Generic placeholder image

Recent Advances in Electrical & Electronic Engineering

Editor-in-Chief

ISSN (Print): 2352-0965
ISSN (Online): 2352-0973

Research Article

5V to 6kV DC-DC Converter Using Switching Regulator with Cockcroft-Walton Voltage Multiplier for High Voltage Power Supply Module

Author(s): Nor A. Azmi, Sohiful A.Z. Murad*, Azizi Harun and Rizalafande C. Ismail

Volume 12, Issue 2, 2019

Page: [162 - 171] Pages: 10

DOI: 10.2174/2352096511666180605094827

Price: $65

Abstract

Background: This paper describes the design of 5 V to 6 kV DC-DC converter by using a switching regulator with Cockroft-Walton (C-W) voltage multiplier for a high voltage power supply module.

Methods: The proposed design consists of Pulse Width Modulation (PWM) controller circuit, voltage multiplier, and feedback signal. A single unit of 5 V input triggers LT1618 controller circuit to generate 20 V which then produces 300 V from LT8331 output that is connected to diode-capacitor multiplier circuit to achieve final 6 kV. A negative feedback signal is required to stabilize an output voltage. With the implementation of C-W voltage multiplier technique, the output is boosted up as required from the input signal voltage 5 V DC.

Results: The LTspice simulation results indicate that the proposed DC converter can generate 6.20 kV. Line regulation of 17 % and the load regulation of 14 % are obtained based on the proposed design.

Conclusion: The proposed design is suitable for high voltage power supply module.

Keywords: DC-DC converter, high voltage, power supply, switching regulator, voltage multiplier, current controlled mode.

Graphical Abstract
[1]
L. Katzir, and D. Shmilovitz, Effect of the capacitance distribution on the output impedance of the half-wave cockcroft-walton voltage multiplier In:IEEE Applied Power Electron Conference APEC. Long Beach, CA, USA, 2016, pp. 3655-3658.
[2]
C.Y.-Nong, and K.C.-Ming, “Design of plasma generator driven by high-frequency high-voltage power supply”,, J. Appl. Res. Technol.. Vol. 11, pp. 225-234, 2013
[3]
I.C. Kobougias, and E.C. Tatakis, "Optimal design of a half-wave cockcroft-walton voltage multiplier with minimum total capacitance", IEEE Trans. Power Electron., vol. 25, pp. 2460-2468, 2010.
[4]
D.F. Spencer, R. Aryaeinejad, and E.L. Reber, "Using the cockroftwalton voltage multiplier design in handheld devices”, In:", IEEE Nuclear Science Symposium Conference Record,. San Diego, CA, USA, 2001, pp. 746-749
[5]
M.D. Bellar, E.H. Watanabe, and A.C. Mesquita, "Analysis of the dynamic and steady-state performance of cockcroft-walton cascade rectifiers", IEEE Trans. Power Electron., vol. 7, pp. 526-534, 1992.
[6]
N. Mariun, D. Ismail, K. Anayet, N. Khan, and M. Amran, "Simulation, design and construction of high voltage DC power supply at 15 kv output using voltage multiplier circuits", Am. J. Appl. Sci., vol. 3, pp. 2178-2183, 2006.
[7]
W. Waluyo, and S. Syahrial, "Nugraha and Y. Permana Jr., “Miniature prototype design and implementation of modified multiplier circuit DC high voltage generator", Int. J. Electr. Eng. Technol., vol. 6, pp. 1-12, 2015.
[8]
D. Malviya, and A.K. Bhardwaj, "Analysis and comparison of capacitor diode voltage multiplier FED with a high frequency and a low frequency voltage source", Int. J. Adv. Res. Comput. Commun. Eng., vol. 5, pp. 234-237, 2016.
[9]
G. Babaji, "Design and construction of a 12 kv DC power supply", Bayero J. Pure Appl. Sci., vol. 2, pp. 175-184, 2009.
[10]
J. Sun, X. Ding, H. Takano, and M. Nakaoka, "Series resonant ZCS-PFM DG DC converter with multistage rectified voltage multiplier and dual-mode PFM control scheme for medical-use high-voltage X-ray power generator", IEE Proceeding Electron. Power Appl. Vol. 14, pp. 527-534, 2000.
[11]
C.L. Wadhwa, “High Voltage Engineering”, New Delhi, India: New Age International Pvt. Ltd., 2007
[12]
F. Hwang, Y. Shen, and S.H. Jayaram, "Low-ripple compact high-voltage dc power supply", IEEE Trans. Ind. Appl., vol. 42, pp. 1139-1145, 2006.
[13]
C.M. Young, H.L. Chen, and M.H. Chen, "A cockcroft-walton voltage multiplier Fed by a three-phase-to-single-phase matrix converter with PFC", IEEE Trans. Ind. Appl., vol. 50, pp. 1994-2004, 2014.
[14]
J. Tanaka, and I. Yuzurihana, "The high frequency drive of a new multistage rectifier circuit In:", IEEE Power Electronics Specialists Conference. Kyoto, Japan, 1998, pp. 1031-1037
[15]
N. Barsoum, and G.I. Stanley, "Design of high voltage low power supply device", Univers. J. Electr. Electron. Eng., vol. 3, pp. 1-4, 2015.
[16]
N.M. Waghamare, and R.P. Argelwar, "High voltage generation by using cockcroft-walton multiplier", Int. J. Sci. Eng. Technol. Res., vol. 4, pp. 256-259, 2015.
[17]
S. Mao, Z. Cao, and X. Chu, "High voltage pulse speed study for high voltage DC-DC power supply based on voltage multipliers In:", 17th European Conference Power Electronic Application.Geneva, Switzerland 2015, pp. 8-10
[18]
A.R. Thakare, S.B. Urkude, and R.P. Argelwar, "Analysis of cockcroft-walton voltage multiplier", Int. J. Sci. Res. Publ., vol. 5, pp. 1-3, 2015.
[19]
C. Young, M. Chen, T. Chang, and C. Ko, Transformerless High Step-Up DC-DC Converter with Cockcroft-Walton Voltage Multiplier In6th IEEE Conferene on Industrial Electronics and Applications. Beijing,2011, pp. 1599-1604
[20]
M.N. Karthikeyan, R.P. Pandu, M. Gopisivaprasad, and G. Seshadri, "Analysis, simulation of 3-stage cockcroft- walton voltage multiplier for high step-up DC-DC converter", Int. J. Adv. Res. Electr. Electron. Instrum. Eng., vol. 3, pp. 11155-11162, 2014.
[21]
P. Kim, S. Lee, J. Park, and S. Choi, "High step-up interleaved boost converters using voltage multiplier cells In:", 8th International Conference Power Electronic-Green World with Power Electronic Jeju,Korea, 2011, pp. 2844-2851.
[22]
C. Wei, and M. Shih, "Design of a switched-capacitor DC-DC converter with a wide input voltage range", IEEE Trans. Circ. Syst., vol. 60, pp. 1648-1656, 2013.
[23]
A. Elserougi, S. Member, A.M. Massoud, S. Member, S. Ahmed, and S. Member, "A modular high-voltage pulse-generator with sequential charging for water treatment applications", IEEE Trans. Ind. Electron., vol. 63, pp. 7898-7907, 2016.
[24]
A. Alijani, J. Adabi, and M. Rezanejad, "A bipolar high-voltage pulsed-power supply based on capacitor-switch voltage multiplier", IEEE Trans. Plasma Sci., vol. 44, pp. 2880-2885, 2016.
[25]
B. Axelrod, Y. Beck, and Y. Berkovich, "High step-up DC-DC converter based on the switched-coupled-inductor boost converter and diode-capacitor multiplier: Steady state and dynamics", IET Power Electron., vol. 8, pp. 1420-1428, 2015.
[26]
A. Elserougi, A.M. Massoud, A.M. Ibrahim, and S. Ahmed, "A high voltage pulse-generator based on DC-to-DC Converters and capacitor-diode voltage multipliers for water treatment applications", IEEE Trans. Dielectr. Electr. Insul., vol. 22, pp. 3290-3298, 2015.
[27]
J. Baek, M. Ryoo, T. Kim, D. Yoo, and J. Kim, "High boost converter using voltage multiplier In:", Industrial Electronics Society-31st Annual Conference of IEEE,. North Carolina, USA, 2005, pp. 567-572
[28]
G. Heftman, "PWM: From a single chip to a giant industry", Power Electron. Technol., vol. 494, pp. 48-53, 2005.
[29]
Maxim Integrated, “+5V output, step-up, current-mode PWM DC-DC converter”, MAX 751 datasheet, Nov 1996, Available from:, https:// datasheets.maximintegrated.com/en/ds/MAX751
[30]
Maxim Integrated, “MAX756/MAX757, 3.3V/5V/Adjustable-Output, Step-Up DC-DC Converters”, January 1995. Available from:, https://datasheets.maximintegrated.com/en/ds/MAX756-MAX757
[31]
Semtech Corporation, “SC4501 2 Amp, 2MHz Step-Up Switching Regulator with Soft-Start”, March 2011. Availabe from:, www.semtech. com/images/datasheet/sc4501
[32]
N.A. Azmi, R.C. Ismail, S.S. Jamuar, S.A.Z. Murad, M.N.M. Isa, W.Y. Lim, and M.A. Zulkifeli, "Design of DC high voltage and low current power supply using Cockroft-Walton (C-W) voltage multiplier In:", 3rd International Conference on Electronic Design. Phuket, Thailand 2016, pp. 13-17
[33]
C. Young, M. Chen, S. Yeh, and K. Yuo, "A Single-phase single-stage high step-up AC-DC matrix converter based on cockcroft-walton voltage multiplier with PFC", IEEE Trans. Power Electron., vol. 27, pp. 4894-4905, 2012.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy