Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Assessing the Antimalarial Potentials of Phytochemicals: Virtual Screening, Molecular Dynamics and In-Vitro Investigations

Author(s): Saumya K. Patel, Mohd Athar, Prakash C. Jha*, Vijay M. Khedkar, Yogesh Jasrai, Himanshu A. Pandya, Linz-buoy George, Hyacinth Highland and Supriya Sharma

Volume 16, Issue 3, 2019

Page: [291 - 300] Pages: 10

DOI: 10.2174/1570180815666180604085626

Price: $65

Abstract

Background: Combined in-silico and in-vitro approaches were adopted to investigate the antiplasmodial activity of Catharanthus roseus and Tylophora indica plant extracts as well as their isolated components (vinblastine, vincristine and tylophorine).

Methods: We employed molecular docking to prioritize phytochemicals from a library of 26 compounds against Plasmodium falciparum multidrug-resistance protein 1 (PfMDR1). Furthermore, Molecular Dynamics (MD) simulations were performed for a duration of 10 ns to estimate the dynamical structural integrity of ligand-receptor complexes.

Results: The retrieved bioactive compounds viz. tylophorine, vinblastin and vincristine were found to exhibit significant interacting behaviour; as validated by in-vitro studies on chloroquine sensitive (3D7) as well as chloroquine resistant (RKL9) strain. Moreover, they also displayed stable trajectory (RMSD, RMSF) and molecular properties with consistent interaction profile in molecular dynamics simulations.

Conclusion: We anticipate that the retrieved phytochemicals can serve as the potential hits and presented findings would be helpful for the designing of malarial therapeutics.

Keywords: Malaria, PfMDR1, docking, schizont maturation assay, Plasmodium, molecular dynamics.

Graphical Abstract
[1]
Hartman, T.K.; Rogerson, S.J.; Fischer, P.R. The impact of maternal malaria on newborns. Annal. Trop. Paediatr., 2010, 30, 271-282.
[2]
Baird, J.K. Evidence and implications of mortality associated with acute Plasmodium vivax malaria. Clinic. microbial., 2013, 26, 36-57.
[3]
Gething, P.W.; Casey, D.C.; Weiss, D.J.; Donal, B.; Samir, B.; Ewan, C.; Katherine, E.B.; Ursula, D.; Jennifer, R.; Puja, C.R.; Michael, J.K.; Ryan, M.B.; Chantal, H.; Katya, A.S.; Matthew, M.C.; Grant, N.; Maya, S.F.; Rachel, K.; Haidong, W.; Mohsen, N.; David, L.S.; Christopher, J.L.M.; Simon, I.H.; Stephen, S.L. Mapping Plasmodium falciparum mortality in Africa between 1990 and 2015. N. Engl. J. Med., 2016, 375, 2435-2445.
[4]
WHO, World malaria report 2015. Geneva: WHO, 2015. World Health Organization. Global technical strategy for malaria 2016- 2030. Geneva: WHO.2015; , 2015, 11, pp. S81-S91.
[5]
Vos, T.; Allen, C.; Arora, M.; Barber, R.M.; Bhutta, Z.A.; Brown, A.; Carter, A.; Casey, D.C.; Charlson, F.J.; Chen, A.Z.; Coggeshall, M.; Cornaby, L. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet, 2016, 388, 1545-1602.
[6]
Feigin, V. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet, 2016, 388, 1459-1544.
[7]
Sachs, J.; Malaney, P. The economic and social burden of malaria. Nature, 2002, 415, 680-685.
[8]
Mirjam, G.; Hannah, S.F.; Luzia, V.; Albert, L.; Michael, R. A systematic review of the clinical presentation, treatment and relapse characteristics of human Plasmodium ovale malaria. Malaria . J., 2017, 16, 112.
[9]
Athar, M.; Lone, M.Y.; Khedkar, V.M.; Jha, P.C. Pharmacophore model prediction, 3D-QSAR and molecular docking studies on vinyl sulfones targeting Nrf2-mediated gene transcription intended for anti-Parkinson drug design. J. Biomole. Struct. Dynam., 2016, 34, 1282-1297.
[10]
Athar, M.; Lone, M.Y.; Jha, P.C. Designing of calixarene based drug carrier for dasatinib, lapatinib and nilotinib using multilevel molecular docking and dynamics simulations. J. Incl. Phenomena . Macrocyc. Chem., 2018, 90, 157-169.
[11]
Lone, M.Y.; Athar, M. 1.; Gupta, V.K.; Jha, P.C. Prioritization of natural compounds against mycobacterium tuberculosis 3-dehydroquinate dehydratase: A combined in-silico and in-vitro study. Biochem. biophysic. Res. Commun., 2017, 491, 1105-1111.
[12]
Balunas, M.J.; Kinghorn, A.D. Drug discovery from medicinal plants. Life sci., 2005, 78, 431-441.
[13]
Rollinger, J.M.; Stuppner, H.; Langer, T. Virtual screening for the discovery of bioactive natural products. Nat. Comp. Drugs., 2008, 1, 211-249.
[14]
Ehrman, T.M.; Barlow, D.J.; Hylands, P.J. Virtual screening of Chinese herbs with random forest. J. Chem. Info. Model., 2007, 47, 264-278.
[15]
Ehrman, T.; Barlow, D.; Hylands, P. Phytochemical informatics and virtual screening of herbs used in Chinese medicine. Curr. Pharmaceut. Design., 2010, 16, 1785-1798.
[16]
Harvey, A.L. Natural products in drug discovery. Drug dis. today, 2008, 13, 894-901.
[17]
Foote, S.J.; Kyle, D.E.; Martin, R.K.; Oduola, A.M.; Forsyth, K.; Kemp, D.J.; Cowman, A.F. Several alleles of the multidrug-resistance gene are closely linked to chloroquine resistance in Plasmodium falciparum. Nature, 1990, 345(6272), 255-258.
[18]
Van Es, H.; Karcz, S.; Chu, F.; Cowman, A.F.; Vidal, S.; Gros, P.; Schurr, E. Expression of the plasmodial pfmdr1 gene in mammalian cells is associated with increased susceptibility to chloroquine. Mole. Cellular Boil., 1994, 14, 2419-2428.
[19]
Leimanis, M.L. Characterization of ABC Transporters in Both Mammalian Cells (ABCG2, ABCC2) and Plasmodium Falciparum (Pgh1).2008 McGill University.
[20]
Sanchez, C.P.; Rotmann, A.; Stein, W.D.; Lanzer, M. Polymorphisms within PfMDR1 alter the substrate specificity for anti‐malarial drugs in Plasmodium falciparum. Mol. Microbiol., 2008, 70, 786-798.
[21]
Wilson, C.; Serrano, A.E.; Wasley, A.; Bogenschutz, M.P.; Shankar, A.H.; Wirth, D.F. Amplification of a gene related to mammalian mdr genes in drug-resistant Plasmodium falciparum. Science, 1989, 244, 1184-1186.
[22]
Patel, S.K.; George, L.B.; Kumar, S.P.; Highland, H.N.; Jasrai, Y.T.; Pandya, H.A.; Desai, K.R. A computational approach towards the understanding of Plasmodium falciparum multidrug resistance protein 1. ISRN Bioinform 2013, 2013.
[23]
Rameshkumar, S.; Eswaran, K. Ecology, utilization and coastal management of salt tolerant plants (halophytes and mangroves) of Mypad coastal regions, Andhra Pradesh, India. Int. J. Environ. Biol., 2013, 3, 1-8.
[24]
Ganguly, T.; Badheka, L.; Sainis, K. Immunomodulatory effect of Tylophora indica on Con A induced lymphoproliferation. Phytomedicine, 2001, 8, 431-437.
[25]
Gopalkrishan, C.; Shankaranarayanan, D.; Nazimudeen, S.K.; Kameswaran, L. Studies of pharmacological effects of extracts and total alkaloids of Tylophora indica. Indian J. med. Res., 1980, 71, 940-948.
[26]
Bolton, E.E.; Wang, Y.; Thiessen, P.A.; Bryant, S.H. PubChem: Integrated platform of small molecules and biological activities. Annu. Annual rep. comput.Chem, 2008, 4, 217-241.
[27]
Krieger, E.; Darden, T.; Nabuurs, S.B.; Finkelstein, A.; Vriend, G. Making optimal use of empirical energy functions: Force‐field parameterization in crystal space. Prot. Struct. Funct. Bioinform., 2004, 57, 678-683.
[28]
Duan, Y.; Wu, C.; Chowdhury, S.; Lee, M.C.; Xiong, G.; Zhang, W.; Yang, R.; Cieplak, P.; Luo, R.; Lee, T.; Caldwell, J.; Wang, J.; Kollman, P. A point‐charge force field for molecular mechanics simulations of proteins based on condensed‐phase quantum mechanical calculations. J. Comput. Chem., 2003, 24, 1999-2012.
[29]
Patel, S.K.; Jha, P.C.; Jasrai, Y.; Pandya, H.A.; George, L. 200 Structural insights into the theoretical model of Plasmodium falciparum multi drug resistance 1 protein (PfMDR1) and its interaction with phytochemicals as efficacious antimalarial drugs: An in silico and in vitro approach. J. Biomole. Struct. Dynamic., 2015, 33, 132-134.
[30]
Trott, O.; Olson, A.J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31, 455-461.
[31]
Bowers, K.J.; Dror, R.O.; Shaw, D.E. The midpoint method for parallelization of particle simulations. J. Chem. physics., 2006, 124, 184109.
[32]
Bowers, K.J.; Chow, D.E.; Xu, H.; Dror, R.O.; Eastwood, M.P.; Gregersen, B.A. Scalable algorithms for molecular dynamics simulations on commodity clusters in SC 2006 Conference, Proceedings of the ACM/IEEE. , 2006. IEEE
[33]
Damm, W.; Frontera, A.; Tirado-Rives, J.; Jorgensen, W.L. OPLS all‐atom force field for carbohydrates. J. Comput. Chem., 1997, 18, 1955-1970.
[34]
Price, D.J., and; C.L., Brooks Detailed considerations for a balanced and broadly applicable force field: A study of substituted benzenes modeled with OPLS‐AA. J. Comput. Chem., 2005, 26, 1529-1541.
[35]
Jorgensen, W.L.; Tirado-Rives, J. Potential energy functions for atomic-level simulations of water and organic and biomolecular systems. Proceed. Nation. Acad. Sci. U.S.A., 2005, 102, 6665-6670.
[36]
Wu, Y.; Tepper, H.L.; Voth, G.A. Flexible simple point-charge water model with improved liquid-state properties. J. Chem. Physics., 2006, 124, 024503.
[37]
Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: An N⋅ log (N) method for Ewald sums in large systems. J. Chem. Physics., 1993, 98, 10089-10092.
[38]
Hoover, W.G. Canonical dynamics: equilibrium phase-space distributions. Physical Review A, 1985, 31, 1695.
[39]
Trager, W.; Jensen, J.B. Human malaria parasites in continuous culture. Science, 1976, 193, 673-675.
[40]
Philippe, G.; Angenot, L.; De Mol, P.; Goffin, E.; Hayette, M.P. Tits, M.; Frédérich, M. In vitro screening of some Strychnos species for antiplasmodial activity. J. Ethnopharmacol., 2005, 97, 535-539.
[41]
Pink, R.; Hudson, A.; Mouriès, M.A.; Bendig, M. Opportunities and challenges in antiparasitic drug discovery. Nat. Rev. Drug Dis., 2005, 4, 727-740.
[42]
Gigant, B.; Wang, C.; Ravelli, R.B.; Roussi, F.; Steinmetz, M.O.; Curmi, P.A.; Sobel, A.; Knossow, M. Structural basis for the regulation of tubulin by vinblastine. Nature, 2005, 435, 519-522.
[43]
Vistoli, G.; Pedretti, A.; Testa, B. Assessing drug-likeness–what are we missing? Drug dis. today, 2008, 13, 285-294.
[44]
Athar, M.; Lone, M.Y.; Jha, P.C. First protein drug target’s appraisal of lead-likeness descriptors to unfold the intervening chemical space. J. Mol. Mole. Graphics., 2017, 72, 272-282.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy