Efficient CDI/CH3SO3H -Catalyzed, Microwave-Assisted Synthesis of 2-Substituted Benzothiazoles

Author(s): Yao-Wei Li, Pei-Ming Zhang, Rui Li, Yan Bai, Yu Yu*, Zong-Jie Gan*.

Journal Name: Letters in Organic Chemistry

Volume 16 , Issue 1 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

CDI combined with CH3SO3H was found to be highly effective for the cyclization of 2-aminothiophenol derivatives with carboxylic acids under MW condition. Fourteen benzothiazole derivatives were synthesized in good yield and their structures were characterized by 1H-NMR, 13CNMR, IR and mass spectrometry. This simple, rapid synthetic method is believed to provide a useful process for the synthesis of 2-substituted benzothiazole compounds.

Keywords: 2-substituted benzothiazoles, CDI/CH3SO3H, 2-aminothiophenol, microwave irradiation, room temperature, mass spectrometry.

[1]
Bondock, S.; Fadaly, W.; Metwally, M. Eur. J. Med. Chem., 2010, 45, 3692-3701.
[2]
Ouyang, L.; Huang, Y.; Zhao, Y.; He, G.; Xie, Y.; Liu, J.; He, J.; Liu, B.; Wei, Y. Bioorg. Med. Chem. Lett., 2012, 22, 3044-3049.
[3]
Penthala, N.R.; Thakkar, S.; Crooks, P.A. Bioorg. Med. Chem. Lett., 2015, 25, 2763-2767.
[4]
Ofori, E.; Zhu, X.Y.; Etukala, J.R.; Bricker, B.A.; Ablordeppey, S.Y. Bioorg. Med. Chem., 2016, 24, 5730-5740.
[5]
Afzal, O.; Akhtar, M.S.; Kumar, S.; Ali, M.R.; Jaggi, M.; Bawa, S. Eur. J. Med. Chem., 2016, 121, 318-330.
[6]
Mylari, B.L.; Beyer, T.A.; Scott, P.J.; Aldinger, C.E.; Dee, M.F.; Siegel, T.W.; Zembrowski, W.J. J. Med. Chem., 1992, 35, 457-465.
[7]
Samanta, S.; Das, S.; Biswas, P. J. Org. Chem., 2013, 78, 11184-11193.
[8]
Margherita, B.; Silvano, C.; Stefano, D. ARKIVOC, 2012, 9, 262-279.
[9]
Rambabu.; Radha Krishna, M.P.; Balakrishna, D.; Rao, B.; Manojit, P. Synth. Commun., 2013, 43, 3083-3092.
[10]
Sun, Y.; Jiang, H.; Wu, W.; Zeng, W.; Wu, X. Org. Lett., 2013, 15, 1598-1601.
[11]
Shirini, F.; Mamaghani, M. Seddighi. M. Res. Chem. Intermed., 2015, 41, 5611-5619.
[12]
Sharghi, H.; Asemani, D. Synth. Commun., 2009, 39, 860-867.
[13]
Kayukova, L.A.; Praliyev, K.D.; Gut’yar, V.G.; Baitursynova, G.P. Russ. J. Org. Chem., 2015, 51, 148-160.
[14]
Rezazadeh, S.; Akhlaghinia, B.; Razavi, N. Aust. J. Chem., 2015, 68, 145-155.
[15]
Gorepatil, P.B.; Mane, Y.D.; Gorepatil, A.B.; Gaikwad, M.V.; Ingle, V.S. Res. Chem. Intermed., 2015, 41, 8355-8362.
[16]
Kallemeyn, J.M.; Ku, Y.Y.; Mulhern, M.M.; Bishop, R.; Pal, A.; Jacob, L. Org. Process Res. Dev., 2014, 18, 191-197.
[17]
Wen, X.A.; Bakali, J.E.; Deprez-Poulain, R.; Deprez, B. Tetrahedron Lett., 2012, 53, 2440-2443.
[18]
Zhu, J.H.; Zhang, Z.B.; Miao, C.X.; Liu, W.; Sun, W. Tetrahedron, 2017, 73, 3458-3462.
[19]
Wafngdongbung, W.; Hahnvajanawong, V.; Theramongkol, P. Orient. J. Chem., 2016, 32, 943-944.
[20]
Sung, G.H.; Lee, I.H.; Kim, B.R.; Shin, D.S.; Kim, J.J.; Lee, S.G.; Yoon, Y.J. Tetrahedron, 2013, 69, 3533-3535.
[21]
Kumar, P. Meenakshi.; Kumar, S.; Kumar, A.; Hussain, K.; Kumar, S. J. Heterocycl. Chem., 2012, 49, 1243-1249.
[22]
Lu, S.C.; Li, H.S.; Xua, S.; Duanb, G.Y. Org. Biomol. Chem., 2017, 15, 324-327.
[23]
Santos, P.F.; Reis, L.V.; Duarte, I.; Serrano, J.P. Serrano, J.P.; Almeida, P.; Oliveira, A.S.; Vieira Ferreira, L.F. Helv. Chim. Acta, 2005, 88, 1135-1143.
[24]
Huang, X.; Tang, J. Tetrahedron, 2003, 59, 4851-4856.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 1
Year: 2019
Page: [34 - 39]
Pages: 6
DOI: 10.2174/1570178615666180611120239
Price: $65

Article Metrics

PDF: 28
HTML: 3