory. Phytochemistry, 2006, 67(18), 1985-2001.
[81]
Tanaka, S.; Ko, K.; Kino, K.; Tsuchiya, K.; Yamashita, A.; Murasugi, A.; Sakuma, S.; Tsunoo, H. Complete amino acid sequence of an immunomodulatory protein, ling zhi-8 (LZ-8). An immunomodulator from a fungus, Ganoderma lucidium, having similarity to immunoglobulin variable regions. J. Biol. Chem., 1989, 264(28), 16372-16377.
[82]
Kino, K.; Yamashita, A.; Yamaoka, K.; Watanabe, J.; Tanaka, S.; Ko, K.; Shimizu, K.; Tsunoo, H. Isolation and characterization of a new immunomodulatory protein, ling zhi-8 (LZ-8), from Ganoderma lucidium. J. Biol. Chem., 1989, 264(1), 472-478.
[83]
Murasugi, A.; Tanaka, S.; Komiyama, N.; Iwata, N.; Kino, K.; Tsunoo, H.; Sakuma, S. Molecular cloning of a cDNA and a gene encoding an immunomodulatory protein, Ling Zhi-8, from a fungus, Ganoderma lucidum. J. Biol. Chem., 1991, 266(4), 2486-2493.
[84]
Xue, Q.; Ding, Y.; Shang, C.; Jiang, C.; Zhao, M. Functional expression of LZ-8, a fungal immunomodulatory protein from Ganoderma lucidium in Pichia pastoris. J. Gen. Appl. Microbiol., 2008, 54(6), 393-398.
[85]
Yeh, C.M.; Yeh, C.K.; Hsu, X.Y.; Luo, Q.M.; Lin, M.Y. Extracellular expression of a functional recombinant Ganoderma lucidium immunomodulatory protein by Bacillus subtilis and Lactococcus lactis. Appl. Environ. Microbiol., 2008, 74(4), 1039-1049.
[86]
Legendre, J.Y.; Szoka, F.C., Jr Cyclic amphipathic peptide-DNA complexes mediate high-efficiency transfection of adherent mammalian cells. Proc. Natl. Acad. Sci. USA, 1993, 90(3), 893-897.
[87]
Hou, K.K.; Pan, H.; Schlesinger, P.H.; Wickline, S.A. A role for peptides in overcoming endosomal entrapment in siRNA delivery - A focus on melittin. Biotechnol. Adv., 2015, 33(6 Pt 1), 931-940.
[88]
Legendre, J.Y.; Trzeciak, A.; Bohrmann, B.; Deuschle, U.; Kitas, E.; Supersaxo, A. Dioleoylmelittin as a novel serum-insensitive reagent for efficient transfection of mammalian cells. Bioconjug. Chem., 1997, 8(1), 57-63.
[89]
Ogris, M.; Carlisle, R.C.; Bettinger, T.; Seymour, L.W. Melittin enables efficient vesicular escape and enhanced nuclear access of nonviral gene delivery vectors. J. Biol. Chem., 2001, 276(50), 47550-47555.
[90]
Chen, C.P.; Kim, J.S.; Steenblock, E.; Liu, D.; Rice, K.G. Gene transfer with poly-melittin peptides. Bioconjug. Chem., 2006, 17(4), 1057-1062.
[91]
Baumhover, N.J.; Anderson, K.; Fernandez, C.A.; Rice, K.G. Synthesis and in vitro testing of new potent polyacridine-melittin gene delivery peptides. Bioconjug. Chem., 2010, 21(1), 74-83.
[92]
Zhang, W.; Song, J.; Liang, R.; Zheng, X.; Chen, J.; Li, G.; Zhang, B.; Yan, X.; Wang, R. Stearylated antimicrobial peptide melittin and its retro isomer for efficient gene transfection. Bioconjug. Chem., 2013, 24(11), 1805-1812.
[93]
Boeckle, S.; Fahrmeir, J.; Roedl, W.; Ogris, M.; Wagner, E. Melittin analogs with high lytic activity at endosomal pH enhance transfection with purified targeted PEI polyplexes. J. Control. Release, 2006, 112(2), 240-248.
[94]
Meyer, M.; Dohmen, C.; Philipp, A.; Kiener, D.; Maiwald, G.; Scheu, C.; Ogris, M.; Wagner, E. Synthesis and biological evaluation of a bioresponsive and endosomolytic siRNA-polymer conjugate. Mol. Pharm., 2009, 6(3), 752-762.
[95]
Rozema, D.B.; Ekena, K.; Lewis, D.L.; Loomis, A.G.; Wolff, J.A. Endosomolysis by Masking of a Membrane-Active Agent (EMMA) for cytoplasmic release of macromolecules. Bioconjug. Chem., 2003, 14(1), 51-57.
[96]
Hou, K.K.; Pan, H.; Lanza, G.M.; Wickline, S.A. Melittin derived peptides for nanoparticle based siRNA transfection. Biomaterials, 2013, 34(12), 3110-3119.
[97]
Hou, K.K.; Pan, H.; Ratner, L.; Schlesinger, P.H.; Wickline, S.A. Mechanisms of nanoparticle-mediated siRNA transfection by melittin-derived peptides. ACS Nano, 2013, 7(10), 8605-8615.
[98]
Salomone, F.; Cardarelli, F.; Signore, G.; Boccardi, C.; Beltram, F. In vitro efficient transfection by CM(1)(8)-Tat(1)(1) hybrid peptide: A new tool for gene-delivery applications. PLoS One, 2013, 8(7), e70108.
[99]
Wooddell, C.I.; Rozema, D.B.; Hossbach, M.; John, M.; Hamilton, H.L.; Chu, Q.; Hegge, J.O.; Klein, J.J.; Wakefield, D.H.; Oropeza, C.E.; Deckert, J.; Roehl, I.; Jahn-Hofmann, K.; Hadwiger, P.; Vornlocher, H.P.; McLachlan, A.; Lewis, D.L. Hepatocyte-targeted RNAi therapeutics for the treatment of chronic hepatitis B virus infection. Mol. Ther., 2013, 21(5), 973-985.
[100]
Sebestyen, M.G.; Wong, S.C.; Trubetskoy, V.; Lewis, D.L.; Wooddell, C.I. Targeted in vivo delivery of siRNA and an endosome-releasing agent to hepatocytes. Methods Mol. Biol., 2015, 1218, 163-186.
[101]
Soroceanu, L.; Gillespie, Y.; Khazaeli, M.B.; Sontheimer, H. Use of chlorotoxin for targeting of primary brain tumors. Cancer Res., 1998, 58(21), 4871-4879.
[102]
Lyons, S.A.; O’Neal, J.; Sontheimer, H. Chlorotoxin, a scorpion-derived peptide, specifically binds to gliomas and tumors of neuroectodermal origin. Glia, 2002, 39(2), 162-173.
[103]
Veiseh, O.; Kievit, F.M.; Gunn, J.W.; Ratner, B.D.; Zhang, M. A ligand-mediated nanovector for targeted gene delivery and transfection in cancer cells. Biomaterials, 2009, 30(4), 649-657.
[104]
Kievit, F.M.; Veiseh, O.; Fang, C.; Bhattarai, N.; Lee, D.; Ellenbogen, R.G.; Zhang, M. Chlorotoxin labeled magnetic nanovectors for targeted gene delivery to glioma. ACS Nano, 2010, 4(8), 4587-4594.
[105]
Veiseh, O.; Kievit, F.M.; Fang, C.; Mu, N.; Jana, S.; Leung, M.C.; Mok, H.; Ellenbogen, R.G.; Park, J.O.; Zhang, M. Chlorotoxin bound magnetic nanovector tailored for cancer cell targeting, imaging, and siRNA delivery. Biomaterials, 2010, 31(31), 8032-8042.
[106]
Mok, H.; Veiseh, O.; Fang, C.; Kievit, F.M.; Wang, F.Y.; Park, J.O.; Zhang, M. pH-Sensitive siRNA nanovector for targeted gene silencing and cytotoxic effect in cancer cells. Mol. Pharm., 2010, 7(6), 1930-1939.
[107]
Huang, R.; Ke, W.; Han, L.; Li, J.; Liu, S.; Jiang, C. Targeted delivery of chlorotoxin-modified DNA-loaded nanoparticles to glioma via intravenous administration. Biomaterials, 2011, 32(9), 2399-2406.
[108]
Sha, O.; Niu, J.; Ng, T.B.; Cho, E.Y.; Fu, X.; Jiang, W. Anti-tumor action of trichosanthin, a type 1 ribosome-inactivating protein, employed in traditional Chinese medicine: A mini review. Cancer Chemother. Pharmacol., 2013, 71(6), 1387-1393.
[109]
Shaw, P.C.; Yung, M.H.; Zhu, R.H.; Ho, W.K.; Ng, T.B.; Yeung, H.W. Cloning of trichosanthin cDNA and its expression in Escherichia coli. Gene, 1991, 97(2), 267-272.
[110]
Zhu, R.H.; Ng, T.B.; Yeung, H.W.; Shaw, P.C. High level synthesis of biologically active recombinant trichosanthin in Escherichia coli. Int. J. Pept. Protein Res., 1992, 39(1), 77-81.
[111]
Peng, P.; Huang, L.; Wang, Y.; You, C.; Cao, W.; Song, H.; Tan, H.; Wu, Y. Effect of recombinant trichosanthin on proliferation of human cevical cancer Caski cells. Chin. J. Chin. Mater. Med, 2011, 36(18), 2539-2542.
[112]
Peng, P.; Huang, L.; Han, Y.; You, C.; Fang, Z. Efect of high expression of recombinant trichosanthin on p73 methylation and mechanism research in Caski cell. Chin. Pharmacol. Bull, 2013, 29(9), 1290-1293.
[113]
Zhang, Y.H.; Wang, Y.; Yusufali, A.H.; Ashby, F.; Zhang, D.; Yin, Z.F.; Aslanidi, G.V.; Srivastava, A.; Ling, C.Q.; Ling, C. Cytotoxic genes from traditional Chinese medicine inhibit tumor growth both in vitro and in vivo. J. Integr. Med., 2014, 12(6), 483-494.
[114]
Abelev, G.I. Alpha-fetoprotein in ontogenesis and its association with malignant tumors. Adv. Cancer Res., 1971, 14, 295-358.
[115]
Cheng, B.; Ling, C.; Dai, Y.; Lu, Y.; Glushakova, L.G.; Gee, S.W.; McGoogan, K.E.; Aslanidi, G.V.; Park, M.; Stacpoole, P.W.; Siemann, D.; Liu, C.; Srivastava, A. Development of optimized AAV3 serotype vectors: Mechanism of high-efficiency transduction of human liver cancer cells. Gene Ther., 2012, 19(4), 375-384.
[116]
Ling, C.; Lu, Y.; Cheng, B.; McGoogan, K.E.; Gee, S.W.; Ma, W.; Li, B.; Aslanidi, G.V.; Srivastava, A. High-efficiency transduction of liver cancer cells by recombinant adeno-associated virus serotype 3 vectors. J. Vis. Exp., 2011, 49, pii 2538.
[117]
Ling, C.; Lu, Y.; Kalsi, J.K.; Jayandharan, G.R.; Li, B.; Ma, W.; Cheng, B.; Gee, S.W.; McGoogan, K.E.; Govindasamy, L.; Zhong, L.; Agbandje-McKenna, M.; Srivastava, A. Human hepatocyte growth factor receptor is a cellular coreceptor for adeno-associated virus serotype 3. Hum. Gene Ther., 2010, 21(12), 1741-1747.
[118]
Ling, C.; Wang, Y.; Zhang, Y.; Ejjigani, A.; Yin, Z.; Lu, Y.; Wang, L.; Wang, M.; Li, J.; Hu, Z.; Aslanidi, G.V.; Zhong, L.; Gao, G.; Srivastava, A. Selective in vivo targeting of human liver tumors by optimized AAV3 vectors in a murine xenograft model. Hum. Gene Ther., 2014, 25(12), 1023-1034.
[119]
Huang, Y.; Liu, F.P.; Zhou, T.H.; Zhu, J.M. Cloning and expression of a synthetic gene encoding magainin-melittin hybrid peptide in Escherichia coli and studies on its antibacterial activity. Chin. J. Biotechnol., 2001, 17(2), 207-210.
[120]
Lazarev, V.N.; Govorun, V.M.; Parfenova, T.M.; Akopian, T.A.; Lopukhin, Y. Effect of controlled expression of the melittin gene on infection caused by Mycoplasma hominis in cell culture. Dokl. Biochem. Biophys., 2001, 378, 186-187.
[121]
Lazarev, V.N.; Shkarupeta, M.M.; Kostryukova, E.S.; Levitskii, S.A.; Titova, G.A.; Akopian, T.A.; Govorun, V.M. Recombinant plasmid constructs expressing gene for antimicrobial peptide melittin for the therapy of mycoplasma and chlamydia infections. Bull. Exp. Biol. Med., 2007, 144(3), 452-456.
[122]
Li, B.; Ling, C.Q.; Zhang, C.; Gu, W.; Li, S.X.; Huang, X.Q.; Zhang, Y.N.; Yu, C.Q. The induced apoptosis of recombinant adenovirus carrying melittin gene for hepatocellular carcinoma cell. Chin. J. Hepatol, 2004, 12(8), 453-455.
[123]
Ling, C.Q.; Li, B.; Zhang, C.; Gu, W.; Li, S.X.; Huang, X.Q.; Zhang, Y.N. Anti-hepatocarcinoma effect of recombinant adenovirus carrying melittin gene. Chin. J. Hepatol, 2004, 12(12), 741-744.
[124]
Ling, C.Q.; Li, B.; Zhang, C.; Zhu, D.Z.; Huang, X.Q.; Gu, W.; Li, S.X. Inhibitory effect of recombinant adenovirus carrying melittin gene on hepatocellular carcinoma. Ann. Oncol., 2005, 16(1), 109-115.
[125]
Qu, L.; Jiang, M.; Li, Z.; Pu, F.; Gong, L.; Sun, L.; Gong, R.; Ji, G.; Si, J. Inhibitory effect of biosynthetic nanoscale peptide Melittin on hepatocellular carcinoma, driven by survivin promoter. J. Biomed. Nanotechnol., 2014, 10(4), 695-706.
[126]
Shao, G.; Qian, D.; Wang, H.; Yan, Z.; Hu, M.; Wang, T.; Wang, B. Construction of the plasmid coding for the expression of the EGFP--2(Arg, Ala) fusion protein and the anti-tumor effects exerted by the fusion protein in HeLa-60 cells. Oncol. Lett., 2015, 9(6), 2729-2735.
[127]
Jin, S.; Lin, X.; Guan, H.; Wu, J. Cell-specific expression of the analgesic-antitumor peptide coding sequence under the control of the human alpha-fetoprotein gene promoter and enhancer. Exp. Ther. Med., 2015, 9(3), 863-867.
[128]
Wu, C.T.; Lin, T.Y.; Hsu, H.Y.; Sheu, F.; Ho, C.M.; Chen, E.I. Ling Zhi-8 mediates p53-dependent growth arrest of lung cancer cells proliferation via the ribosomal protein S7-MDM2-p53 pathway. Carcinogenesis, 2011, 32(12), 1890-1896.
[129]
Liang, C.; Li, H.; Zhou, H.; Zhang, S.; Liu, Z.; Zhou, Q.; Sun, F. Recombinant Lz-8 from Ganoderma lucidum induces endoplasmic reticulum stress-mediated autophagic cell death in SGC-7901 human gastric cancer cells. Oncol. Rep., 2012, 27(4), 1079-1089.
[130]
Wu, J.R.; Hu, C.T.; You, R.I.; Ma, P.L.; Pan, S.M.; Lee, M.C.; Wu, W.S. Preclinical trials for prevention of tumor progression of hepatocellular carcinoma by LZ-8 targeting c-Met dependent and independent pathways. PLoS One, 2015, 10(1), e0114495.
[131]
Mairhofer, J.; Lara, A.R. Advances in host and vector development for the production of plasmid DNA vaccines. Methods Mol. Biol., 2014, 1139, 505-541.
[132]
Lin, C.C.; Yu, Y.L.; Shih, C.C.; Liu, K.J.; Ou, K.L.; Hong, L.Z.; Chen, J.D.; Chu, C.L. A novel adjuvant Ling Zhi-8 enhances the efficacy of DNA cancer vaccine by activating dendritic cells. Cancer Immunol. Immunother., 2011, 60(7), 1019-1027.
[133]
Rade, J.J.; Schulick, A.H.; Virmani, R.; Dichek, D.A. Local adenoviral-mediated expression of recombinant hirudin reduces neointima formation after arterial injury. Nat. Med., 1996, 2(3), 293-298.
[134]
Riesbeck, K.; Chen, D.; Kemball-Cook, G.; McVey, J.H.; George, A.J.; Tuddenham, E.G.; Dorling, A.; Lechler, R.I. Expression of hirudin fusion proteins in mammalian cells: A strategy for prevention of intravascular thrombosis. Circulation, 1998, 98(24), 2744-2752.
[135]
Shen, L.; Chen, S.P.; Qin, Y.W.; Cai, Z.L.; Yang, S.S. Effects of fusion gene encoding the hVEGF165 and fused hirudin on restenosis of injured carotid artery induced by angioplasty. Chin. Med. J., 2006, 86(38), 2698-2702.
[136]
Ou, Y.; Geng, P.; Liao, G.Y.; Zhou, Z.; Wu, W.T. Intracellular GSH and ROS levels may be related to galactose-mediated human lens epithelial cell apoptosis: role of recombinant hirudin variant III. Chem. Biol. Interact., 2009, 179(2-3), 103-109.
[137]
Ou, Y.; Liao, G.; Yuan, Z.; Wu, W. Protective effect of recombinant hirudin variant III against galactose-mediated rat lens epithelial cell damage. Curr. Eye Res., 2012, 37(3), 187-194.
[138]
Summerford, C.; Samulski, R.J. Membrane-associated heparan sulfate proteoglycan is a receptor for adeno-associated virus type 2 virions. J. Virol., 1998, 72(2), 1438-1445.
[139]
Hacker, U.T.; Gerner, F.M.; Buning, H.; Hutter, M.; Reichenspurner, H.; Stangl, M.; Hallek, M. Standard heparin, low molecular weight heparin, low molecular weight heparinoid, and recombinant hirudin differ in their ability to inhibit transduction by recombinant adeno-associated virus type 2 vectors. Gene Ther., 2001, 8(12), 966-968.
[140]
Rey-Rico, A.; Frisch, J.; Venkatesan, J.K.; Schmitt, G.; Madry, H.; Cucchiarini, M. Determination of effective rAAV-mediated gene transfer conditions to support chondrogenic differentiation processes in human primary bone marrow aspirates. Gene Ther., 2015, 22(1), 50-57.
[141]
Shaw, P.C.; Chan, W.L.; Yeung, H.W.; Ng, T.B. Minireview: Trichosanthin--a protein with multiple pharmacological properties. Life Sci., 1994, 55(4), 253-262.
[142]
Xu, M.F.; Jin, Y.C. Clinical trial of trichosanthin with or without dexamethasone in induction of abortion by four different routes of administration. Shengzhi Yu Biyun, 1991, 11(2), 47-50.
[143]
Leung, K.N.; Yeung, H.W.; Leung, S.O. The immunomodulatory and antitumor activities of trichosanthin-an abortifacient protein isolated from tian-hua-fen (Trichosanthes kirilowii). Asian Pac. J. Allergy Immunol., 1986, 4(2), 111-120.
[144]
Tao, J.X.; Chou, K.Y. The roles of monocytes and the interaction between monocyte and T cell in human immune suppression induced by trichosanthin. Acta Biologiae Experimentalis Sinica, 1993, 26(2), 127-131.
[145]
Chou, K.Y.; Chan, M.; Bias, W.B. Differential expression of the down-regulatory function of CD8 cells in trichosanthin-induced immunosuppression and its genetic control in humans. Eur. J. Immunogenet., 1996, 23(1), 29-40.
[146]
Li, N.L.; Zheng, Z.X.; Shen, B.H.; Chou, G.Y. Modulation of T-cell-mediated immune responses by trichosanthin via antigen processing and presentation. Acta Biologiae Experimentalis Sinica, 1997, 30(2), 165-171.
[147]
Hong, J.; Fu, S.L.; Shen, Z.Y.; Lu, P.H.; Chou, K.Y. Trichosanthin inhibits T cell activation by interfering with the recruitment of ZAP-70 to CD3 zeta chain. Cell Res., 1998, 8(1), 33-39.
[148]
Zhou, H.; Jiao, Z.; Pan, J.; Hong, J.; Tao, J.; Li, N.; Zhou, Y.; Zhang, J.; Chou, K.Y. Immune suppression via IL-4/IL-10-secreting T cells: A nontoxic property of anti-HIV agent trichosanthin. Clin. Immunol., 2007, 122(3), 312-322.
[149]
Yang, N.; Li, Z.; Jiao, Z.; Gu, P.; Zhou, Y.; Lu, L.; Chou, K.Y. A Trichosanthin-derived peptide suppresses type 1 immune responses by TLR2-dependent activation of CD8(+)CD28(-) Tregs. Clin. Immunol., 2014, 153(2), 277-287.
[150]
Zhou, X.; Yang, N.; Lu, L.; Ding, Q.; Jiao, Z.; Zhou, Y.; Chou, K.Y. Up-regulation of IL-10 expression in dendritic cells is involved in Trichosanthin-induced immunosuppression. Immunol. Lett., 2007, 110(1), 74-81.
[151]
Wang, B.; Jiao, Z.; Shao, X.; Lu, L.; Yang, N.; Zhou, X.; Xin, L.; Zhou, Y.; Chou, K.Y. Phenotypic alterations of dendritic cells are involved in suppressive activity of trichosanthin-induced CD8+CD28- regulatory T cells. J. Immunol., 2010, 185(1), 79-88.
[152]
Yan, R.; Zhong, W.; Zhu, Y.; Zhang, X. Trichosanthin-stimulated dendritic cells induce a type 2 helper T lymphocyte response through the OX40 ligand. J. Investig. Allergol. Clin. Immunol., 2012, 22(7), 491-500.
[153]
Chen, X.; Ma, B.L. Trichosanthin, an initiator of the alternative complement activation pathway. Clin. Exp. Immunol., 1993, 93(2), 248-252.
[154]
Bi, L.Q.; Liu, J.W.; Song, Y. The effect of trichosanthin on immunoregulatory T lymphocytes Zhongguo Zhong Xi Yi Jie He Za Zhi,, 1994, 14(1), 18-20. 13-14
[155]
Gong, Q.; Deng, D.; Ding, J.; Wang, C.; Bian, Z.; Ye, Z.; Xu, J. Trichosanthin, an extract of Trichosanthes kirilowii, effectively prevents acute rejection of major histocompatibility complex-mismatched mouse skin allograft. Transplant. Proc., 2008, 40(10), 3714-3718.
[156]
Wang, B.L.; Su, H.; Chen, Y.; Wang, J.; Xu, G.L. A role for trichosanthin in the expansion of CD4CD25 regulatory T cells. Scand. J. Immunol., 2010, 71(4), 258-266.
[157]
Ma, Y.H.; Cheng, W.Z.; Gong, F.; Ma, A.L.; Yu, Q.W.; Zhang, J.Y.; Hu, C.Y.; Chen, X.H.; Zhang, D.Q. Active Chinese mistletoe lectin-55 enhances colon cancer surveillance through regulating innate and adaptive immune responses. World J. Gastroenterol., 2008, 14(34), 5274-5281.
[158]
Haak-Frendscho, M.; Kino, K.; Sone, T.; Jardieu, P. Ling Zhi-8: A novel T cell mitogen induces cytokine production and upregulation of ICAM-1 expression. Cell. Immunol., 1993, 150(1), 101-113.
[159]
van der Hem, L.G.; van der Vliet, J.A.; Bocken, C.F.; Kino, K.; Hoitsma, A.J.; Tax, W.J. Prolongation of allograft survival with Ling Zhi-8, a new immunosuppressive drug. Transplant. Proc., 1994, 26(2), 746.
[160]
Lin, Y.L.; Liang, Y.C.; Tseng, Y.S.; Huang, H.Y.; Chou, S.Y.; Hseu, R.S.; Huang, C.T.; Chiang, B.L. An immunomodulatory protein, Ling Zhi-8, induced activation and maturation of human monocyte-derived dendritic cells by the NF-kappaB and MAPK pathways. J. Leukoc. Biol., 2009, 86(4), 877-889.
[161]
Zhou, H.; Sun, F.; Li, H.; Zhang, S.; Liu, Z.; Pei, J.; Liang, C. Effect of recombinant Ganoderma lucidum immunoregulatory protein on cyclophosphamide-induced leukopenia in mice. Immunopharmacol. Immunotoxicol., 2013, 35(3), 426-433.
[162]
Cao, Q.; Lu, W.; Cai, X.; Hu, C.; Wang, C.; Ye, J.; Yan, H.; Yang, Y.; Wang, Z.; Huo, J.; Liu, Y.; Yu, Y.; Ling, C.; Cao, P. In vitro refolding and functional analysis of polyhistidine-tagged Buthus martensii Karsch antitumor-analgesic peptide produced in Escherichia coli. Biotechnol. Lett., 2015, 37(12), 2461-2466.
[163]
Zhang, F.L.; Jia, S.Q.; Zheng, S.P.; Ding, W. Celastrol enhances AAV1-mediated gene expression in mice adipose tissues. Gene Ther., 2011, 18(2), 128-134.
[164]
Mitchell, A.M.; Li, C.; Samulski, R.J. Arsenic trioxide stabilizes accumulations of adeno-associated virus virions at the perinuclear region, increasing transduction in vitro and in vivo. J. Virol., 2013, 87(8), 4571-4583.
[165]
Wang, L.N.; Wang, Y.; Lu, Y.; Yin, Z.F.; Zhang, Y.H.; Aslanidi, G.V.; Srivastava, A.; Ling, C.Q.; Ling, C. Pristimerin enhances recombinant adeno-associated virus vector-mediated transgene expression in human cell lines in vitro and murine hepatocytes in vivo. J. Integr. Med., 2014, 12(1), 20-34.
[166]
Wang, Y.; Zhao, T.; Wei, D.; Strandberg, E.; Ulrich, A.S.; Ulmschneider, J.P. How reliable are molecular dynamics simulations of membrane active antimicrobial peptides? Biochim. Biophys. Acta, 2014, 1838(9), 2280-2288.
[167]
Zhang, F.; Lu, Y.J.; Shaw, P.C.; Sui, S.F. Change in pH-dependent membrane insertion characteristics of trichosanthin caused by deletion of its last seven C-terminal amino acid residues. Biochemistry (Mosc.), 2003, 68(4), 436-445.
[168]
Xia, X.F.; Sui, S.F. The membrane insertion of trichosanthin is membrane-surface-pH dependent. Biochem. J., 2000, 349(Pt 3), 835-841.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 3
Year: 2019
Page: [251 - 264]
Pages: 14
DOI: 10.2174/1389203719666180612082432
Price: $58

Article Metrics

PDF: 22
HTML: 1