The Promising Role of Plant Tannins as Bioactive Antidiabetic Agents

Author(s): Mohammed Ajebli, Mohamed Eddouks*.

Journal Name: Current Medicinal Chemistry

Volume 26 , Issue 25 , 2019

Abstract:

Background: Plant tannins are polyphenolic substances with various molecular weights and a variable complexity. Due to the beneficial effects for controlling chronic disorders particularly diabetes mellitus, this class of secondary metabolites has gained more interest in the recent years.

Objective: We aimed through this review to collect, analyze and discuss all available information related to the antidiabetic effect of isolated tannins (including both condensed and hydrolysable varieties) and tannin-rich plants as well as the possible mechanisms of action involved in this antidiabetic activity.

Methods and Results: Our bibliographic research was conducted to gather more than 41 medicinal plants containing tannins and 19 isolated tannins and tannin-rich crud extracts which were revealed to possess glucose lowering effect according to pharmacological studies.

Conclusion: Hence, according to findings of the present review, tannins could be useful for prevention and management of diabetes mellitus and its associated complications and these natural products could be promising compounds for the discovery of new hypoglycemic agents.

Keywords: Tannins, antidiabetic, condensed tannins, hydrolysable tannins, hypoglycemic, tannin-rich plants.

[1]
Veeresham, C. Natural products derived from plants as a source of drugs. J. Adv. Pharm. Technol. Res., 2012, 3(4), 200-201.
[http://dx.doi.org/10.4103/2231-4040.104709] [PMID: 23378939]
[2]
Swanston-Flatt, S.K.; Day, C.; Bailey, C.J.; Flatt, P.R. Traditional plant treatments for diabetes. Studies in normal and streptozotocin diabetic mice. Diabetologia, 1990, 33(8), 462-464.
[http://dx.doi.org/10.1007/BF00405106] [PMID: 2210118]
[3]
Day, C.; Bailey, C.J. Traditional Herbal Medicines for Mod-ern Times, Antidiabetic plants; Taylor & Francis Group, 2006.
[4]
Sieniawska, E.; Baj, T. Pharmacognosy Fundamentals Applications and Strategies;, Simone Badal, McCreath.; Rupika, Delgoda., Eds.; Elsevier Inc. 2017, 687-716.
[5]
Serrano, J.; Puupponen-Pimiä, R.; Dauer, A.; Aura, A.M.; Saura-Calixto, F. Tannins: current knowledge of food sources, intake, bioavailability and biological effects. Mol. Nutr. Food Res., 2009, 53(Suppl. 2), S310-S329.
[http://dx.doi.org/10.1002/mnfr.200900039] [PMID: 19437486]
[6]
Mulcahy, K.; Maryniuk, M.; Peeples, M.; Peyrot, M.; Tomky, D.; Weaver, T.; Yarborough, P. Diabetes self-management education core outcomes measures. Diabetes Educ., 2003, 29(5), 768-770, 773-784, 787-788 passim.
[http://dx.doi.org/10.1177/014572170302900509] [PMID: 14603868]
[7]
Austin, M.M. Importance of self care behaviors in diabetes management: business briefing; US Endocr Rev, 2005, pp. 16-21.
[8]
Rekha, S.; Swapna, C. Rssdi Textbook of Diabetes Mellitus, 2014.
[9]
Elgzyri, T. Basic Management of diabetes mellitus: practical guidelines. Libyan J. Med., 2006, 1(2), 176-184.
[http://dx.doi.org/10.3402/ljm.v1i2.4677] [PMID: 21526016]
[10]
David, L. Horwitz1, D.; Klonoff, C. Textbook of diabetes, 5th ed.; Holt, R.I.G.; Cockram, C.S.; Flyvbjerg, A.; Goldstein, B.J., Eds.; Wiley-Blackwell: Chichester, West Sussex, UK ; Hoboken, NJ. , , 2016; pp. 108-235.
[11]
Bailey, C.J. Renal glucose reabsorption inhibitors to treat diabetes. Trends Pharmacol. Sci., 2011, 32(2), 63-71.
[http://dx.doi.org/10.1016/j.tips.2010.11.011] [PMID: 21211857]
[12]
Bilous, R.; Donnelly, R. Handbook of Diabetes, 4th ed; John Wiley & Sons, Ltd., 2010.
[http://dx.doi.org/10.1002/9781444391374]
[13]
Tahrani, A.A.; Barnett, A.H.; Bailey, C.J. SGLT inhibitors in management of diabetes. Lancet Diabetes Endocrinol., 2013, 1(2), 140-151.
[http://dx.doi.org/10.1016/S2213-8587(13)70050-0] [PMID: 24622320]
[15]
Cincotta, A.H.; Schiller, B.C.; Meier, A.H. Bromocriptine inhibits the seasonally occurring obesity, hyperinsulinemia, insulin resistance, and impaired glucose tolerance in the Syrian hamster, Mesocricetus auratus. Metabolism, 1991, 40(6), 639-644.
[http://dx.doi.org/10.1016/0026-0495(91)90057-4] [PMID: 1865827]
[16]
Kossel, A. On the chemical composition of the cell. Arch. Physiol., 1891, 14, 181-186.
[17]
Kadir, M.F.; Bin Sayeed, M.S.; Shams, T.; Mia, M.M. Ethnobotanical survey of medicinal plants used by Bangladeshi traditional health practitioners in the management of diabetes mellitus. J. Ethnopharmacol., 2012, 144(3), 605-611.
[http://dx.doi.org/10.1016/j.jep.2012.09.050] [PMID: 23063956]
[18]
Chang, C.L.; Lin, Y.; Bartolome, A.P.; Chen, Y.C.; Chiu, S.C.; Yang, W.C. Herbal therapies for type 2 diabetes mellitus: chemistry, biology, and potential application of selected plants and compounds. Evid. Based Complement. Alternat. Med., 2013, 2013378657
[http://dx.doi.org/10.1155/2013/378657] [PMID: 23662132]
[19]
Francisco, V.; Costa, G.; Neves, B.M.; Cruz, M.T.; Batista, M.T. Polyphenols in human health and disease; Academic Press, 2014.
[20]
Ramawat, K.G.; Me’rillon, J-M. Natural products, phytochemistry: botany, and metabolism of alkaloids, phenolics and terpens; Springer Heidelberg: Berlin, 2013.
[21]
Haslam, E. Natural polyphenols (vegetable tannins) as drugs: possible modes of action. J. Nat. Prod., 1996, 59(2), 205-215.
[http://dx.doi.org/10.1021/np960040+] [PMID: 8991956]
[22]
Shahat, A.A.; Marzouk, M.S. Medicinal plants research in Africa, Pharmacology and Chemistry, 1st ed; Elsevier, 2013.
[23]
Debeaujon, I.; Léon-Kloosterziel, K.M.; Koornneef, M. Influence of the testa on seed dormancy, germination, and longevity in Arabidopsis. Plant Physiol., 2000, 122(2), 403-414.
[http://dx.doi.org/10.1104/pp.122.2.403] [PMID: 10677433]
[24]
Eddouks, M.; Ajebli, M.; Hebi, M. Ethnopharmacological survey of medicinal plants used in Daraa-Tafilalet region (Province of Errachidia), Morocco. J. Ethnopharmacol., 2017, 198, 516-530.
[http://dx.doi.org/10.1016/j.jep.2016.12.017] [PMID: 28003130]
[25]
Scalbert, A.; Williamson, G. Dietary intake and bioavailability of polyphenols. J. Nutr., 2000, 130(8S)(Suppl.), 2073S-2085S.
[http://dx.doi.org/10.1093/jn/130.8.2073S] [PMID: 10917926]
[26]
Pinto, P.; Cardoso, S.; Pimpão, R.C.; Tavares, L.; Ferreira, R.B.; Santos, C.N. Daily polyphenol intake from fresh fruits in Portugal: contribution from berry fruits. Int. J. Food Sci. Nutr., 2013, 64(8), 1022-1029.
[http://dx.doi.org/10.3109/09637486.2013.816938] [PMID: 23862729]
[27]
Lesschaeve, I.; Noble, A.C. Polyphenols: factors influencing their sensory properties and their effects on food and beverage preferences. Am. J. Clin. Nutr., 2005, 81(1)(Suppl.), 330S-335S.
[http://dx.doi.org/10.1093/ajcn/81.1.330S] [PMID: 15640499]
[28]
Leung, A.Y.; Foster, S. Encyclopedia of common natural ingredients used in food, drugs, and cosmetics, 2nd ed; John Wiley & Sons Inc, 1996.
[29]
Adam, S.H.; Giribabu, N.; Kassim, N.; Kumar, K.E.; Brahmayya, M.; Arya, A.; Salleh, N. Protective effect of aqueous seed extract of Vitis Vinifera against oxidative stress, inflammation and apoptosis in the pancreas of adult male rats with diabetes mellitus. Biomed. Pharmacother., 2016, 81, 439-452.
[http://dx.doi.org/10.1016/j.biopha.2016.04.032] [PMID: 27261624]
[30]
Rudy, B.; Richard, D. Handbook of Diebetes, 4th ed; Wiley-Blackwell, 2010.
[31]
Thomas, N.; Kapoor, N.; Velavan, J.; Vasan, K.S. Apractical Guide to Diabetes Mellitus, 7th ed; The Health Sciences Publisher, 2016.
[http://dx.doi.org/10.5005/jp/books/12651]
[32]
Ravichandiran, V.; Nirmala, S.; Nazeer, K.A. Protective effect of tannins from Ficus racemosa in hypercholesterole-mia and diabetes induced vascular tissue damage in rats. Asian Pac. J. Trop. Med., 2012, 367-373.
[33]
Sobeh, M.; Mahmoud, M.F.; Abdelfattah, M.A.O.; El-Beshbishy, H.A.; El-Shazly, A.M.; Wink, M. Hepatoprotective and hypoglycemic effects of a tannin rich extract from Ximenia americana var. caffra root. Phytomedicine, 2017, 33, 36-42.
[http://dx.doi.org/10.1016/j.phymed.2017.07.003] [PMID: 28887918]
[34]
Liu, X.; Kim, J.K.; Li, Y.; Li, J.; Liu, F.; Chen, X. Tannic acid stimulates glucose transport and inhibits adipocyte differentiation in 3T3-L1 cells. J. Nutr., 2005, 135(2), 165-171.
[http://dx.doi.org/10.1093/jn/135.2.165] [PMID: 15671208]
[35]
de Ancos, B.; González, E.M.; Cano, M.P. Ellagic acid, vitamin C, and total phenolic contents and radical scavenging capacity affected by freezing and frozen storage in raspberry fruit. J. Agric. Food Chem., 2000, 48(10), 4565-4570.
[http://dx.doi.org/10.1021/jf0001684] [PMID: 11052701]
[36]
Baxter, N.J.; Lilley, T.H.; Haslam, E.; Williamson, M.P. Multiple interactions between polyphenols and a salivary proline-rich protein repeat result in complexation and precipitation. Biochemistry, 1997, 36(18), 5566-5577.
[http://dx.doi.org/10.1021/bi9700328] [PMID: 9154941]
[37]
Goldstein, J.L.; Swain, T. The inhibition of enzymes by tan-nins. Photochemistry, 1965, 4, 185.
[http://dx.doi.org/10.1016/S0031-9422(00)86162-2]
[38]
Schrijvers, A.H.; Frederik, P.M.; Stuart, M.C.; Burger, K.N.; Heijnen, V.V.; Van der Vusse, G.J.; Reneman, R.S. Formation of multilamellar vesicles by addition of tannic acid to phosphatidylcholine-containing small unilamellar vesicles. J. Histochem. Cytochem., 1989, 37(11), 1635-1643.
[http://dx.doi.org/10.1177/37.11.2809174] [PMID: 2809174]
[39]
Priyadarsini, K.I.; Khopde, S.M.; Kumar, S.S.; Mohan, H. Free radical studies of ellagic acid, a natural phenolic antioxidant. J. Agric. Food Chem., 2002, 50(7), 2200-2206.
[http://dx.doi.org/10.1021/jf011275g] [PMID: 11902978]
[40]
Yugarani, T.; Tan, B.K.; Teh, M.; Das, N.P. Effects of polyphenolic natural products on the lipid profiles of rats fed high fat diets. Lipids, 1992, 27(3), 181-186.
[http://dx.doi.org/10.1007/BF02536175] [PMID: 1522762]
[41]
Links, M.R.; Janet, T.; Marlena, C.; Kruger, J.R.N. Sorghum condensed tannins encapsulated in kafir in microparticles as a nutraceutical for inhibition of amylases during digestion to attenuate hyperglycaemia. J. Funct. Foods, 2014, 12, 55-63.
[http://dx.doi.org/10.1016/j.jff.2014.11.003]
[42]
Iwu, M.M. Handbook of African Medicinal plants, 2nd ed; CRC Press Taylor & Francis Group, 2014.
[http://dx.doi.org/10.1201/b16292]
[43]
Pinent, M.; Blay, M.; Bladé, M.C.; Salvadó, M.J.; Arola, L.; Ardévol, A. Grape seed-derived procyanidins have an antihyperglycemic effect in streptozotocin-induced diabetic rats and insulinomimetic activity in insulin-sensitive cell lines. Endocrinology, 2004, 145(11), 4985-4990.
[http://dx.doi.org/10.1210/en.2004-0764] [PMID: 15271880]
[44]
Da Silva, J.M.; Rigaud, J.; Cheynier, V.; Cheminat, V.; Moutounet, M. Procyanidin dimers and trimers from gape seeds. Phytochemistry, 1990, 30, 1259-1264.
[http://dx.doi.org/10.1016/S0031-9422(00)95213-0]
[45]
Espín, J.C.; García-Conesa, M.T.; Tomás-Barberán, F.A. Nutraceuticals: facts and fiction. Phytochemistry, 2007, 68(22-24), 2986-3008.
[http://dx.doi.org/10.1016/j.phytochem.2007.09.014] [PMID: 17976666]
[46]
Mukherjeel, S.; Mitral, A.; Dey, S.; Thakur, G. In:Alphaamylase Activity of Tannin Isolated from Terminalia chebula,Proceedings of 2010 International Conference on Systems in Medicine and Biology, liT Kharagpur; IndiaDecember 16-18, 2010443-445.
[47]
Lee, E.Y.; Kaneko, S.; Jutabha, P.; Zhang, X.; Seino, S.; Jomori, T.; Anzai, N.; Miki, T. Distinct action of the α-glucosidase inhibitor miglitol on SGLT3, enteroendocrine cells, and GLP1 secretion. J. Endocrinol., 2015, 224(3), 205-214.
[http://dx.doi.org/10.1530/JOE-14-0555] [PMID: 25486965]
[48]
Tong, W.; Wang, H.; Waisundara, V.Y.; Huang, D. Inhibiting enzymatic starch digestion by hydrolysable tannins isolated from Eugenia jambolana. Food Sci. Technol. (Campinas), 2014, 59, 389-395.
[49]
Lin, G.M.; Chen, Y.H.; Yen, P.L.; Chang, S.T. Antihyperglycemic and antioxidant activities of twig extract from Cinnamomum osmophloeum. J. Tradit. Complement. Med., 2015, 6(3), 281-288.
[http://dx.doi.org/10.1016/j.jtcme.2015.08.005] [PMID: 27419094]
[50]
Ogura, K.; Ogura, M.; Shoji, T.; Sato, Y.; Tahara, Y.; Yamano, G.; Sato, H.; Sugizaki, K.; Fujita, N.; Tatsuoka, H.; Usui, R.; Mukai, E.; Fujimoto, S.; Inagaki, N.; Nagashima, K. Oral administration of apple procyanidins ameliorates insulin resistance via suppression of pro-inflammatory cytokine expression in liver of diabetic ob/ob Mice. J. Agric. Food Chem., 2016, 64(46), 8857-8865.
[http://dx.doi.org/10.1021/acs.jafc.6b03424] [PMID: 27792335]
[51]
Jin, C.S.; Kyu, K.J.; Man, J.J.; Hyun, S.K.; Sung, L.S. Rapid identification of the α-glucosidase inhibitory compounds from Thunberg’s Geranium (Geranium thunbergii Sieb. et Zucc.). Food Sci. Biotechnol., 2012, 21(4), 987-996.
[http://dx.doi.org/10.1007/s10068-012-0129-7]
[52]
Aayadi, H.; Mittal, S.P.K.; Deshpande, A.; Gore, M.; Ghaskadbi, S.S. Cytoprotective effect exerted by geraniin in HepG2 cells is through microRNA mediated regulation of BACH-1 and HO-1. BMB Rep., 2017, 50(11), 560-565.
[http://dx.doi.org/10.5483/BMBRep.2017.50.11.060] [PMID: 28602161]
[53]
Wang, X.; Chen, Z.; Li, X.; Jiang, Z.K.; Zhao, Y.Q.; Ping, F.F. Geraniin suppresses ovarian cancer growth through inhibition of NF-κB activation and downregulation of Mcl-1 expression. J. Biochem. Mol. Toxicol., 2017, 31(9) 10.1002/jbt.21929.
[http://dx.doi.org/10.1002/jbt.21929] [PMID: 28590547]
[54]
Matsumoto, K.; Yokoyama, S.; Gato, N. Bile acid-binding activity of young persimmon (Diospyros kaki) fruit and its hypolipidemic effect in mice. Phytother. Res., 2010, 24(2), 205-210.
[PMID: 19585467]
[55]
Matsumoto, K.; Kadowaki, A.; Ozaki, N.; Takenaka, M.; Ono, H.; Yokoyama, S.; Gato, N. Bile acid-binding ability of kaki-tannin from young fruits of persimmon (Diospyros kaki) in vitro and in vivo. Phytother. Res., 2011, 25(4), 624-628.
[http://dx.doi.org/10.1002/ptr.3306] [PMID: 20922818]
[56]
Hwang, J.K.; Kong, T.W.; Baek, N.I.; Pyun, Y.R. alpha-Glycosidase inhibitory activity of hexagalloylglucose from the galls of Quercus infectoria. Planta Med., 2000, 66(3), 273-274.
[http://dx.doi.org/10.1055/s-2000-8569] [PMID: 10821056]
[57]
Kashchenko, N.I.; Chirikova, N.K.; Olennikov, D.N. Agrimoniin, an Active ellagitannin from Comarum palustre herb with anti-α-glucosidase and antidiabetic potential in streptozotocin-induced diabetic rats. Molecules, 2017, 22(1), 73.
[http://dx.doi.org/10.3390/molecules22010073] [PMID: 28045450]
[58]
Da Silva, S.M.; Koehnlein, E.A.; Bracht, A.; Castoldi, R.; De Morais, G.R.; Baesso, M.L.; Peralta, R.A.; de Souza, C.G.; de Sá-Nakanishi, A.B.; Peralta, R.M. Inhibition of salivary and pancreatic α-amylases by a pinhão coat (Araucaria an-gustifolia) extract rich in condensed tannin. Food Res. Int., 2014, 56, 1-8.
[http://dx.doi.org/10.1016/j.foodres.2013.12.004]
[59]
Jayaraj, S.; Suresh, S.; Kadeppagari, R.K. Amylase inhibitors and their biomedical applications. Starch, 2013, 65, 535-542.
[http://dx.doi.org/10.1002/star.201200194]
[60]
Subramoniam, A. Antidiabetes mellitus plants, active principles, mechanisms of action and sustainable utilization, Boca Raton CRC Press, Taylor & Francis Group: , 2017.
[61]
Lebowitz, H.E. Alpha-glucosidase inhibitors as agents in the treatment of diabetes. Diabetes Rev., 1998, 6, 132-145.
[62]
Garrett, R.H.; Grisham, C.M. Biochemistry, 5th ed; Brooks Cole, 2013.
[63]
Chavan, U.D.; Shahidi, F.; Naczk, M. Extraction of condensed tannins from beach pea (Lathyrus maritimus L.) as affected by different solvents. Food Chem., 2001, 75, 509-512.
[http://dx.doi.org/10.1016/S0308-8146(01)00234-5]
[64]
McDougall, G.J.; Shpiro, F.; Dobson, P.; Smith, P.; Blake, A.; Stewart, D. Different polyphenolic components of soft fruits inhibit α-amylase and α-glucosidase. J. Agric. Food Chem., 2005, 53(7), 2760-2766.
[http://dx.doi.org/10.1021/jf0489926] [PMID: 15796622]
[65]
Kandra, L.; Gyémánt, G.; Zajácz, A.; Batta, G. Inhibitory effects of tannin on human salivary α-amylase. Biochem. Biophys. Res. Commun., 2004, 319(4), 1265-1271.
[http://dx.doi.org/10.1016/j.bbrc.2004.05.122] [PMID: 15194503]
[66]
Rahmatullah, M.; Hossain, M.; Mahmud, A.; Sultana, N.; Rahman, S.M.; Islam, M.R.; Khatoon, M.S.; Jahan, S.; Islam, F. Antihyperglycemic and antinociceptive activity evaluation of ‘khoyer’ prepared from boiling the wood of Acacia catechu in water. Afr. J. Tradit. Complement. Altern. Med., 2013, 10(4), 1-5.
[http://dx.doi.org/10.4314/ajtcam.v10i4.1] [PMID: 24146493]
[67]
Jarald, E.; Siddheshwar, B.; Dharam, C. Biochemical study on the hypoglycaemic effects of extract and fraction of Aca ciacatechu willd in alloxan-induced diabetic rats. Int. J. Diabetes Metab., 2009, 17, 63-69.
[http://dx.doi.org/10.1159/000497675]
[68]
Ray, D.; Sharatchandra, K.H.; Thokchom, I.S. Antipyret-ic, antidiarrhoeal, hypoglycaemic and hepatoprotective activi-ties of ethyl acetate extract of Acacia catechu Willd. In albino rats. Indian J. Pharmacol., 2006, 38(6), 408-413.
[http://dx.doi.org/10.4103/0253-7613.28207]
[69]
Omara, E.A.; Nada, S.A.; Farrag, A.R.; Sharaf, W.M.; El-Toumy, S.A. Therapeutic effect of Acacia Nilotica pods extract on streptozotocin induced diabetic nephropathy in rat. Phytomedicine, 2012, 19(12), 1059-1067.
[http://dx.doi.org/10.1016/j.phymed.2012.07.006] [PMID: 22884305]
[70]
Maqsood, A.; Fatima, Z.; Tanveer, S.; Zabta, M. Antidiabetic and hypolipidemic effects of aqueous methanolic extract of Acacia Nilotica pods in alloxan-induced diabetic rabbits. Scand Lab Anim Sci, 2008, 35, 29-34.
[71]
Shikov, A.N.; Pozharitskaya, O.N.; Makarova, M.N.; Kovaleva, M.A.; Laakso, I.; Dorman, H.J.; Hiltunen, R.; Makarov, V.G.; Galambosi, B. Effect of Bergenia crassifolia L. extracts on weight gain and feeding behavior of rats with high-caloric diet-induced obesity. Phytomedicine, 2012, 19(14), 1250-1255.
[http://dx.doi.org/10.1016/j.phymed.2012.09.019] [PMID: 23079230]
[72]
Islam, M.A. Cardiovascular effects of green tea catechins: progress and promise. Recent Pat. Cardiovasc. Drug Discov., 2012, 7(2), 88-99.
[http://dx.doi.org/10.2174/157489012801227292] [PMID: 22670802]
[73]
Al-Attar, A.M.; Zari, T.A. Influences of crude extract of tea leaves, Camellia sinensis, on streptozotocin diabetic male albino mice. Saudi J. Biol. Sci., 2010, 17(4), 295-301.
[http://dx.doi.org/10.1016/j.sjbs.2010.05.007] [PMID: 23961092]
[74]
Mustata, G.T.; Rosca, M.; Biemel, K.M.; Reihl, O.; Smith, M.A.; Viswanathan, A.; Strauch, C.; Du, Y.; Tang, J.; Kern, T.S.; Lederer, M.O.; Brownlee, M.; Weiss, M.F.; Monnier, V.M. Paradoxical effects of green tea (Camellia sinensis) and antioxidant vitamins in diabetic rats: improved retinopathy and renal mitochondrial defects but deterioration of collagen matrix glycoxidation and cross-linking. Diabetes, 2005, 54(2), 517-526.
[http://dx.doi.org/10.2337/diabetes.54.2.517] [PMID: 15677510]
[75]
Gomes, A.; Vedasiromoni, J.R.; Das, M.; Sharma, R.M.; Ganguly, D.K. Anti-hyperglycemic effect of black tea (Camellia sinensis) in rat. J. Ethnopharmacol., 1995, 45(3), 223-226.
[http://dx.doi.org/10.1016/0378-8741(95)01223-Z] [PMID: 7623488]
[76]
Custódio, L.; Escapa, A.L.; Fernandes, E.; Fajardo, A.; Aligué, R.; Alberício, F.; Neng, N.; Nogueira, J.M.; Romano, A. Phytochemical profile, antioxidant and cytotoxic activities of the carob tree (Ceratonia siliqua L.) germ flour extracts. Plant Foods Hum. Nutr., 2011, 66(1), 78-84.
[http://dx.doi.org/10.1007/s11130-011-0214-8] [PMID: 21399924]
[77]
Sancheti, S.; Sancheti, S.; Bafna, M.; Lee, S.H.; Seo, S.Y. Persimmon leaf (Diospyros kaki), a potent α-glucosidase inhibitor and antioxidant: Alleviation of postprandial hyperglycemia in normal and diabetic rats. J. Med. Plants Res., 2010, 5, 1652-1658.
[78]
Ramírez-Cisneros, M.Á.; Rios, M.Y.; Déciga-Campos, M.; Aguilar-Guadarrama, A.B.; Berenice, A. Phytochemical study and anti-inflammatory, antidiabetic and free radical scavenger evaluations of Krameria pauciflora methanol extract. Molecules, 2012, 17(1), 861-872.
[http://dx.doi.org/10.3390/molecules17010861] [PMID: 22252502]
[79]
Lim, H.K.; Kim, H.S.; Choi, H.S.; Choi, J.; Kim, S.H.; Chang, M.J. Effects of bergenin, the major constituent of Mallotus japonicus against D-galactosamine-induced hepatotoxicity in rats. Pharmacology, 2001, 63(2), 71-75.
[http://dx.doi.org/10.1159/000056115] [PMID: 11490198]
[80]
Shetti, A.A.; Sanakal, R.D.; Kaliwal, B.B. Antidiabetic effect of ethanolic leaf extract of Phyllanthus amarus in alloxan induced diabetic mice. Asian. J. Plant Sci. Res., 2012, 2(1), 11-15.
[81]
Ali, H.; Houghton, P.J.; Soumyanath, A. α-Amylase inhibitory activity of some Malaysian plants used to treat diabetes; with particular reference to Phyllanthus amarus. J. Ethnopharmacol., 2006, 107(3), 449-455.
[http://dx.doi.org/10.1016/j.jep.2006.04.004] [PMID: 16678367]
[82]
Raphael, K.R.; Sabu, M.C.; Kuttan, R. Hypoglycemic effect of methanol extract of Phyllanthus amarus Schum & Thonn on alloxan induced diabetes mellitus in rats and its relation with antioxidant potential. Indian J. Exp. Biol., 2002, 40(8), 905-909.
[PMID: 12597020]
[83]
Li, S.; Tan, J.; Zeng, J.; Xianjin , Wu. X.W.; Zhang, J. Antihyperglycemic and antioxidant effect of the total flavones of Potentilla kleiniana Wight et Arn. in streptozotocin induced diabetic rats. Pak. J. Pharm. Sci., 2017, 30(1), 171-178.
[PMID: 28603128]
[84]
Bagri, P.; Ali, M.; Aeri, V.; Bhowmik, M.; Sultana, S. Antidiabetic effect of Punica granatum flowers: effect on hyperlipidemia, pancreatic cells lipid peroxidation and antioxidant enzymes in experimental diabetes. Food Chem. Toxicol., 2009, 47(1), 50-54.
[http://dx.doi.org/10.1016/j.fct.2008.09.058] [PMID: 18950673]
[85]
Huang, T.H.; Peng, G.; Kota, B.P.; Li, G.Q.; Yamahara, J.; Roufogalis, B.D.; Li, Y. Anti-diabetic action of Punica granatum flower extract: activation of PPAR-gamma and identification of an active component. Toxicol. Appl. Pharmacol., 2005, 207(2), 160-169.
[http://dx.doi.org/10.1016/j.taap.2004.12.009] [PMID: 16102567]
[86]
Jafri, M.A.; Aslam, M.; Javed, K.; Singh, S. Effect of Punica granatum Linn. (flowers) on blood glucose level in normal and alloxan-induced diabetic rats. J. Ethnopharmacol., 2000, 70(3), 309-314.
[http://dx.doi.org/10.1016/S0378-8741(99)00170-1] [PMID: 10837992]
[87]
Saini, R.; Patil, S.M. Antidiabetic activity of roots of Quercus infectoria Olivier in alloxan induced-diabetic rats. IJPSR, 2001, 3, 1318-1321.
[88]
Shim, Y.J.; Doo, H.K.; Ahn, S.Y.; Kim, Y.S.; Seong, J.K.; Park, I.S.; Min, B.H. Inhibitory effect of aqueous extract from the gall of Rhus chinensis on alpha-glucosidase activity and postprandial blood glucose. J. Ethnopharmacol., 2003, 85(2-3), 283-287.
[http://dx.doi.org/10.1016/S0378-8741(02)00370-7] [PMID: 12639753]
[89]
Li-hua, C.; Zi-hong, P.; Yun-li, C.; Qing-yi, M.A. A Screen of α-Glucosidase inhibitors from Sanguisorba Officinalis. Food Res. Develop., 2013, 27, 22-30.
[90]
Oliveira, A.P.; Endringer, D.C.; Amorim, L.S.; Brandao, M.L.; Coelho, M.M. Effect of the extracts and fractions of Baccharis trimera and Syzygium cumini on glycaemia of diabetic and non-diabetic mice. J. Ethnopharmacol., 2005, 102(3), 465-469.
[http://dx.doi.org/10.1016/j.jep.2005.06.025] [PMID: 16055289]
[91]
Singh, N.; Gupta, M. Effects of ethanolic extract of Syzygium cumini (Linn) seed powder on pancreatic islets of alloxan diabetic rats. Indian J. Exp. Biol., 2007, 45(10), 861-867.
[PMID: 17948734]
[92]
Kumar, A.; Ilavarasan, R.; Jayachandran, T.; Deecaraman, M.; Aravindan, P.; Padmanabhan, N.; Krishan, M.V. Anti-diabetic activity of Syzygium cumini and its isolated compound against streptozotocin-induced diabetic rats. J. Med. Plants Res., 2008, 2, 246-249.
[93]
Shinde, J.; Taldone, T.; Barletta, M.; Kunaparaju, N.; Hu, B.; Kumar, S.; Placido, J.; Zito, S.W. α-glucosidase inhibitory activity of Syzygium cumini (Linn.) Skeels seed kernel in vitro and in Goto-Kakizaki (GK) rats. Carbohydr. Res., 2008, 343(7), 1278-1281.
[http://dx.doi.org/10.1016/j.carres.2008.03.003] [PMID: 18374320]
[94]
Murali, Y.K.; Anand, P.; Tandon, V.; Singh, R.; Chandra, R.; Murthy, P.S. Long-term effects of Terminalia chebula Retz. on hyperglycemia and associated hyperlipidemia, tissue glycogen content and in vitro release of insulin in streptozotocin induced diabetic rats. Exp. Clin. Endocrinol. Diabetes, 2007, 115(10), 641-646.
[http://dx.doi.org/10.1055/s-2007-982500] [PMID: 18058598]
[95]
Nalamolu, K.R.; Nammi, S. Antidiabetic and renoprotective effects of the chloroform extract of Terminalia chebula Retz. seeds in streptozotocin-induced diabetic rats. BMC Complement. Altern. Med., 2006, 6, 17.
[http://dx.doi.org/10.1186/1472-6882-6-17] [PMID: 16677399]
[96]
Murali, Y.K.; Chandra, R.; Murthy, P.S. Antihyperglycemic effect of water extract of dry fruits of Terminalia chebula in experimental diabetes mellitus. Indian J. Clin. Biochem., 2004, 19(2), 202-204.
[http://dx.doi.org/10.1007/BF02894285] [PMID: 23105484]
[97]
Abdul Hoque, M.; Nyeem, M.; Mannan, M.; Tanzim Ullah, M.; Nuruzzaman, M. Evidence based antidiabetic selected in-digenous medicinal plants. Intl. J. Home Sci., 2017, 3(2), 305-309.
[98]
Aung, E.P.P.; Lwin, S.H. NuNu Aye, K.P.P. Hypoglycemic Effect of Terminalia chebula Retz. Fruit on Alloxan-Induced Diabetic Rats. Siriraj Med. J., 2017, 69(2), 80-84.
[http://dx.doi.org/ 10.14456/smj.2017.16]
[99]
Murali, Y.K.; Chandra, R.; Murthy, P.S. Antihyperglycemic effect of water extract of dry fruits of Terminalia chebula in experimental diabetes mellitus. Indian J. Clin. Biochem., 2004, 19(2), 202-204.
[http://dx.doi.org/10.1007/BF02894285] [PMID: 23105484]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 26
ISSUE: 25
Year: 2019
Page: [4852 - 4884]
Pages: 33
DOI: 10.2174/0929867325666180605124256
Price: $58

Article Metrics

PDF: 12
HTML: 1