Amino Acid Metabolism in Dairy Cows and their Regulation in Milk Synthesis

Author(s): Feiran Wang, Haitao Shi, Shuxiang Wang, Yajing Wang, Zhijun Cao, Shengli Li*.

Journal Name: Current Drug Metabolism

Volume 20 , Issue 1 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Reducing dietary Crude Protein (CP) and supplementing with certain Amino Acids (AAs) has been known as a potential solution to improve Nitrogen (N) efficiency in dairy production. Thus understanding how AAs are utilized in various sites along the gut is critical.

Objective: AA flow from the intestine to Portal-drained Viscera (PDV) and liver then to the mammary gland was elaborated in this article. Recoveries in individual AA in PDV and liver seem to share similar AA pattern with input: output ratio in mammary gland, which subdivides essential AA (EAA) into two groups, Lysine (Lys) and Branchedchain AA (BCAA) in group 1, input: output ratio > 1; Methionine (Met), Histidine (His), Phenylalanine (Phe) etc. in group 2, input: output ratio close to 1. AAs in the mammary gland are either utilized for milk protein synthesis or retained as body tissue, or catabolized. The fractional removal of AAs and the number and activity of AA transporters together contribute to the ability of AAs going through mammary cells. Mammalian Target of Rapamycin (mTOR) pathway is closely related to milk protein synthesis and provides alternatives for AA regulation of milk protein synthesis, which connects AA with lactose synthesis via α-lactalbumin (gene: LALBA) and links with milk fat synthesis via Sterol Regulatory Element-binding Transcription Protein 1 (SREBP1) and Peroxisome Proliferatoractivated Receptor (PPAR).

Conclusion: Overall, AA flow across various tissues reveals AA metabolism and utilization in dairy cows on one hand. While the function of AA in the biosynthesis of milk protein, fat and lactose at both transcriptional and posttranscriptional level from another angle provides the possibility for us to regulate them for higher efficiency.

Keywords: Flow, liver, mammary gland, utilization, milk protein, mTOR.

[1]
Carder, E.G.; Weiss, W.P. Short- and longer-term effects of feeding increased metabolizable protein with or without an altered amino acid profile to dairy cows immediately postpartum. J. Dairy Sci., 2017, 100, 4528-4538.
[2]
Caraviello, D.Z.; Weigel, K.A.; Fricke, P.M.; Wiltbank, M.C.; Florent, M.J.; Cook, N.B.; Nordlund, K.V.; Zwald, N.R.; Rawson, C.L. Survey of management practices on reproductive performance of dairy cattle on large US commercial farms. J. Dairy Sci., 2006, 89, 4723-4735.
[3]
Arriola Apelo, S.; Knapp, J.; Hanigan, M. Invited review: Current representation and future trends of predicting amino acid utilization in the lactating dairy cow. J. Dairy Sci., 2014, 97, 4000-4017.
[4]
Cantalapiedra-Hijar, G.; Lemosquet, S.; Rodriguez-Lopez, J.; Messad, F.; Ortigues-Marty, I. Diets rich in starch increase the posthepatic availability of amino acids in dairy cows fed diets at low and normal protein levels. J. Dairy Sci., 2014, 97, 5151-5166.
[5]
Appuhamy, J.; Knapp, J.; Becvar, O.; Escobar, J.; Hanigan, M. Effects of jugular-infused lysine, methionine, and branched-chain amino acids on milk protein synthesis in high-producing dairy cows. J. Dairy Sci., 2011, 94, 1952-1960.
[6]
Brasselagnel, C.G.; Lavoinne, A.M.; Husson, A.S. Amino acid regulation of mammalian gene expression in the intestine. Biochimie, 2010, 92, 729-735.
[7]
Wu, G. Amino acids: metabolism, functions, and nutrition. Amino Acids, 2009, 37, 1-17.
[8]
Bequette, B.J.; Nelson, K. In The roles of amino acids in milk yield and components, Florida ruminant Nutrition Symposium. February 2006.
[9]
Council, N.R. Nutrient Requirements of Dairy Cattle: Seventh, Revised Edition; 2001. The National Academies Press: Washington, DC, 2001, p. 408.
[10]
Larsen, M.; Madsen, T.G.; Weisbjerg, M.R.; Hvelplund, T.; Madsen, J. Endogenous amino acid flow in the duodenum of dairy cows. Acta Agr. Scand. A-An., 2000, 50, 161-173.
[11]
Arriola Apelo, S.I.; Singer, L.M.; Ray, W.K.; Helm, R.F.; Lin, X.Y.; McGilliard, M.L.; St-Pierre, N.R.; Hanigan, M.D. Casein synthesis is independently and additively related to individual essential amino acid supply. J. Dairy Sci., 2013, 97, 2998-3005.
[12]
Van Bruchem, J.; Voight, J.; Lammers-Wienhoven, T.S.W.; Schönhusen, U.; Ketelaars, J.H.; Tamminga, S. Secretion and reabsorption of endogenous protein along the small intestine of sheep: estimates derived from 15N dilution of plasma non-protein-N. Br. J. Nutr., 1997, 77, 273-286.
[13]
Pacheco, D.; Schwab, C.; Berthiaume, R.; Raggio, G.; Lapierre, H. Comparison of net portal absorption with predicted flow of digestible amino acids: Scope for improving current models? J. Dairy Sci., 2006, 89, 4747-4757.
[14]
Lapierre, H.; Blouin, J.; Bernier, J.; Reynolds, C.; Dubreuil, P.; Lobley, G. Effect of supply of metabolizable protein on whole body and splanchnic leucine metabolism in lactating dairy cows. J. Dairy Sci., 2002, 85, 2631-2641.
[15]
El-Kadi, S.; Sunny, N.; Oba, M.; Owens, S.; Bequette, B. In Fractional removal of amino acids by the small intestines and whole gastrointestinal tract of sheep remains constant across levels of protein supply. J. Dairy Sci., 2004, 87, 127-127.
[16]
El-Kadi, S.W.; Baldwin, R.L.; Sunny, N.E.; Owens, S.L.; Bequette, B.J. Intestinal protein supply alters amino acid, but not glucose, metabolism by the sheep gastrointestinal tract. J. Nutr., 2006, 136, 1261-1269.
[17]
Lapierre, H.; Doepel, L.; Milne, E.; Lobley, G.E. Responses in mammary and splanchnic metabolism to altered lysine supply in dairy cows. Animal, 2009, 3, 360-371.
[18]
Larsen, M.; Galindo, C.; Ouellet, D.; Maxin, G.; Kristensen, N.B.; Lapierre, H. Abomasal amino acid infusion in postpartum dairy cows: Effect on whole-body, splanchnic, and mammary amino acid metabolism. J. Dairy Sci., 2015, 98, 7944-7961.
[19]
Mepham, T.B. Amino acid utilization by lactating mammary gland. J. Dairy Sci., 1982, 65, 287-298.
[20]
Lapierre, H.; Berthiaume, R.; Raggio, G.; Thivierge, M.; Doepel, L.; Pacheco, D.; Dubreuil, P.; Lobley, G. The route of absorbed nitrogen into milk protein. Anim. Sci., 2005, 80, 11-22.
[21]
Blouin, J.P.; Bernier, J.F.; Reynolds, C.K.; Lobley, G.E.; Dubreuil, P.; Lapierre, H. Effect of supply of metabolizable protein on splanchnic fluxes of nutrients and hormones in lactating dairy cows. J. Dairy Sci., 2002, 85, 2618-2630.
[22]
Raggio, G.; Pacheco, D.; Berthiaume, R.; Lobley, G.; Pellerin, D.; Allard, G.; Dubreuil, P.; Lapierre, H. Effect of level of metabolizable protein on splanchnic flux of amino acids in lactating dairy cows. J. Dairy Sci., 2004, 87, 3461-3472.
[23]
Reynolds, C. Splanchnic amino acid metabolism in ruminants. In: Ruminant Physiology: Digestion, Metabolism and Impact of Nutrition on Gene Expression, Immunology and Stress; Wageningen Academic Publishers: Wageningen, the Netherlands, 2006; pp. 225-248.
[24]
Larsen, M.; Kristensen, N.B. Precursors for liver gluconeogenesis in periparturient dairy cows. Animal, 2013, 7, 1640-1650.
[25]
Doepel, L.; Lobley, G.E.; Bernier, J.F.; Dubreuil, P.; Lapierre, H. Differences in splanchnic metabolism between late gestation and early lactation dairy cows. J. Dairy Sci., 2009, 92, 3233-3243.
[26]
Kuhla, B.; Nürnberg, G.; Albrecht, D.; Görs, S.; Hammon, H.M.; Metges, C.C. Involvement of skeletal muscle protein, glycogen, and fat metabolism in the adaptation on early lactation of dairy cows. J. Proteome Res., 2011, 10, 4252-4262.
[27]
Hanigan, M.D. Quantitative aspects of ruminant predicting animal performance. Anim. Sci., 2005, 80, 23-32.
[28]
Zhou, Z.; Loor, J.; Piccioli-Cappelli, F.; Librandi, F.; Lobley, G.; Trevisi, E. Circulating amino acids in blood plasma during the peripartal period in dairy cows with different liver functionality index. J. Dairy Sci., 2016, 99, 2257-2267.
[29]
Bertoni, G.; Trevisi, E. Use of the liver activity index and other metabolic variables in the assessment of metabolic health in dairy herds. Vet. Clin. North Am. Food Anim. Pract., 2013, 29, 413-431.
[30]
Zhou, Z.; Bulgari, O.; Vailatiriboni, M.; Trevisi, E.; Ballou, M.A.; Cardoso, F.C.; Luchini, D.; Loor, J.J. Rumen-protected methionine compared with rumen-protected choline improves immunometabolic status in dairy cows during the peripartal period. J. Dairy Sci., 2016, 99, 8956-8969.
[31]
Osorio, J.; Trevisi, E.; Ji, P.; Drackley, J.; Luchini, D.; Bertoni, G.; Loor, J. 46-Biomarkers of inflammation, metabolism, and oxidative stress in blood, liver, and milk reveal a better immunometabolic status in peripartal cows supplemented with Smartamine M or MetaSmart. J. Dairy Sci., 2014, 97, 7437-7450.
[32]
Hanigan, M.D.; Crompton, L.A.; Reynolds, C.K.; Wray-Cahen, D.; Lomax, M.A.; France, J. An integrative model of amino acid metabolism in the liver of the lactating dairy cow. J. Theor. Biol., 2004, 228, 271.
[33]
Hanigan, M.D.; Crompton, L.A.; Bequette, B.J.; Mills, J.A.; France, J. Modelling mammary metabolism in the dairy cow to predict milk constituent yield, with emphasis on amino acid metabolism and milk protein production: Model evaluation. J. Theor. Biol., 2001, 213, 223-239.
[34]
Giallongo, F.; Harper, M.T.; Oh, J.; Lopes, J.C.; Lapierre, H.; Patton, R.A.; Parys, C.; Shinzato, I.; Hristov, A.N. 36-Effects of rumen-protected methionine, lysine, and histidine on lactation performance of dairy cows. J. Dairy Sci., 2016, 99, 4437-4452.
[35]
Zhou, Z.; Vailatiriboni, M.; Trevisi, E.; Drackley, J.K.; Luchini, D.N.; Loor, J.J. Better postpartal performance in dairy cows supplemented with rumen-protected methionine compared with choline during the peripartal period. J. Dairy Sci., 2016, 99, 8716-8732.
[36]
Osorio, J.; Ji, P.; Drackley, J.; Luchini, D.; Loor, J. Supplemental Smartamine M or Meta smart during the transition period benefits postpartal cow performance and blood neutrophil function. J. Dairy Sci., 2013, 96, 6248-6263.
[37]
Varvikko, T.; Vanhatalo, A.; Jalava, T.; Huhtanen, P. Lactation and metabolic responses to graded abomasal doses of methionine and lysine in cows fed grass silage diets. J. Dairy Sci., 1999, 82, 2659-2673.
[38]
Huhtanen, P.; Vanhatalo, A.; Varvikko, T. Effects of abomasal infusions of histidine, glucose, and leucine on milk production and plasma metabolites of dairy cows fed grass silage diets. J. Dairy Sci., 2002, 85, 204-216.
[39]
Vanhatalo, A.; Huhtanen, P.; Toivonen, V.; Varvikko, T. Response of dairy cows fed grass silage diets to abomasal infusions of histidine alone or in combinations with methionine and lysine. J. Dairy Sci., 1999, 82, 2674-2685.
[40]
Nichols, J.R.; Schingoethe, D.J.; Maiga, H.A.; Brouk, M.J.; Piepenbrink, M.S. Evaluation of corn distillers grains and ruminally protected lysine and methionine for lactating dairy cows. J. Dairy Sci., 1998, 81, 482-491.
[41]
Lee, C.; Hristov, A.N.; Cassidy, T.W.; Heyler, K.S.; Lapierre, H.; Varga, G.A.; De Veth, M.J.; Patton, R.A.; Parys, C. Rumen-protected lysine, methionine, and histidine increase milk protein yield in dairy cows fed a metabolizable protein-deficient diet. J. Dairy Sci., 2012, 95, 6042-6056.
[42]
Overton, T.R.; Emmert, L.S.; Clark, J.H. Effects of source of carbohydrate and protein and rumen-protected methionine on performance of cows. J. Dairy Sci., 1998, 81, 221.
[43]
Robinson, P.H.; Ah, F.; Chalupa, W.; Julien, W.E.; Sato, H.; Fujieda, T.; Suzuki, H. Ruminally protected lysine and methionine for lactating dairy cows fed a diet designed to meet requirements for microbial and postruminal protein. J. Dairy Sci., 1998, 81, 1364-1373.
[44]
Zanton, G.I.; Bowman, G.R.; Vázquez-Añón, M.; Rode, L.M. Meta-analysis of lactation performance in dairy cows receiving supplemental dietary methionine sources or postruminal infusion of methionine. J. Dairy Sci., 2014, 97, 7085-7101.
[45]
Burgos, S.A.; Dai, M.; Cant, J.P. Nutrient availability and lactogenic hormones regulate mammary protein synthesis through the mammalian target of rapamycin signaling pathway. J. Dairy Sci., 2010, 93, 153-161.
[46]
Lapierre, H.; Lobley, G.; Doepel, L.; Raggio, G.; Rulquin, H.; Lemosquet, S. Triennial lactation symposium: Mammary metabolism of amino acids in dairy cows. J. Anim. Sci., 2012, 90, 1708-1721.
[47]
Jorgensen, G.N.; Larson, B.L. Conversion of phenylalanine to tyrosine in the bovine mammary secretory cell. Biochim. Biophys. Acta, 1968, 165, 121.
[48]
Bequette, B.J.; Backwell, F.R.; Dhanoa, M.S.; Walker, A.; Calder, A.G.; Wray-Cahen, D.; Metcalf, J.A.; Sutton, J.D.; Beever, D.E.; Lobley, G.E. Kinetics of blood free and milk casein-amino acid labelling in the dairy goat at two stages of lactation. Br. J. Nutr., 1994, 72, 211-220.
[49]
Bequette, B.J.; Metcalf, J.A.; Wray-Cahen, D.; Backwell, F.C.; Sutton, J.D.; Lomax, M.A.; Macrae, J.C.; Lobley, G.E. Leucine and protein metabolism in the lactating dairy cow mammary gland: responses to supplemental dietary crude protein intake. J. Dairy Res., 1996, 63, 209-222.
[50]
Rius, A.G.; Appuhamy, J.A.D.R.N.; Cyriac, J.; Kirovski, D.; Becvar, O.; Escobar, J.; Mcgilliard, M.L.; Bequette, B.J.; Akers, R.M.; Hanigan, M.D. Regulation of protein synthesis in mammary glands of lactating dairy cows by starch and amino acids. J. Dairy Sci., 2010, 93, 3114-3127.
[51]
Mabjeesh, S.; Kyle, C.; MacRae, J.; Bequette, B. Lysine metabolism by the mammary gland of lactating goats at two stages of lactation. J. Dairy Sci., 2000, 83, 996-1003.
[52]
Bequette, B.J.; Backwell, F.R.C.; Macrae, J.C.; Lobley, G.E.; Crompton, L.A.; Metcalf, J.A.; Sutton, J.D. Effect of intravenous amino acid infusion on leucine oxidation across the mammary gland of the lactating goat. J. Dairy Sci., 1996, 79, 2217-2224.
[53]
Oddy, V.H.; Lindsay, D.B.; Fleet, I.R. Protein synthesis and degradation in the mammary gland of lactating goats. J. Dairy Res., 1988, 55, 143-154.
[54]
Weekes, T.; Luimes, P.; Cant, J. Responses to amino acid imbalances and deficiencies in lactating dairy cows. J. Dairy Sci., 2006, 89, 2177-2187.
[55]
McGuire, M.; Griinari, J.; Dwyer, D.; Bauman, D. Role of insulin in the regulation of mammary synthesis of fat and protein. J. Dairy Sci., 1995, 78, 816-824.
[56]
Griinari, J.; McGuire, M.; Dwyer, D.; Bauman, D.; Barbano, D.; House, W. The role of insulin in the regulation of milk protein synthesis in dairy cows1, 2. J. Dairy Sci., 1997, 80, 2361-2371.
[57]
Lobley, G. In: Some interactions between protein and energy in ruminant metabolism, Proceedings of 6th International Symposium on Protein Metabolism and Nutrition, Herning, Denmark, June 9-14, 1991.
[58]
Lobley, G.E. Control of the metabolic fate of amino acids in ruminants: a review. J. Anim. Sci., 1992, 70, 3264-3275.
[59]
Hanigan, M.; France, J.; Wray-Cahen, D.; Beever, D.; Lobley, G.; Reutzel, L.; Smith, N. Alternative models for analyses of liver and mammary transorgan metabolite extraction data. Br. J. Nutr., 1998, 79, 63-78.
[60]
Hanigan, M.D.; Cant, J.P.; Weakley, D.C.; Beckett, J.L. An evaluation of postabsorptive protein and amino acid metabolism in the lactating dairy cow. J. Dairy Sci., 1998, 81, 3385.
[61]
Bequette, B.; Backwell, F.; MacRae, J.; Lobley, G.; Crompton, L.; Metcalf, J.; Sutton, J. Effect of intravenous amino acid infusion on leucine oxidation across the mammary gland of the lactating goat. J. Dairy Sci., 1996, 79, 2217-2224.
[62]
Bequette, B.; Hanigan, M.; Calder, A.; Reynolds, C.; Lobley, G.; MacRae, J. Amino acid exchange by the mammary gland of lactating goats when histidine limits milk production. J. Dairy Sci., 2000, 83, 765-775.
[63]
Doepel, L.; Pacheco, D.; Kennelly, J.; Hanigan, M.; Lopez, I.; Lapierre, H. Milk protein synthesis as a function of amino acid supply. J. Dairy Sci., 2004, 87, 1279-1297.
[64]
Schwab, C.; Bozak, C.; Whitehouse, N.; Mesbah, M. Amino acid limitation and flow to duodenum at four stages of lactation. 1. sequence of lysine and methionine limitation1, 2. J. Dairy Sci., 1992, 75, 3486-3502.
[65]
Mackle, T.; Dwyer, D.; Ingvartsen, K.L.; Chouinard, P.; Ross, D.; Bauman, D. Effects of insulin and postruminal supply of protein on use of amino acids by the mammary gland for milk protein synthesis1. J. Dairy Sci., 2000, 83, 93-105.
[66]
Hanigan, M.D.; Calvert, C.C.; Depeters, E.J.; Reis, B.L.; Baldwin, R.L. Kinetics of amino acid extraction by lactating mammary glands in control and sometribove-treated holstein cows 1. J. Dairy Sci., 1992, 75, 161.
[67]
Cant, J.; Trout, D.R.; Qiao, F.; McBride, B. Milk composition responses to unilateral arterial infusionof complete and histidine-lacking amino acid mixtures to the mammary glands of cows. J. Dairy Sci., 2001, 84, 1192-1200.
[68]
Souba, W.W.; Pacitti, A.J. Review: How amino acids get into cells: Mechanisms, models, menus, and mediators. JPEN J. Parenter. Enteral Nutr., 1992, 16, 569.
[69]
Hundal, H.S.; Taylor, P.M. Amino acid transceptors: Gate keepers of nutrient exchange and regulators of nutrient signaling Am. J. Physiol-endoc.M, 2009, 296 E603-E613
[70]
Shennan, D.; Millar, I.; Calvert, D. Mammary-tissue amino acid transport systems. Proc. Nutr. Soc., 1997, 56, 177-191.
[71]
Viña, J.; Puertes, I.R.; Saez, G.T.; Viña, J.R. Role of prolactin in amino acid uptake by the lactating mammary gland of the rat. FEBS Lett., 1981, 126, 250-252.
[72]
Menzies, K.K.; Lefèvre, C.; Macmillan, K.L.; Nicholas, K.R. Insulin regulates milk protein synthesis at multiple levels in the bovine mammary gland. Funct. Integr. Genomics, 2009, 9, 197-217.
[73]
Baumrucker, C.R. Amino acid transport systems in bovine mammary tissue1. J. Dairy Sci., 1985, 68, 2436-2451.
[74]
Shennan, D.B.; Mcneillie, S.A. Milk accumulation down-regulates amino acid uptake via systems A and L by lactating mammary tissue. Horm. Metab. Res., 1994, 26, 611.
[75]
Viña, J.R.; Puertes, I.R.; Viña, J. Effect of premature weaning on amino acid uptake by the mammary gland of lactating rats. Biochem. J., 1981, 200, 705-708.
[76]
Doppler, W.; Groner, B.; Ball, R.K. Prolactin and glucocorticoid hormones synergistically induce expression of transfected rat beta-casein gene promoter constructs in a mammary epithelial cell line. Proc. Natl. Acad. Sci. USA, 1989, 86, 104-108.
[77]
Wickramasinghe, S.; Rincon, G.; Islastrejo, A.; Medrano, J.F. Transcriptional profiling of bovine milk using RNA sequencing. BMC Genomics, 2012, 13, 45.
[78]
Lemay, D.G.; Neville, M.C.; Rudolph, M.C.; Pollard, K.S.; German, J.B. Gene regulatory networks in lactation: Identification of global principles using bioinformatics. BMC Syst. Biol., 2007, 1, 56.
[79]
Porstmann, T.; Santos, C.R.; Griffiths, B.; Cully, M.; Wu, M.; Leevers, S.; Griffiths, J.R.; Chung, Y.L.; Schulze, A. SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth. Cell Metab., 2008, 8, 224-236.
[80]
Doppler, W.; Groner, B.; Ball, R.K. Prolactin and glucocorticoid hormones synergistically induce expression of transfected rat beta-casein gene promoter constructs in a mammary epithelial cell line. Proc. Natl. Acad. Sci., 1989, 86, 104-108.
[81]
Gan, X.; Wang, J.; Su, B.; Wu, D. Evidence for direct activation of mTORC2 kinase activity by phosphatidylinositol 3, 4, 5-trisphosphate. J. Biol. Chem., 2011, 286, 10998-11002.
[82]
Appuhamy, J.R.N.; Bell, A.L.; Nayananjalie, W.D.; Escobar, J.; Hanigan, M.D. Essential amino acids regulate both initiation and elongation of mRNA translation independent of insulin in MAC-T cells and bovine mammary tissue slices. J. Nutr., 2011, 141, 1209-1215.
[83]
Appuhamy, J.; Nayananjalie, W.; England, E.; Gerrard, D.; Akers, R.; Hanigan, M. Effects of AMP-activated protein kinase (AMPK) signaling and essential amino acids on mammalian target of rapamycin (mTOR) signaling and protein synthesis rates in mammary cells. J. Dairy Sci., 2014, 97, 419-429.
[84]
Osorio, J.; Ji, P.; Drackley, J.; Luchini, D.; Loor, J. Supplemental Smartamine M or MetaSmart during the transition period benefits postpartal cow performance and blood neutrophil function. J. Dairy Sci., 2013, 96, 6248-6263.
[85]
Burgos, S.; Dai, M.; Cant, J. Nutrient availability and lactogenic hormones regulate mammary protein synthesis through the mammalian target of rapamycin signaling pathway. J. Dairy Sci., 2010, 93, 153-161.
[86]
Duan, X.; Lin, Y.; Lv, H.; Yang, Y.; Jiao, H.; Hou, X. Methionine induces LAT1 expression in dairy cow mammary gland by activating the mTORC1 signaling pathway. DNA Cell Biol., 2017, 1126-1133.
[87]
Appuhamy, J.R.N.; Knoebel, N.A.; Nayananjalie, W.D.; Escobar, J.; Hanigan, M.D. Isoleucine and leucine independently regulate mTOR signaling and protein synthesis in MAC-T cells and bovine mammary tissue slices. J. Nutr., 2012, 142, 484-491.
[88]
Kimball, S.R.; Jefferson, L.S. New functions for amino acids: Effects on gene transcription and translation. Am. J. Clin. Nutr., 2006, 83, 500S.
[89]
Rulquin, H.; Pisulewski, P.M. Effects of graded levels of duodenal infusions of leucine on mammary uptake and output in lactating dairy cows. J. Dairy Res., 2006, 73, 328-339.
[90]
Moshel, Y.; Rhoads, R.E.; Barash, I. Role of amino acids in translational mechanisms governing milk protein synthesis in murine and ruminant mammary epithelial cells. J. Cell. Biochem., 2006, 98, 685-700.
[91]
Hanigan, M.; France, J.; Crompton, L.; Bequette, B. Evaluation of a representation of the limiting amino acid theory for milk protein synthesis; Model. Nut. Utiliz. Farm Anim, 2000, pp. 127-144.
[92]
Wang, M.; Xu, B.; Wang, H.; Bu, D.; Wang, J.; Loor, J.J. 145-Effects of arginine concentration on the in vitro expression of casein and mTOR pathway related genes in mammary epithelial cells from dairy cattle. PLoS One, 2014, 9, e95985.
[93]
Nan, X.; Bu, D.; Li, X.; Wang, J.; Wei, H.; Hu, H.; Zhou, L.; Loor, J.J. Ratio of lysine to methionine alters expression of genes involved in milk protein transcription and translation and mTOR phosphorylation in bovine mammary cells. Physiol. Genomics, 2014, 46, 268-275.
[94]
Hanigan, M.; Cant, J.; Weakley, D.; Beckett, J. An evaluation of postabsorptive protein and amino acid metabolism in the lactating dairy cow. J. Dairy Sci., 1998, 81, 3385-3401.
[95]
Bequette, B.; Kyle, C.; Crompton, L.; Buchan, V.; Hanigan, M. Insulin regulates milk production and mammary gland and hind-leg amino acid fluxes and blood flow in lactating goats. J. Dairy Sci., 2001, 84, 241-255.
[96]
Rulquin, H.; Rigout, S.; Lemosquet, S.; Bach, A. Infusion of glucose directs circulating amino acids to the mammary gland in well-fed dairy cows. J. Dairy Sci., 2004, 87, 340-349.
[97]
Hardie, D.G. The AMP-activated protein kinase pathway–new players upstream and downstream. J. Cell Sci., 2004, 117, 5479-5487.
[98]
Mahoney, S.J.; Dempsey, J.M.; Blenis, J. Cell signaling in protein synthesis: ribosome biogenesis and translation initiation and elongation. Prog. Mol. Biol. Transl. Sci., 2009, 90, 53-107.
[99]
Jenkins, T.; McGuire, M. Major advances in nutrition: impact on milk composition. J. Dairy Sci., 2006, 89, 1302-1310.
[100]
Dils, R. Comparative aspects of milk fat synthesis. J. Dairy Sci., 1986, 69, 904-910.
[101]
Neville, M.C.; Picciano, M.F. Regulation of milk lipid secretion and composition. Annu. Rev. Nutr., 1997, 17, 159-184.
[102]
Desvergne, B.; Michalik, L.; Wahli, W. Transcriptional regulation of metabolism. Physiol. Rev., 2006, 86, 465-514.
[103]
Ma, L.; Corl, B. Transcriptional regulation of lipid synthesis in bovine mammary epithelial cells by sterol regulatory element binding protein-1. J. Dairy Sci., 2012, 95, 3743-3755.
[104]
Li, N.; Zhao, F.; Wei, C.; Liang, M.; Zhang, N.; Wang, C.; Li, Q.Z.; Gao, X-J. Function of SREBP1 in the milk fat synthesis of dairy cow mammary epithelial cells. Int. J. Mol. Sci., 2014, 15, 16998-17013.
[105]
Zhang, X.; Zhao, F.; Si, Y.; Huang, Y.; Yu, C.; Luo, C.; Zhang, N.; Li, Q.; Gao, X. GSK3B regulates milk synthesis in and proliferation of dairy cow mammary epithelial cells via the mTOR/S6K1 signaling pathway. Molecules, 2014, 19, 9435.
[106]
Krause, U.; Bertrand, L.; Maisin, L.; Rosa, M.; Hue, L. Signalling pathways and combinatory effects of insulin and amino acids in isolated rat hepatocytes. FEBS J., 2002, 269, 3742-3750.
[107]
Lansard, M.; Panserat, S.; Plagnes‐Juan, E.; Dias, K.; Seiliez, I.; Skiba‐Cassy, S. L-leucine, L-methionine, and L-lysine are involved in the regulation of intermediary metabolism-related gene expression in rainbow trout hepatocytes. J. Nutr., 2011, 141, 75-80.
[108]
Peterson, T.R.; Sengupta, S.S.; Harris, T.E.; Carmack, A.E.; Kang, S.A.; Balderas, E.; Guertin, D.A.; Madden, K.L.; Carpenter, A.E.; Finck, B.N. mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway. Cell, 2011, 146, 408-420.
[109]
John, E.; Wienecke-Baldacchino, A.; Liivrand, M.; Heinäniemi, M.; Carlberg, C.; Sinkkonen, L. Dataset integration identifies transcriptional regulation of microRNA genes by PPARγ in differentiating mouse 3T3-L1 adipocytes. Nucleic Acids Res., 2012, 40, 4446-4460.
[110]
Bionaz, M.; Chen, S.; Khan, M.J.; Loor, J.J. Functional role of PPARs in ruminants: Potential targets for fine-tuning metabolism during growth and lactation. PPAR Res, 2013, 2013
[111]
Hartmann, P.; Kronfeld, D. Mammary blood flow and glucose uptake in lactating cows given dexamethasone1. J. Dairy Sci., 1973, 56, 896-902.
[112]
Kronfeld, D.; Raggi, F.; Ramberg, C. Mammary blood flow and ketone body metabolism in normal, fasted, and ketotic cows. Am. J. Physiol. Legacy Content, 1968, 215, 218-227.
[113]
Gowen, J.W.; Tobey, E.R. On the mechanism of milk secretion. J. Gen. Physiol., 1931, 15, 67-85.
[114]
Qasba, P.K.; Kumar, S. Molecular divergence of lysozymes and alpha-lactalbumin. Crit. Rev. Biochem. Mol. Biol., 1997, 32, 255.
[115]
Amado, M.; Almeida, R.; Schwientek, T.; Clausen, H. Identification and characterization of large galactosyltransferase gene families: Galactosyltransferases for all functions. Bba-gen. Subjects, 1999, 1473, 35-53.
[116]
Bionaz, M.; Hurley, W.; Loor, J. Milk protein synthesis in the lactating mammary gland: Insights from transcriptomics analyses.InMilk Protein; InTech, 2012.
[117]
Doepel, L.; Lapierre, H. Changes in production and mammary metabolism of dairy cows in response to essential and nonessential amino acid infusions. J. Dairy Sci., 2010, 93, 3264-3274.
[118]
Galindo, C.; Ouellet, D.; Pellerin, D.; Lemosquet, S.; Ortigues-Marty, I.; Lapierre, H. Effect of amino acid or casein supply on whole-body, splanchnic, and mammary glucose kinetics in lactating dairy cows. J. Dairy Sci., 2011, 94, 5558-5568.
[119]
Galindo, C.; Larsen, M.; Ouellet, D.; Maxin, G.; Pellerin, D.; Lapierre, H. Abomasal amino acid infusion in postpartum dairy cows: Effect on whole-body, splanchnic, and mammary glucose metabolism. J. Dairy Sci., 2015, 98, 7962-7974.
[120]
Larsen, M.; Lapierre, H.; Kristensen, N.B. Abomasal protein infusion in postpartum transition dairy cows: Effect on performance and mammary metabolism. J. Dairy Sci., 2014, 97, 5608-5622.
[121]
Bequette, B.; Sunny, N.; El-Kadi, S.; Owens, S. Application of stable isotopes and mass isotopomer distribution analysis to the study of intermediary metabolism of nutrients. J. Anim. Sci., 2006, 84, E50-E59.
[122]
Bionaz, M.; Periasamy, K.; Rodriguez-Zas, S.L.; Everts, R.E.; Lewin, H.A.; Hurley, W.L.; Loor, J.J. Old and new stories: revelations from functional analysis of the bovine mammary transcriptome during the lactation cycle. PLoS One, 2012, 7, e33268.
[123]
Li, S.; Hosseini, A.; Danes, M.; Jacometo, C.; Liu, J.; Loor, J.J. Essential amino acid ratios and mTOR affect lipogenic gene networks and miRNA expression in bovine mammary epithelial cells. J. Anim. Sci. Biotechnol., 2016, 7, 44.
[124]
Buller, C.L.; Loberg, R.D.; Fan, M.H.; Zhu, Q.; Park, J.L.; Vesely, E.; Inoki, K.; Guan, K.L.; Brosius, F.C.A GSK-3/TSC2/mTOR pathway regulates glucose uptake and GLUT1 glucose transporter expression Am. J. Physiol-cell. Ph, 2008, 295 C836-C843
[125]
Osorio, J.; Lohakare, J.; Bionaz, M. Biosynthesis of milk fat, protein, and lactose: roles of transcriptional and posttranscriptional regulation. Physiol. Genomics, 2016, 48, 231-256.
[126]
Batistel, F.; Alharthi, A.S.; Wang, L.; Parys, C.; Pan, Y.X.; Cardoso, F.C.; Loor, J.J. Placentome nutrient transporters and mammalian target of rapamycin signaling proteins are altered by the methionine supply during late gestation in dairy cows and are associated with newborn birth weight. J. Nutr., 2017, 147, 1640-1647.
[127]
Hay, N.; Sonenberg, N. Upstream and downstream of mTOR. Genes Dev., 2004, 18, 1926-1945.
[128]
Berthiaume, R.; Dubreuil, P.; Stevenson, M.; Mcbride, B.W.; Lapierre, H. Intestinal disappearance and mesenteric and portal appearance of amino acids in dairy cows fed ruminally protected methionine 1. J. Dairy Sci., 2001, 84, 194.
[129]
Ouellet, D.; Demers, M.; Zuur, G.; Lobley, G.; Seoane, J.; Nolan, J.; Lapierre, H. Effect of dietary fiber on endogenous nitrogen flows in lactating dairy cows. J. Dairy Sci., 2002, 85, 3013-3025.
[130]
Lapierre, H.; Pacheco, D.; Berthiaume, R.; Ouellet, D.; Schwab, C.; Dubreuil, P.; Holtrop, G.; Lobley, G. What is the true supply of amino acids for a dairy cow? J. Dairy Sci., 2006, 89(Suppl. 1), E1-E14.
[131]
Shennan, D.B.; Boyd, C.A.R. The functional and molecular entities underlying amino acid and peptide transport by the mammary gland under different physiological and pathological conditions. J. Mammary Gland Biol. Neoplasia, 2014, 19, 19-33.
[132]
Baik, M.; Etchebarne, B.; Bong, J.; VandeHaar, M. Gene expression profiling of liver and mammary tissues of lactating dairy cows. Asian. Austral. J. Anim., 2009, 6, 871-884.
[133]
Matsumoto, T.; Nakamura, E.; Nakamura, H.; Hirota, M.; San Gabriel, A.; Nakamura, K.; Chotechuang, N.; Wu, G.; Uneyama, H.; Torii, K. Production of free glutamate in milk requires the leucine transporter LAT1. Am. J. Physiol. Cell Physiol., 2013, 305, 623-631.


Rights & PermissionsPrintExport Cite as


Article Details

VOLUME: 20
ISSUE: 1
Year: 2019
Page: [36 - 45]
Pages: 10
DOI: 10.2174/1389200219666180611084014
Price: $58

Article Metrics

PDF: 28
HTML: 2