Phytochemical Analysis, Antibacterial and Antioxidant Activity of Calotropis procera and Calotropis gigantea

Author(s): Reena Rani, Dushyant Sharma, Monika Chaturvedi, Jaya Parkash Yadav*.

Journal Name: The Natural Products Journal

Volume 9 , Issue 1 , 2019

Submit Manuscript
Submit Proposal

Graphical Abstract:


Background: Medicinal plants are having immense potential to cure various health ailments and used as drugs and remedies for the treatment of various diseases since civilization. Medicinal property of these plants lies in their secondary metabolites which covered various classes like phenols, alkaloids, flavonoids, tannins, etc. Besides this, these secondary metabolites serve as a prototype to synthesize the new synthetic drugs.

Objective: The present study was carried out to evaluate the antioxidant and antibacterial activity of leaves extracts of Calotropis procera and Calotropis gigantea and characterization of their bioactive metabolites by Fourier Transform Infrared (FTIR) spectroscopy and Gas Chromatography-Mass Spectroscopy (GC-MS).

Methods: Methanol, petroleum ether and water were used for the extract preparation using cold percolation method. Antibacterial activity was assessed by agar well diffusion assay. The antioxidant activity of both the plants of Calotropis species was carried out by using different assay. Phytochemical analysis was carried out by using FTIR spectroscopy and GC-MS analysis.

Results: Methanol extract of both the plants was found to possess highest antioxidant potential in comparison to other extracts. Methanol extract of C. gigantea and aqueous extract of C. procera showed the maximum antibacterial activity against the tested bacterial strains. FTIR analysis of plants extracts indicates the presence of phenolic compounds, alkanes, carboxylic acids, aldehydes, aliphatic and aromatic amines, allene, sulfoxides, phenyl ester nitrocompounds and imines. GC-MS analysis of C. procera aqueous extract showed the presence of R-limonene, mannosamine, tridecane, 1-bromo-, 2-propenoic acid, tridecyl ester, pentatriacontane and 1-hexacosene as major phytochemicals. C. gigantea methanol extract indicated the presence of hentriacontane, eicosane, 3,3- dimethylnonadecane, pentacosane, 1-hexacosene, pentatriacontane and clocortolone as major phytochemicals.

Conclusion: This study provides a systematic base for isolation of the novel bioactive phytochemicals from the Calotropis plant species and to evaluate their efficacy especially for antioxidant and antibacterial activities.

Keywords: Antibacterial, antioxidant, Calotropis gigantea, Calotropis procera, DPPH assay, FTIR, GC-MS, total phenolic content.

Kaneria, M.; Baravalia, Y.; Vaghasiya, Y.; Chanda, S. Determination of antibacterial and antioxidant potential of some medicinal plants from Saurashtra region, India. Indian J. Pharm. Sci., 2009, 71(4), 406-412.
Sharma, D.; Yadav, J.P. An overview of phytotherapeutic approaches for the treatment of tuberculosis. Mini Rev. Med. Chem., 2017, 17(2), 167-183.
Bhatnager, R.; Rani, R.; Dang, A.S. Antibacterial activity of Ferula asafoetida: A comparison of red and white type. J. Appl. Biol. Biotechnol., 2015, 3(2), 18-21.
Berdy, J. Thoughts and facts about antibiotics: Where we are now and where we are heading. J. Antibiot., 2012, 65(8), 385-395.
Singh, U.; Wadhwani, A.M.; Johri, B.M. Dictionary of economic plants in India; ICAR: New Delhi, 1990.
Mushir, A.; Jahan, N.; Ahmed, A. A review on phytochemical and biological properties of Calotropis gigantea (Linn.) R. Br. Discovery Phytomed, 2016, 3(3), 15-21.
Upadhyay, R. Ethanomedicinal, pharmaceutical and pesticidal uses of Calotropis procera (Aiton) (Family: Asclepiadaceae). Int. J. Green Pharm, 2014, 8(3), 135-146.
Uddin, G.; Rauf, A.; Naveed, M.; Shabana, N.M. Mohsina. Phytochemical and pharmacological studies of the whole plant of Calotropis procera. Middle-East. J. Med. Plants Res., 2012, 1(4), 71-74.
Alencar, N.M.N.; Silveira Bitencourt, F.; Figueiredo, I.S.T.; Luz, P.B.; Lima‐Júnior, R.C.P.; Aragão, K.S.; Magalhães, P.J.C.; Castro Brito, G.A.; Ribeiro, R.A.; Freitas, A.P.F.; Ramos, M.V. Side‐effects of Irinotecan (CPT‐11), the clinically used drug for colon cancer therapy, are eliminated in experimental animals treated with latex proteins from Calotropis procera (Apocynaceae). Phytother. Res., 2017, 31(2), 312-320.
Al-Taweel, A.M.; Perveen, S.; Fawzy, G.A.; Rehman, A.U.; Khan, A.; Mehmood, R.; Fadda, L.M. Evaluation of antiulcer and cytotoxic potential of the leaf, flower, and fruit extracts of Calotropis procera and isolation of a new lignan glycoside. J. Evid. Based Complement. Altern. Med., 2017, 2017(2017), 1-10.
Viana, C.A.; Ramos, M.V.; Marinho Filho, J.D.B.; Lotufo, L.V.C.; Figueiredo, I.S.T.; de Oliveira, J.S.; Mastroeni, P.; Lima-Filho, J.V.; Alencar, N.M.N. Cytotoxicity against tumor cell lines and anti-inflammatory properties of chitinases from Calotropis procera latex. Naunyn Schmiedebergs Arch. Pharmacol., 2017, 390(10), 1005-1013.
Verma, R.; Satsangi, G.P.; Shrivastava, J.N. Ethno-medicinal profile of different plant parts of Calotropis procera (AIt.) R. Br. Ethnobot. Leaflets, 2010, 2010(7), 721-742.
Kumar, G.; Karthik, L.; Rao, K.V. Antibacterial activity of aqueous extract of Calotropis gigantea leaves–an in vitro study. Int. J. Pharm. Sci. Rev. Res., 2010, 4(2), 141-144.
Singh, K.; Rao, C.V.; Zeashan, H.; Ritu, P. Evaluation of anti-diabetic and antioxidant activity of extract of Calotropis gigantea Linn. in streptozotocin-induced diabetic rats. Pharma Innovation., 2014, 2(11), 1-12.
Mandal, S.C. Evaluation of anti-inflammatory and antinociceptive activity of methanol extract of Calotropis gigantea root. Int. J. Green Pharm., 2017, 11(3), 198-204.
Hoopes, G.M.; Hamilton, J.P.; Kim, J.; Zhao, D.; Wiegert-Rininger, K.; Crisovan, E.; Buell, C.R. Genome assembly and annotation of the medicinal plant Calotropis gigantea, a producer of anticancer and antimalarial cardenolides. G3: Genes. Genom. Genet., 2018, 8(2), 385-391.
Lodhi, G.; Singh, H.; Pant, K.; Hussain, Z. Hepatoprotective effects of Calotropis gigantea extract against carbon tetrachloride induced liver injury in rats. Acta Pharm., 2009, 59(1), 89-96.
Eberhardt, T.L.; Li, X.; Shupe, T.F.; Hse, C.Y. Chinese tallow tree (Sapium Sebiferum) utilization: Characterization of extractives and cell-wall chemistry. Wood Fiber Sci., 2007, 39(2), 319-324.
Rani, R.; Sharma, D.; Chaturvedi, M.; Yadav, J.P. Antibacterial activity of twenty different endophytic fungi isolated from Calotropis procera and time kill assay. Clin. Microbiol., 2017, 6(3), 280-286.
Sarker, S.D.; Nahar, L.; Kumarasamy, Y. Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods, 2007, 42(4), 321-324.
Yadav, M.; Yadav, A.; Yadav, J.P. In vitro antioxidant activity and total phenolic content of endophytic fungi isolated from Eugenia jambolana Lam. Asian Pac. J. Trop. Med., 2014, 7(S1), 256-261.
Brand-Williams, W.; Cuvelier, M.E.; Berset, C.L.W.T. Use of a free radical method to evaluate antioxidant activity. Food Sci. Technol., 1995, 28(1), 25-30.
Czochra, M.P.; Widensk, A.J. Spectrophotometric determination of H2O2 activity. Anal. Chim. Acta, 2002, 452(2), 177-184.
Rajic, Z.; Koncic, M.; Miloloza, K.; Perkovic, I.; Butula, I.; Bucar, F.; Zorc, B. Primaquine-NSAID twin drugs: Synthesis, radical scavenging, antioxidant and Fe2+ chelating activity. Acta Pharm., 2010, 60(3), 325-337.
Amarowicz, R.; Pegg, R.B.; Rahimi-Moghaddam, P.; Barl, B.; Weil, J.A. Free-radical scavenging capacity and antioxidant activity of selected plant species from the Canadian prairies. Food Chem., 2004, 84(4), 551-562.
Shukla, S.; Park, J.; Kim, D.H.; Hong, S.Y.; Lee, J.S.; Kim, M. Total phenolic content, antioxidant, tyrosinase and α-glucosidase inhibitory activities of water soluble extracts of noble starter culture Doenjang, a Korean fermented soybean sauce variety. Food Control, 2016, 59, 854-861.
Tanaka, M.; Kuei, C.W.; Nagashima, Y.; Taguchi, T. Application of antioxidative maillrad reaction products from histidine and glucose to sardine products. Nippon Suisan Gakkaishi, 1998, 54(8), 1409-1414.
Preethi, R.; Devanathan, V.V.; Loganathan, M. Antimicrobial and antioxidant efficacy of some medicinal plants against food borne pathogens. Adv. Biol. Res., 2010, 4(2), 122-125.
Das, S.; Jamal, S.; Dutta, M.; Rej, S.; Chatterjee, S. Comparative phytochemical analysis and antimicrobial activity of four medicinal plants. European J. Med. Plants, 2015, 6(4), 191-196.
Yesmin, M.N.; Uddin, S.N.; Mubassara, S.; Akond, M.A. Antioxidant and antibacterial activities of Calotropis procera Linn. Am.-Eurasian J. Agric. Environ. Sci., 2008, 4(5), 550-553.
Mainasara, M.M.; Aliero, B.L.; Aliero, A.A.; Yakubu, M. Phytochemical and antibacterial properties of root and leaf extracts of Calotropis procera. Nig. J. Basic Appl. Sci, 2012, 20(1), 1-6.
Nenaah, E.G.; Ahmed, M.E. Antimicrobial activity of extracts and latex of Calotropis procera (Ait.) and synergistic effect with reference antimicrobials. J. Med. Plants Res., 2011, 5(6), 706-716.
Salem, W.M.; Sayed, W.F.; Hardy, M.; Hassan, N.M. Antibacterial activity of Calotropis procera and Ficus sycomorus extracts on some pathogenic microorganisms. Afr. J. Biotechnol., 2014, 13(32), 3271-3280.
Bharathi, P.; Thomas, A.; Thomas, A.; Krishnan, S.; Ravi, T.K. Anti bacterial activity of leaf extracts of Calotropis gigantea linn. against certain Gram negative and Gram positive bacteria. Int. J. Chem. Sci., 2011, 9(2), 919-923.
Chan, C.L.; Gan, R.Y.; Corke, H. The phenolic composition and antioxidant capacity of soluble and bound extracts in selected dietary spices and medicinal herbs. Int. J. Food Sci. Technol., 2016, 51(12), 565-573.
Mohamed, A.A.; Khalil, A.A.; El-Beltagi, H.E. Antioxidant and antimicrobial properties of kaff maryam (Anastatica hierochuntica) and doum palm (Hyphaene thebaica). Grasas Aceites, 2010, 61(1), 67-75.
Sonwa, M.M.; Konig, W.A. Chemical study of the essential oil of Cyperus rotundus. Phytochemistry, 2001, 58(5), 799-810.
Patel, H.V.; Patel, J.D.; Patel, B. Comparative efficacy of phytochemical analysis and antioxidant activity of methanolic extract of Calotropis gigantea and Calotropis procera. Int. J. Life Sci. Biotechnol. Pharm. Res, 2014, 5(2), 107-113.
Sahreen, S.; Khan, M.R.; Khan, R.A. Phenolic compounds and antioxidant activities of Rumex hastatus D. Don. leaves. J. Med. Plants Res., 2011, 5(13), 2755-2765.
Halu, B.; Vidyasagar, G.M. Comparative studies on the antibacterial efficacy of crude leaf extracts of Calotropis spp. at Gulbarga district, Karnataka. World J. Pharm. Pharm. Sci., 2014, 3(2), 2229-2240.
Doshi, V.H.; Parabia, M.F.; Sheth, K.F.; Kothari, L.I.; Parabia, H.M.; Ray, A. Phytochemical analysis revealing the presence of two new compounds from the latex of Calotropis procera (Ait.) R. Br. Int. J. Plant Res., 2012, 2(2), 28-30.
Nelson, D.L.; Cox, M.M. Lehninger, Principles of Biochemistry, 3rd ed; Worth Publishing: New York, 2000.
Circosa, C.; Sanogo, R.; Occhiuto, F. Effects of Calotropis procera on oestrous cycle and on oestrogenic functionality in rats. Farmaco, 2001, 56(5), 373-378.
Faig, A.; Arthur, T.D.; Fitzgerald, P.O.; Chikindas, M.; Mintzer, E.; Uhrich, K.E. Biscationic tartaric acid-based amphiphiles: Charge location impacts antimicrobial activity. Langmuir, 2015, 31(43), 11875-11885.
Sharma, M.; Tandon, S.; Aggarwal, V.; Bhat, K.G.; Kappadi, D.; Chandrashekhar, P.; Dorwal, R. Evaluation of antibacterial activity of Calotropis gigantea against Streptococcus mutans and Lactobacillus acidophilus: An in vitro comparative study. J. Conserv. Dent., 2015, 18(6), 457-460.
de Saldanha da Gama Fischer, J.; Costa Carvalho, P.; da Fonseca, C.O.; Liao, L.; Degrave, W.M.; da Gloria da Costa Carvalho, M.; Yates, III, J.R.; Domont, G.B. Chemo-resistant protein expression pattern of glioblastoma cells (A172) to perillyl alcohol. J. Proteome Res., 2010, 10(1), 153-160.
Da Fonseca, C.O.; Simao, M.; Lins, I.R.; Caetano, R.O.; Futuro, D.; Quirico-Santos, T. Efficacy of monoterpene perillyl alcohol upon survival rate of patients with recurrent glioblastoma. J. Cancer Res. Clin. Oncol., 2011, 137(2), 287-293.
Del Rosso, J.Q.; Kircik, L. A comprehensive review of clocortolone pivalate 0.1% cream: structural development, formulation characteristics, and studies supporting treatment of corticosteroid-responsive dermatoses. J. Clin. Aesthet. Dermatol., 2012, 5(7), 20-24.
Kumar, V.; Bhatnagar, A.K.; Srivastava, J.N. Antibacterial activity of crude extracts of Spirulina platensis and its structural elucidation of bioactive compound. J. Med. Plants Res., 2011, 5(32), 7043-7048.
Brunton, L.L.; Chabner, B.; Knollmann, B.C. Goodman & Gilman’s the pharmacological basis of therapeutics; McGraw-Hill Medical: New York, 2011.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Page: [47 - 60]
Pages: 14
DOI: 10.2174/2210315508666180608081407
Price: $58

Article Metrics

PDF: 16