Antifungal Activity Directed Toward the Cell Wall by 2-Cyclohexylidenhydrazo- 4-Phenyl-Thiazole Against Candida albicans

Author(s): Nívea P. de Sá*, Ana P. Pôssa*, Pilar Perez, Jaqueline M.S. Ferreira, Nayara C. Fonseca, Cleudiomar I. Lino, Lana B. Cruz, Renata B. de Oliveira, Carlos A. Rosa, Beatriz M. Borelli, Eleftherios Mylonakis, Beth B. Fuchs, Susana Johann.

Journal Name: Infectious Disorders - Drug Targets
(Formerly Current Drug Targets - Infectious Disorders)

Volume 19 , Issue 4 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: The increasing incidence of invasive forms of candidiasis and resistance to antifungal therapy leads us to seek new and more effective antifungal compounds.

Objective: To investigate the antifungal activity and toxicity as well as to evaluate the potential targets of 2- cyclohexylidenhydrazo-4-phenyl-thiazole (CPT) in Candida albicans.

Methods: The antifungal activity of CPT against the survival of C. albicans was investigated in Caenorhabditis elegans. Additionally, we determined the effect of CPT on the inhibition of C. albicans adhesion capacity to buccal epithelial cells (BECs), the toxicity of CPT in mammalian cells, and the potential targets of CPT in C. albicans.

Results: CPT exhibited a minimum inhibitory concentration (MIC) value of 0.4-1.9 µg/mL. Furthermore, CPT at high concentrations (>60 x MIC) showed no or low toxicity in HepG2 cells and <1% haemolysis in human erythrocytes. In addition, CPT decreased the adhesion capacity of yeasts to the BECs and prolonged the survival of C. elegans infected with C. albicans. Analysis of CPT-treated cells showed that their cell wall was thinner than that of untreated cells, especially the glucan layer. We found that there was a significantly lower quantity of 1,3-β-D-glucan present in CPT-treated cells than that in untreated cells. Assays performed on several mutant strains showed that the MIC value of CPT was high for its antifungal activity on yeasts with defective 1,3-β-glucan synthase.

Conclusion: In conclusion, CPT appears to target the cell wall of C. albicans, exhibits low toxicity in mammalian cells, and prolongs the survival of C. elegans infected with C. albicans.

Keywords: Anticandidal activity, β-glucan, Candida albicans, 2-cyclohexylidenhydrazo-4-phenyl-thiazole, Synthetic compounds, Virulence.

[1]
Edmond, M.B.; Wallace, S.E.; McClish, D.K.; Pfaller, M.A.; Jones, R.N.; Wenzel, R.P. Nosocomial bloodstream infections in United States hospitals: a three-year analysis. Clin. Infect. Dis., 1999, 29(2), 239-244.
[http://dx.doi.org/10.1086/520192] [PMID: 10476719]
[2]
Pfaller, M.A.; Diekema, D.J. Epidemiology of invasive mycoses in North America. Crit. Rev. Microbiol., 2010, 36(1), 1-53.
[http://dx.doi.org/10.3109/10408410903241444] [PMID: 20088682]
[3]
Doi, A.M.; Pignatari, A.C.C.; Edmond, M.B.; Marra, A.R.; Camargo, L.F.A.; Siqueira, R.A.; da Mota, V.P.; Colombo, A.L. Epidemiology and Microbiologic Characterization of Nosocomial Candidemia from a Brazilian National Surveillance Program. PLoS One, 2016, 11(1)e0146909
[http://dx.doi.org/10.1371/journal.pone.0146909] [PMID: 26808778]
[4]
Barchiesi, F.; Orsetti, E.; Mazzanti, S.; Trave, F.; Salvi, A.; Nitti, C.; Manso, E. Candidemia in the elderly: What does it change? PLoS One, 2017, 12(5)e0176576
[http://dx.doi.org/10.1371/journal.pone.0176576] [PMID: 28493896]
[5]
Nucci, M.; Queiroz-Telles, F.; Alvarado-Matute, T.; Tiraboschi, I.N.; Cortes, J.; Zurita, J.; Guzman-Blanco, M.; Santolaya, M.E.; Thompson, L.; Sifuentes-Osornio, J.; Echevarria, J.I.; Colombo, A.L. Latin American Invasive Mycosis Network. Epidemiology of candidemia in Latin America: a laboratory-based survey. PLoS One, 2013, 8(3)e59373
[http://dx.doi.org/10.1371/journal.pone.0059373] [PMID: 23527176]
[6]
Fu, J.; Ding, Y.; Wei, B.; Wang, L.; Xu, S.; Qin, P.; Wei, L.; Jiang, L. Epidemiology of Candida albicans and non-C.albicans of neonatal candidemia at a tertiary care hospital in western China. BMC Infect. Dis., 2017, 17(1), 329.
[http://dx.doi.org/10.1186/s12879-017-2423-8] [PMID: 28477628]
[7]
Arendrup, M.C. Candida and candidaemia. Susceptibility and epidemiology. Dan. Med. J., 2013, 60(11), B4698.
[PMID: 24192246]
[8]
Gafter-Gvili, A.; Vidal, L.; Goldberg, E.; Leibovici, L.; Paul, M. Treatment of invasive candidal infections: systematic review and meta-analysis. Mayo Clin. Proc., 2008, 83(9), 1011-1021.
[http://dx.doi.org/10.4065/83.9.1011] [PMID: 18775201]
[9]
Pappas, P.G.; Kauffman, C.A.; Andes, D.; Benjamin, D.K., Jr; Calandra, T.F.; Edwards, J.E., Jr; Filler, S.G.; Fisher, J.F.; Kullberg, B.J.; Ostrosky-Zeichner, L.; Reboli, A.C.; Rex, J.H.; Walsh, T.J.; Sobel, J.D. Infectious Diseases Society of America. Clinical practice guidelines for the management of candidiasis: 2009 update by the Infectious Diseases Society of America. Clin. Infect. Dis., 2009, 48(5), 503-535.
[http://dx.doi.org/10.1086/596757] [PMID: 19191635]
[10]
Odds, F.C.; Brown, A.J.; Gow, N.A. Antifungal agents: mechanisms of action. Trends Microbiol., 2003, 11(6), 272-279.
[http://dx.doi.org/10.1016/S0966-842X(03)00117-3] [PMID: 12823944]
[11]
Kollar, R.; Reinhold, B.B.; Petrakova, E.; Yeh, H.J.; Ashwell, G.; Drgonová, J.; Kapteyn, J.C.; Klis, F.M.; Cabib, E. Architecture of the yeast cell wall. B (1 →6)-glucan interconnects mannoprotein, β(1 →)3-glucan, and chitin. J. Biol. Chem., 1997, 272(762), 17-75.
[12]
Vink, E.; Rodriguez-Suarez, R.J.; Gérard-Vincent, M.; Ribas, J.C.; de Nobel, H.; van den Ende, H.; Durán, A.; Klis, F.M.; Bussey, H. An in vitro assay for (1 --> 6)-β-D-glucan synthesis in Saccharomyces cerevisiae. Yeast, 2004, 21(13), 1121-1131.
[http://dx.doi.org/10.1002/yea.1156] [PMID: 15484287]
[13]
Douglas, C.M.; Foor, F.; Marrinan, J.A.; Morin, N.; Nielsen, J.B.; Dahl, A.M.; Mazur, P.; Baginsky, W.; Li, W.; el-Sherbeini, M. The Saccharomyces cerevisiae FKS1 (ETG1) gene encodes an integral membrane protein which is a subunit of 1,3-beta-D-glucan synthase. Proc. Natl. Acad. Sci. USA, 1994, 91(26), 12907-12911.
[http://dx.doi.org/10.1073/pnas.91.26.12907] [PMID: 7528927]
[14]
Klis, F.M.; Boorsma, A.; De Groot, P.W.J. Cell wall construction in Saccharomyces cerevisiae. Yeast, 2006, 23(3), 185-202.
[http://dx.doi.org/10.1002/yea.1349] [PMID: 16498706]
[15]
Lesage, G.; Bussey, H. Cell wall assembly in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev., 2006, 70(2), 317-343.
[http://dx.doi.org/10.1128/MMBR.00038-05] [PMID: 16760306]
[16]
Hector, R.F. Compounds active against cell walls of medically important fungi. Clin. Microbiol. Rev., 1993, 6(1), 1-21.
[http://dx.doi.org/10.1128/CMR.6.1.1] [PMID: 8457977]
[17]
Munro, C.A.; Richard, M.L. The cell wall: glycoproteins, remodeling, and regulation. Candida and candidiasis,; 2nd ed; Calderone, R.A.; Clancy, C.J., Eds.; ASM Press: Washington, DC,. , 2012, pp. 197-223.
[http://dx.doi.org/10.1128/9781555817176.ch14]
[18]
Holla, B.S.; Malini, K.V.; Rao, B.S.; Sarojini, B.K.; Kumari, N.S. Synthesis of some new 2,4-disubstituted thiazoles as possible antibacterial and anti-inflammatory agents. Eur. J. Med. Chem., 2003, 38(3), 313-318.
[http://dx.doi.org/10.1016/S0223-5234(02)01447-2] [PMID: 12667698]
[19]
Vijesh, A.M.; Isloor, A.M.; Prabhu, V.; Ahmad, S.; Malladi, S. Synthesis, characterization and anti-microbial studies of some novel 2,4-disubstituted thiazoles. Eur. J. Med. Chem., 2010, 45(11), 5460-5464.
[http://dx.doi.org/10.1016/j.ejmech.2010.07.048] [PMID: 20716467]
[20]
Pereira de Sá, N.; Lino, C.I.; Fonseca, N.C.; Borelli, B.M.; Ramos, J.P.; Souza-Fagundes, E.M.; Rosa, C.A.; Santos, D.A.; Barbosa de Oliveira, R.; Johann, S. Thiazole compounds with activity against Cryptococcus gattii and Cryptococcus neoformans in vitro. Eur. J. Med. Chem., 2015, 102, 233-242.
[http://dx.doi.org/10.1016/j.ejmech.2015.07.032] [PMID: 26276437]
[21]
Maccioni, E.; Cardia, M.C.; Bonsignore, L.; Plumitallo, A.; Pellerano, M.L.; De Logu, A. Synthesis and anti-microbial activity of isothiosemicarbazones and cyclic analogues. Farmaco, 2002, 57(10), 809-817.
[http://dx.doi.org/10.1016/S0014-827X(02)01288-0] [PMID: 12420876]
[22]
Bharti, S.K.; Nath, G.; Tilak, R.; Singh, S.K. Synthesis, anti-bacterial and anti-fungal activities of some novel Schiff bases containing 2,4-disubstituted thiazole ring. Eur. J. Med. Chem., 2010, 45(2), 651-660.
[http://dx.doi.org/10.1016/j.ejmech.2009.11.008] [PMID: 19932927]
[23]
De Logu, A.; Saddi, M.; Cardia, M.C.; Borgna, R.; Sanna, C.; Saddi, B.; Maccioni, E. In vitro activity of 2-cyclohexyliden-hydrazo-4-phenyl-thiazole compared with those of amphotericin B and fluconazole against clinical isolates of Candida spp. and fluconazole-resistant Candida albicans. J. Antimicrob. Chemother., 2005, 55(5), 692-698.
[http://dx.doi.org/10.1093/jac/dki084] [PMID: 15772140]
[24]
Clinical and Laboratory Standards Institute. Reference method for broth dilution antifungal susceptibility testing of yeasts; Third edition; Approved standard M27-A3.: CLSI, Wayne, PA. , 2008.
[25]
Espinel-Ingroff, A.; Boyle, K.; Sheehan, D.J. In vitro antifungal activities of voriconazole and reference agents as determined by NCCLS methods: review of the literature. Mycopathologia, 2001, 150(3), 101-115.
[http://dx.doi.org/10.1023/A:1010954803886] [PMID: 11469757]
[26]
Evans, B.C.; Nelson, C.E.; Yu, S.S.; Beavers, K.R.; Kim, A.J.; Li, H.; Nelson, H.M.; Giorgio, T.D.; Duvall, C.L. Ex vivo red blood cell hemolysis assay for the evaluation of pH-responsive endosomolytic agents for cytosolic delivery of biomacromolecular drugs. J. Vis. Exp., 2013, 73(73)e50166
[http://dx.doi.org/10.3791/50166] [PMID: 23524982]
[27]
Kwon, B.; Kumar, P.; Lee, H.K.; Zeng, L.; Walsh, K.; Fu, Q.; Barakat, A.; Querfurth, H.W. Aberrant cell cycle reentry in human and experimental inclusion body myositis and polymyositis. Hum. Mol. Genet., 2014, 23(14), 3681-3694.
[http://dx.doi.org/10.1093/hmg/ddu077] [PMID: 24556217]
[28]
Breger, J.; Fuchs, B.B.; Aperis, G.; Moy, T.I.; Ausubel, F.M.; Mylonakis, E. Antifungal chemical compounds identified using a C. elegans pathogenicity assay. PLoS Pathog., 2007, 3(2)e18
[http://dx.doi.org/10.1371/journal.ppat.0030018] [PMID: 17274686]
[29]
Kimura, L.H.; Pearsall, N.N. Adherence of Candida albicans to human buccal epithelial cells. Infect. Immun., 1978, 21(1), 64-68.
[PMID: 361571]
[30]
Ellepola, A.N.; Samaranayake, L.P. Adhesion of oral Candida albicans isolates to denture acrylic following limited exposure to antifungal agents. Arch. Oral Biol., 1998, 43(12), 999-1007.
[http://dx.doi.org/10.1016/S0003-9969(98)00075-2] [PMID: 9877331]
[31]
Lyon, J.P.; de Resende, M.A. Correlation between adhesion, enzyme production, and susceptibility to fluconazole in Candida albicans obtained from denture wearers. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 2006, 102(5), 632-638.
[http://dx.doi.org/10.1016/j.tripleo.2005.12.015] [PMID: 17052640]
[32]
Johann, S.; Soldi, C.; Lyon, J.P.; Pizzolatti, M.G.; Resende, M.A. Antifungal activity of the amyrin derivatives and in vitro inhibition of Candida albicans adhesion to human epithelial cells. Lett. Appl. Microbiol., 2007, 45(2), 148-153.
[http://dx.doi.org/10.1111/j.1472-765X.2007.02162.x] [PMID: 17651210]
[33]
Santos, G.D.; Ferri, P.H.; Santos, S.C.; Bao, S.N.; Soares, C.M.; Pereira, M. Oenothein B inhibits the expression of PbFKS1 transcript and induces morphological changes in Paracoccidioides brasiliensis. Med. Mycol., 2007, 45(7), 609-618.
[http://dx.doi.org/10.1080/13693780701502108] [PMID: 18033615]
[34]
Pringle, J.R. Staining of bud scars and other cell wall chitin with calcofluor. Methods Enzymol., 1991, 194, 732-735.
[http://dx.doi.org/10.1016/0076-6879(91)94055-H] [PMID: 2005820]
[35]
Masuoka, J. Surface glycans of Candida albicans and other pathogenic fungi: physiological roles, clinical uses, and experimental challenges. Clin. Microbiol. Rev., 2004, 17(2), 281-310.
[http://dx.doi.org/10.1128/CMR.17.2.281-310.2004] [PMID: 15084502]
[36]
Sekiya-Kawasaki, M.; Abe, M.; Saka, A.; Watanabe, D.; Kono, K.; Minemura-Asakawa, M.; Ishihara, S.; Watanabe, T.; Ohya, Y. Dissection of upstream regulatory components of the Rho1p effector, 1,3-beta-glucan synthase, in Saccharomyces cerevisiae. Genetics, 2002, 162(2), 663-676.
[PMID: 12399379]
[37]
Free, S.J. Fungal cell wall organization and biosynthesis. Adv. Genet., 2013, 81, 33-82.
[http://dx.doi.org/10.1016/B978-0-12-407677-8.00002-6] [PMID: 23419716]
[38]
Arvanitis, M.; Glavis-Bloom, J.; Mylonakis, E. C. elegans for anti-infective discovery. Curr. Opin. Pharmacol., 2013, 13(5), 769-774.
[http://dx.doi.org/10.1016/j.coph.2013.08.002] [PMID: 23993686]
[39]
Molano, J.; Bowers, B.; Cabib, E. Distribution of chitin in the yeast cell wall. An ultrastructural and chemical study. J. Cell Biol., 1980, 85(2), 199-212.
[http://dx.doi.org/10.1083/jcb.85.2.199] [PMID: 6989839]
[40]
Klis, F.M.; Mol, P.; Hellingwerf, K.; Brul, S. Dynamics of cell wall structure in Saccharomyces cerevisiae. FEMS Microbiol. Rev., 2002, 26(3), 239-256.
[http://dx.doi.org/10.1111/j.1574-6976.2002.tb00613.x] [PMID: 12165426]
[41]
García, R.; Bermejo, C.; Grau, C.; Pérez, R.; Rodríguez-Peña, J.M.; Francois, J.; Nombela, C.; Arroyo, J. The global transcriptional response to transient cell wall damage in Saccharomyces cerevisiae and its regulation by the cell integrity signaling pathway. J. Biol. Chem., 2004, 279(15), 15183-15195.
[http://dx.doi.org/10.1074/jbc.M312954200] [PMID: 14739279]
[42]
Ishiguro, J.; Saitou, A.; Durán, A.; Ribas, J.C. cps1+, a Schizosaccharomyces pombe gene homolog of Saccharomyces cerevisiae FKS genes whose mutation confers hypersensitivity to cyclosporin A and papulacandin B. J. Bacteriol., 1997, 179(24), 7653-7662.
[http://dx.doi.org/10.1128/jb.179.24.7653-7662.1997] [PMID: 9401022]
[43]
Cortés, J.C.; Konomi, M.; Martins, I.M.; Muñoz, J.; Moreno, M.B.; Osumi, M.; Durán, A.; Ribas, J.C. The (1,3)beta-D-glucan synthase subunit Bgs1p is responsible for the fission yeast primary septum formation. Mol. Microbiol., 2007, 65(1), 201-217.
[http://dx.doi.org/10.1111/j.1365-2958.2007.05784.x] [PMID: 17581129]
[44]
Johnson, M.E.; Edlind, T.D. Topological and mutational analysis of Saccharomyces cerevisiae Fks1. Eukaryot. Cell, 2012, 11(7), 952-960.
[http://dx.doi.org/10.1128/EC.00082-12] [PMID: 22581527]
[45]
Bossche, H.V. Echinocandins - an update. Expert Opin. Ther. Pat., 2002, 12, 151-167.
[http://dx.doi.org/10.1517/13543776.12.2.151]
[46]
Klis, F.M.; de Koster, C.G.; Brul, S. Cell wall-related bionumbers and bioestimates of Saccharomyces cerevisiae and Candida albicans. Eukaryot. Cell, 2014, 13(1), 2-9.
[http://dx.doi.org/10.1128/EC.00250-13] [PMID: 24243791]
[47]
de Groot, P.W.; Ruiz, C.; Vázquez de Aldana, C.R.; Duenas, E.; Cid, V.J.; Del Rey, F.; Rodríquez-Peña, J.M.; Pérez, P.; Andel, A.; Caubín, J.; Arroyo, J.; García, J.C.; Gil, C.; Molina, M.; García, L.J.; Nombela, C.; Klis, F.M. A genomic approach for the identification and classification of genes involved in cell wall formation and its regulation in Saccharomyces cerevisiae. Comp. Funct. Genomics, 2001, 2(3), 124-142.
[http://dx.doi.org/10.1002/cfg.85] [PMID: 18628907]
[48]
Kapteyn, J.C.; Hoyer, L.L.; Hecht, J.E.; Müller, W.H.; Andel, A.; Verkleij, A.J.; Makarow, M.; Van Den Ende, H.; Klis, F.M. The cell wall architecture of Candida albicans wild-type cells and cell wall-defective mutants. Mol. Microbiol., 2000, 35(3), 601-611.
[http://dx.doi.org/10.1046/j.1365-2958.2000.01729.x] [PMID: 10672182]
[49]
Murai, T.; Ueda, M.; Yamamura, M.; Atomi, H.; Shibasaki, Y.; Kamasawa, N.; Osumi, M.; Amachi, T.; Tanaka, A. Construction of a starch-utilizing yeast by cell surface engineering. Appl. Environ. Microbiol., 1997, 63(4), 1362-1366.
[PMID: 9097432]
[50]
Niimi, K.; Monk, B.C.; Hirai, A.; Hatakenaka, K.; Umeyama, T.; Lamping, E.; Maki, K.; Tanabe, K.; Kamimura, T.; Ikeda, F.; Uehara, Y.; Kano, R.; Hasegawa, A.; Cannon, R.D.; Niimi, M. Clinically significant micafungin resistance in Candida albicans involves modification of a glucan synthase catalytic subunit GSC1 (FKS1) allele followed by loss of heterozygosity. J. Antimicrob. Chemother., 2010, 65(5), 842-852.
[http://dx.doi.org/10.1093/jac/dkq073] [PMID: 20233776]
[51]
Piotrowski, J.S.; Okada, H.; Lu, F.; Li, S.C.; Hinchman, L.; Ranjan, A.; Smith, D.L.; Higbee, A.J.; Ulbrich, A.; Coon, J.J.; Deshpande, R.; Bukhman, Y.V.; McIlwain, S.; Ong, I.M.; Myers, C.L.; Boone, C.; Landick, R.; Ralph, J.; Kabbage, M.; Ohya, Y. Plant-derived antifungal agent poacic acid targets β-1,3-glucan. Proc. Natl. Acad. Sci. USA, 2015, 112(12), E1490-E1497.
[http://dx.doi.org/10.1073/pnas.1410400112] [PMID: 25775513]
[52]
Parsons, A.B.; Lopez, A. Givoni, I.E.; Williams, D.E.; Gray, C.A.; Porter, J.; Chua, G.; Sopko, R.; Brost, R.L.; Ho, C.H.; Wang, J.; Ketela, T.; Brenner, C.; Brill, J.A.; Fernandez, G.E.; Lorenz, T.C.; Payne, G.S.; Ishihara, S.; Ohya, Y.; Andrews, B.; Hughes, T.R.; Frey, B.J.; Graham, T.R.; Andersen, R.J. Boone C.Exploring the mode of action of bioactive compounds by chemical-genetic profiling in yeast. Cell, 2006, 126, 611-625.
[http://dx.doi.org/10.1016/j.cell.2006.06.040] [PMID: 16901791]
[53]
Sundstrom, P. Adhesion in Candida spp. Cell. Microbiol., 2002, 4(8), 461-469.
[http://dx.doi.org/10.1046/j.1462-5822.2002.00206.x] [PMID: 12174081]
[54]
Klis, F.M.; Sosinska, G.J.; de Groot, P.W.J.; Brul, S. Covalently linked cell wall proteins of Candida albicans and their role in fitness and virulence. FEMS Yeast Res., 2009, 9(7), 1013-1028.
[http://dx.doi.org/10.1111/j.1567-1364.2009.00541.x] [PMID: 19624749]
[55]
Cabral, V.; Znaidi, S.; Walker, L.A.; Martin-Yken, H.; Dague, E.; Legrand, M.; Lee, K.; Chauvel, M.; Firon, A.; Rossignol, T.; Richard, M.L.; Munro, C.A.; Bachellier-Bassi, S.; d’Enfert, C. Targeted changes of the cell wall proteome influence Candida albicans ability to form single- and multi-strain biofilms. PLoS Pathog., 2014, 10(12)e1004542
[http://dx.doi.org/10.1371/journal.ppat.1004542] [PMID: 25502890]
[56]
Roemer, T.; Jiang, B.; Davison, J.; Ketela, T.; Veillette, K.; Breton, A.; Tandia, F.; Linteau, A.; Sillaots, S.; Marta, C.; Martel, N.; Veronneau, S.; Lemieux, S.; Kauffman, S.; Becker, J.; Storms, R.; Boone, C.; Bussey, H. Large-scale essential gene identification in Candida albicans and applications to antifungal drug discovery. Mol. Microbiol., 2003, 50(1), 167-181.
[http://dx.doi.org/10.1046/j.1365-2958.2003.03697.x] [PMID: 14507372]
[57]
Johnson, M.E.; Katiyar, S.K.; Edlind, T.D. New Fks hot spot for acquired echinocandin resistance in Saccharomyces cerevisiae and its contribution to intrinsic resistance of Scedosporium species. Antimicrob. Agents Chemother., 2011, 55(8), 3774-3781.
[http://dx.doi.org/10.1128/AAC.01811-10] [PMID: 21576441]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 19
ISSUE: 4
Year: 2019
Page: [428 - 438]
Pages: 11
DOI: 10.2174/1871526518666180531101605
Price: $65

Article Metrics

PDF: 14
HTML: 2