Concept of Reverse Micelle Method For the Synthesis of Nano-Structured Materials

Author(s): Irfan Hussain Lone*, Nagi R.E. Radwan, Jeenat Aslam, Arifa Akhter.

Journal Name: Current Nanoscience

Volume 15 , Issue 2 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Synthesis of nanomaterials with desired shape and size is very important for their potential applications. The properties of the nanoparticles synthesis not only vary with size but also changes with shape and morphology which in turn depends on the synthesis methods. There are many synthesis methods but among them reverse micellar method is one of the interesting chemical method and is very useful technique for the synthesis of nanoparticles with desired shape and size. In this method revere micelles are formed by least three components; two of them are non-miscible and the third one is called surfactant which is characterized by amphiphilic properties.

Keywords: Reverse micelle, surfactants, bottom up, nanoparticle synthesis, hydoplillic, CMC.

[1]
Chen, Y.; Liu, Y.; Yao, Y.; Zhang, S.; Gu, Z. Reverse micelle-based water-soluble nanoparticles for simultaneous bioimaging and drug delivery. Org. Biomol. Chem., 2017, 15, 3232-3238.
[2]
Yi, S.; Dai, F.; Zhao, C.; Si, Y. A reverse micelle strategy for fabricating magnetic lipase-immobilized nanoparticles with robust enzymatic activity. Sci. Rep., 2017, 7, 9806.
[3]
Monti, G.A.; Fernández, G.A.; Correa, N.M.; Falcone, R.D.; Moyano, F.; Silbestr, G.F. Gold nanoparticles stabilized with sulphonated imidazolium salts in water and reverse micelles. R. Soc. Open Sci., 2018, 4, 170481.
[4]
Yi, S.X.; Tong, X.L.; Sun, S.; Dai, F.Y. Dyeing properties of CI reactive violet 2 on cotton fabric in non-ionic TX-100/Span40 mixed reverse micelles. Fibers Polym., 2015, 16(8), 1663-1670.
[5]
Zhang, N.; Zang, G.L.; Shi, C.; Yu, H.Q.; Sheng, G.P. A novel adsorbent TEMPO-mediated oxidized cellulose nanofbrils modifed with PEI: Preparation, characterization, and application for Cu(II) removal. J. Hazard. Mater., 2016, 316, 11-18.
[6]
Fan, J.W.; Ran, X.; Ren, Y.; Wang, C.; Yang, J.; Teng, W.; Zou, L.; Sun, Y.; Lu, B.; Deng, Y.; Zhao, D. Ordered mesoporous carbonaceous materials with tunable surface property for enrichment of hexachlorobenzene. Langmuir, 2016, 32, 9922-9929.
[7]
Mirzaei, H.; Darroudi, M. Zinc oxide nanoparticles: Biological synthesis and biomedical applications. Ceram. Int., 2017, 43(1), 907-914.
[8]
Sergievskaya, A.P.; Tatarchuk, V.V.; Makotchenko, E.V.; Mironov, I.V. Formation of gold nanoparticles during the reduction of HAuBr4 in reverse micelles of oxyethylated surfactant: Influence of gold precursor on the growth kinetics and properties of the particles. J. Mater. Res., 2015, 30(12), 1925-1930.
[9]
Tadros, F. Surfactants; Academic Press: London, 1984, p. 342.
[10]
Nagarajan, R. Micellization, mixed micellization and solubilization: The role of interfacial interactions. Adv. Colloid Interface Sci., 1986, 26, 205-264.
[11]
Nagarajan, R.; Ruckenstein, E. Theory of surfactant self-assembly: A predictive molecular thermodynamic approach. Langmuir, 1991, 7(12), 2934-2969.
[12]
Prince, M.L. Microemulsion Theory and Practice; Academic Press: New York, 1977, pp. 1-150.
[13]
Fogden, A.; Hyde, T.S.; Lundberg, G. Bending energy of surfactant films. J. Chem. Soc., Faraday Trans., 1991, 87, 949-955.
[14]
Holmberg, K.; Jönsson, B.; Kronberg, B.; Lindman, B. Surfactants and polymers in aqueous solution, 2nd ed; John Wiley & Sons, Ltd: England, 2003.
[15]
Pileni, P.M. Reverse micelles as microreactors. J. Phys. Chem., 1993, 97, 6961-6973.
[16]
Rosen, M.J. Surfactant and Interfacial Phenomena, 3rd ed; Wiley: New York, 2004.
[17]
Mukerjee, P.; Mysels, J.K. Critical Micelle Concentrations of Aqueous Surfactant Systems; NSRDS-NBS Washington: DC, 1971, p. 36.
[18]
Shah, A.M.; Ahmad, T. Prinicples of Nanoscience and Nanotechnology; Narosa Publishing House, Pvt. Ltd.: New Delhi, 2010.
[19]
Ekwall, P.; Mandell, L.; Solyom, P. The solution phase with reversed micelles in the cetyl trimethylammonium bromide-hexanol-water system. J. Colloid Interface Sci., 1970, 35(2), 266-272.
[20]
Bommarius, S.A.; Holzwarth, F.J.; Wang, C.I.D.; Hatton, A.T. Coalescence and solubilizate exchange in a cationic four component reversed micellar system. J. Phys. Chem., 1990, 94(18), 7232-7239.
[21]
Fletcher, I.D.P.; Howe, M.A.; Robinson, B.H. The kinetics of solubilizate exchange between water droplets of a water-in-oil microemulsion. J. Chem. Soc., Faraday Trans., 1987, 83(4), 985-1006.
[22]
Lopez, A.M.Q.; Tojo, C.M.; Blanco, C.M.; Garcıa, L.R.; Leis, R.J. Microemulsion dynamics and reactions in microemulsions. Curr. Opin. Colloid Interface Sci., 2004, 9(3-4), 264-278.
[23]
Li, C.Y.; Park, W.C. Particle size distribution in the synthesis of nanoparticles using microemulsions. Langmuir, 1999, 15(4), 952-956.
[24]
Bagwe, P.R.; Khilar, C.K. Effects of intermicellar exchange rate on the formation of silver nanoparticles in reverse microemulsions of AOT. Langmuir, 2000, 16(3), 905-910.
[25]
Monnoyer, P.; Fonseca, A.; Nagy, B.J. Preparation of colloidal AgBr particles from microemulsions. Colloid Surf. A, 1995, 100(25), 233-243.
[26]
Ahmad, T.; Ganguli, K.A. Synthesis of nanometer-sized particles of barium ortho titanate prepared through a modified reverse micellar route: Structural characterization, phase stability and dielectric properties. J. Mater. Res., 2004, 19(10), 2905-2912.
[27]
Ahmad, T.; Kavita, G.; Narayana, C.; Ganguli, K.A. Nanostructured barium titanate prepared through a modified reverse micellar route: Structural distortion and dielectric properties. J. Mater. Res., 2005, 20(6), 1415-1421.
[28]
Ahmad, T.; Ganguli, K.A. Reverse micellar route to nanocrystalline titanates (SrTiO3, Sr2TiO4, and PbTiO3): Structural aspects and dielectric properties. J. Am. Ceram. Soc., 2006, 89(4), 1326-1332.
[29]
Ahmad, T.; Ganguli, K.A. Structural and dielectric characterization of nanocrystalline (Ba, Pb) ZrO3 developed by reverse micellar synthesis. J. Am. Ceram. Soc., 2006, 89(10), 3140-3146.
[30]
Vaidya, S.; Ahmad, T.; Agarwal, S.; Ganguli, K.A. Nanocrystalline oxalate/carbonate precursors of Ce and Zr and their decompositions to CeO2 and ZrO2 nanoparticles. J. Am. Ceram. Soc., 2007, 90(3), 863-869.
[31]
Ahmad, T.; Ganguli, K.A. Synthesis, characterization and dielectric properties of nanocrystalline strontium zirconate prepared through a modified reverse micellar route. Mater. Lett., 2006, 60(29-30), 3660-3663.
[32]
Ahmad, T.; Ramanujachary, V.K.; Lofland, E.S.; Ganguli, K.A. Nanorods of manganese oxalate: A single source precursor to different manganese oxide nanoparticles (MnO, Mn2O3, Mn3O4). J. Mater. Chem., 2004, 14(23), 3406-3410.
[33]
Ahmad, T.; Vaidya, S.; Sarkar, N.; Ghosh, S.; Ganguli, K.A. Zinc oxalate nanorods: A convenient precursor to uniform nanoparticles of ZnO. Nanotechnology, 2006, 17(5), 1236.
[34]
Ganguli, K.A.; Ahmad, T. Nanorods of iron oxalate synthesized using reverse micelles: Facile route for α-Fe2O3 and Fe3O4 nanoparticles. J. Nanosci. Nanotechnol., 2007, 7(6), 2029-2035.
[35]
Vaidya, S.; Rastogi, P.; Agarwal, S.; Gupta, K.S.; Ahmad, T.; Antonelli, M.A.; Ramanujachary, V.K.; Lofland, E.S.; Ganguli, K.A. Nanospheres, nanocubes, and nanorods of nickel oxalate: Control of shape and size by surfactant and solvent. J. Phys. Chem. C, 2008, 112(33), 12610-12615.
[36]
Finelli, R.Z.; Querini, A.C.; Figoli, S.N.; Comelli, A.R. Skeletal isomerization of 1-butene on ferrierite: Deactivation and regeneration conditions. Appl. Catal. A, 1999, 187(1), 115-125.
[37]
Li, Y.; Armor, N.J. Metal exchanged ferrierites as catalysts for the selective reduction of NOx with methane. Appl. Catal. B, 1993, 3(1), 1-11.
[38]
Sheddon, D. Selectivity for para-xylene in the isomerization of xylenes catalyzed by zeolites with ten-ring windows. J. Catal., 1986, 98(1), 1-6.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 15
ISSUE: 2
Year: 2019
Page: [129 - 136]
Pages: 8
DOI: 10.2174/1573413714666180611075115
Price: $58

Article Metrics

PDF: 19
HTML: 5
EPUB: 1
PRC: 1