Synthesis and Anticonvulsant Activity of α-Amino Acid Amide Derivatives

Author(s): Valerie Currier, Maryam Molki, Katelyn Fryman, Lacey D. Rodgers, A. Michael Crider*.

Journal Name: Current Bioactive Compounds

Volume 15 , Issue 5 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Epilepsy is a disease of the central nervous system that affects approximately 50 million individuals worldwide. Although several new drugs have been marketed in the last 25 years, almost one-third of patients are not protected. In many cases, currently available drugs produce undesirable side effects. As a result, a need exists for novel anticonvulsants with unique mechanisms of action and minimal side effects.

Methods: A mixed anhydride coupling procedure and standard deprotection procedures were utilized to prepare 36 α-amino acid amides. All final products were evaluated in mice and rats utilizing a standard battery of anticonvulsant tests.

Results: α-Amino acids containing a 2,6-dimethylanilide group exhibited anticonvulsant activity in the maximal electroshock seizure test and 6 Hz test in mice and rats. A small, branched-chain on the α- carbon generally maintained or enhanced anticonvulsant activity in the maximal electroshock seizure test. The (R)-α-amino acid amides were typically more potent and slightly more neurotoxic than the corresponding (S)-enantiomers. The valine dimethylanilide (R)-42 was highly active in the MES test in mice (ED50 = 3.6mg/kg) and rats (ED50 = 3.8 mg/kg). (R)-42 also demonstrated excellent anticonvulsant activity in the 6 Hz, picrotoxin, and corneal kindled mouse tests. Furthermore, (R)-42 did not lower seizure threshold when evaluated in the intravenous metrazol seizure test.

Conclusion: α-Amino acid 2,6-dimethylanilides exhibited potent activity in a variety of anticonvulsant tests in mice and rats. The valine derivative (R)-42 represents a promising compound for potential use in complex partial seizures.

Keywords: α-amino acid amides, 2, 6-dimethylanilide, anticonvulsant, 6 Hz test, MES test, central nervous system.

[1]
White, H.S.; Scholl, E.A.; Klein, B.D.; Flynn, S.P.; Pruess, T.H.; Green, B.R.; Zhang, L.; Bulaj, G. Developing novel antiepileptic drugs: Characterization of NAX 5055, a systemically-active galanin analog, in epilepsy models. Neurotherapeutics, 2009, 6(2), 372-380.
[http://dx.doi.org/10.1016/j.nurt.2009.01.001] [PMID: 19332332]
[2]
LaRoche, S.M.; Helmers, S.L. The new antiepileptic drugs: Scientific review. JAMA, 2004, 291(5), 605-614.
[http://dx.doi.org/10.1001/jama.291.5.605] [PMID: 14762040]
[3]
Krauss, G.L.; Choi, J.; Tran, T. Third-generation antiepileptic drugs for treating partial-onset seizures. Eur. Neurol. J., 2010, 2, 1-11.
[4]
Branco-Junior, J.F.; Teixeria, D.R.C.; Pereira, M.C.; Pitta, I.R.; Galdino-Pitta, M.R. The role of oxazolidine derivatives. Curr. Bioact. Compd., 2017, 13, 292-304.
[http://dx.doi.org/10.2174/1573407213666161214162149]
[5]
Danta, C.C.; Sahu, S.B.; Swain, T.R. 2D Pharmacophoric design and synthesis of novel pyrimidine derivatives as anticonvulsants. Curr. Bioact. Compd., 2017, 13, 109-120.
[http://dx.doi.org/10.2174/1573407212666160527104556]
[6]
Singh, B.K.; Sachan, N.; Clawla, P. Synthesis of novel 1,3-disubstituted 5-pyrazolones as anticonvulsant agents. Curr. Bioact. Compd., 2013, 9, 279-287.
[http://dx.doi.org/10.2174/1573407210666140307011414]
[7]
Ho, B.; Venkatarangan, P.; Cruse, S.F.; Hinko, C.N.; Andersen, P.H.; Crider, A.M.; Adloo, A.A.; Roane, D.S.; Stables, J.P. Synthesis of 2-piperidinecarboxylic acid derivatives as potential anticonvulsants. Eur. J. Med. Chem., 1998, 33, 23-31.
[http://dx.doi.org/10.1016/S0223-5234(99)80072-5]
[8]
Ho, B.; Michael Crider, A.; Stables, J.P. Synthesis and structure-activity relationships of potential anticonvulsants based on 2-piperidinecarboxylic acid and related pharmacophores. Eur. J. Med. Chem., 2001, 36(3), 265-286.
[http://dx.doi.org/10.1016/S0223-5234(00)01206-X] [PMID: 11337105]
[9]
Morieux, P.; Salomé, C.; Park, K.D.; Stables, J.P.; Kohn, H. The structure-activity relationship of the 3-oxy site in the anticonvulsant (R)-N-benzyl 2-acetamido-3-methoxypropionamide. J. Med. Chem., 2010, 53(15), 5716-5726.
[http://dx.doi.org/10.1021/jm100508m] [PMID: 20614888]
[10]
King, A.M.; Salome, C.; Salome-Grosjean, E.; De Ryck, M.; Kaminski, R.; Valade, A.; Stables, J.P.; Kohn, H. Primary amino acid derivatives: Substitution of the 4′-N′-Benzyl Site in (R)-N′-Benzyl 2 Amino-3,3-dimethylbutanamide, and (R)-N’Benzyl 2 Amino-3-methoxypropionamide provides potent anticonvulsants with pain attenuating properties. J. Med. Chem., 2011, 54, 6417-6431.
[http://dx.doi.org/10.1021/jm200759t] [PMID: 21861463]
[11]
King, A.M.; Salomé, C.; Dinsmore, J.; Salomé-Grosjean, E.; De Ryck, M.; Kaminski, R.; Valade, A.; Kohn, H. Primary amino acid derivatives: Compounds with anticonvulsant and neuropathic pain protection activities. J. Med. Chem., 2011, 54(13), 4815-4830.
[http://dx.doi.org/10.1021/jm2004305] [PMID: 21639114]
[12]
Franchini, C.; Noja, F.C.; Corbo, F.; Lentini, G.; Tortorella, V.; Bartolini, A.; Ghelardini, C.; Matucci, R.; Giotti, A. Stereoselectivity in central analgesic action of tocainide and its analogs. Chirality, 1993, 5(3), 135-142.
[http://dx.doi.org/10.1002/chir.530050306] [PMID: 8338723]
[13]
Corbo, F.; Franchini, C.; Lentini, G.; Muraglia, M.; Ghelardini, C.; Matucci, R.; Galeotti, N.; Vivoli, E.; Tortorella, V. Synthesis and biological evaluation of chiral α-aminoanilides with central antinociceptive activity. J. Med. Chem., 2007, 50(8), 1907-1915.
[http://dx.doi.org/10.1021/jm061078e] [PMID: 17373780]
[14]
Schӧnenberger, H.; Endres, W. Research on the mechanism of action of local anesthetics. Part 7: Synthesis of N-aminoacyl-2,6-dimethylaniline, benzylamine, and 2-phenylethylamine. Pharmazie, 1976, 31, 30-32.
[PMID: 1257275]
[15]
Pathan, S.A.; Jain, G.K.; Akhter, S.; Vohora, D.; Ahmad, F.J.; Khar, R.K. Insights into the novel three 'D’s of epilepsy treatment: drugs, delivery systems and devices. Drug Discov. Today, 2010, 15(17-18), 717-732.
[http://dx.doi.org/10.1016/j.drudis.2010.06.014] [PMID: 20603226]
[16]
White, H.S.; Woodhead, J.H.; Franklin, M.R.; Swinyard, E.A.; Wolf, H.H. Antiepileptic Drugs, 4th ed; Raven Press: New York, 1995.
[17]
National institute of neurological disorders and stroke. Epilepsy Therapy Screening Program (ETSP).. https://panache.ninds.nih.gov/CurrentModels.aspx (Accessed January 22, 2018)
[18]
Barton, M.E.; Klein, B.D.; Wolf, H.H.; White, H.S. Pharmacological characterization of the 6 Hz psychomotor seizure model of partial epilepsy. Epilepsy Res., 2001, 47(3), 217-227.
[http://dx.doi.org/10.1016/S0920-1211(01)00302-3] [PMID: 11738929]
[19]
Löscher, W. Critical review of current animal models of seizures and epilepsy used in the discovery and development of new antiepileptic drugs. Seizure, 2011, 20(5), 359-368.
[http://dx.doi.org/10.1016/j.seizure.2011.01.003] [PMID: 21292505]
[20]
Rowley, N.M.; White, H.S. Comparative anticonvulsant efficacy in the corneal kindled mouse model of partial epilepsy: Correlation with other seizure and epilepsy models. Epilepsy Res., 2010, 92(2-3), 163-169.
[http://dx.doi.org/10.1016/j.eplepsyres.2010.09.002] [PMID: 20951004]
[21]
Newland, C.F.; Cull-Candy, S.G. On the mechanism of action of picrotoxin on GABA receptor channels in dissociated sympathetic neurones of the rat. J. Physiol., 1992, 447, 191-213.
[http://dx.doi.org/10.1113/jphysiol.1992.sp018998] [PMID: 1317428]
[22]
White, S.H.; Woodhead, J.H.; Wilcox, K.S.; Stables, J.P.; Kupferberg, H.J.; Wolf, H.H. Antiepileptic Drugs; Levy, R.H.; Mattson, R.H.; Meldrum, B.; Perucca, E., Eds.; Lippincott, Williams and Wilkens; Philadelphia, 2005, pp. 37-48.
[23]
Chow, H-F.; Wang, G-X. Enhanced gelation property due to intra-molecular hydrogen bonding in a new series of bis (amino acid)-functionalized pyridine-2,6-dicarboxamide organogelators. Tetrahedron, 2007, 63(31), 7407-7418.
[http://dx.doi.org/10.1016/j.tet.2007.02.037]
[24]
Byrnes, E.W.; McMaster, P.D.; Smith, E.R.; Blair, M.R.; Boyes, R.N.; Duce, B.R.; Feldman, H.S.; Kronberg, G.H.; Takman, B.H.; Tenthorey, P.A. New antiarrhythmic agents. 1. Primary α-amino anilides. J. Med. Chem., 1979, 22(10), 1171-1176.
[http://dx.doi.org/10.1021/jm00196a005] [PMID: 513064]
[25]
Moinet, G.; Cravo, D.; Mesangeau, D.; Doare, L.; Kergoat, M. Preparation of [(aminoiminomethyl)amino]alkanecarboxamides useful in the treatment of pathologies associated with insulin resistance syndrome. PCT Int. Appl. WO 2000042001A1, 2000.
[26]
Catalano, A.; Carocci, A.; Lentini, G.; DiMola, A.; Bruno, C.; Franchini, C. Facile routes for the preparation of 3,4-disubstituted 1,3-oxazolidines and 1,2,5-trisubstituted imidazolidine-4-one. J. Heterocycl. Chem., 2011, 48, 261-266.
[http://dx.doi.org/10.1002/jhet.536]
[27]
Fozzard, H.A.; Sheets, M.F.; Hanck, D.A. The sodium channel as a target for local anesthetic drugs. Front. Pharmacol., 2011, 2, 1-6.
[http://dx.doi.org/10.3389/fphar.2011.00068] [PMID: 22053156]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 15
ISSUE: 5
Year: 2019
Page: [547 - 561]
Pages: 15
DOI: 10.2174/1573407214666180530081328
Price: $58

Article Metrics

PDF: 12
HTML: 1

Special-new-year-discount