4-Hydroxy-2-pyridone Derivatives and the δ-pyrone Isostere as Novel Agents Against Mycobacterium smegmatis Biofilm Inhibitors

Author(s): Maheshkumar R. Borkar, Santosh Nandan*, Harish K.M. Nagaraj, Jayashree Puttur, Jisha Manniyodath, Dipankar Chatterji, Evans C. Coutinho *.

Journal Name: Medicinal Chemistry

Volume 15 , Issue 1 , 2019

Submit Manuscript
Submit Proposal

Graphical Abstract:


Abstract:

Background: The treatment of a bacterial infection when the bacterium is growing in a biofilm is a vexed issue. This is because the bacteria in a biofilm behaves differently compared to the individual planktonic free-form. As a result, traditional antibacterial agents lose their activity.

Objective: Presently, there are not many drugs that are effective against bacteria growing in biofilms. Based on literature reports, we have sought to develop novel derivatives of 4-hydroxy-2- pyridone as both antimycobacterial and antibiofilm agents.

Methods: The pyridone derivatives were synthesized by reacting 4-hydroxy-6-methyl-2H-pyran-2- one with appropriate amines and followed by reaction with substituted phenyl isocyanates as reported in the literature.

Results: Four compounds in this series significantly inhibit the growth and formation of biofilm by Mycobacterium smegmatis (mc2 155 strain) at 50 µg/ml. Further, in silico evaluation of the ADME parameters shows that these compounds possess good drug-like properties and have the potential to be developed both as antibiofilm and as oral antimycobacterial agents.

Conclusion: This finding is of significance as presently very few small molecules are known to inhibit biofilm formation in mycobacteria. These compounds are unique in the sense that they are more potent against Mycobacterium smegmatis in the biofilm state compared to the planktonic form.

Keywords: Antibacterial agent, 4-hydroxy-2-pyridones, δ-pyrones, antibiofilm agents, antimycobacterial, Mycobacterium smegmatis.

[1]
O’Toole, G.A.; Pratt, L.A.; Watnick, P.I.; Newman, D.K.; Weaver, V.B.; Kolter, R. Genetic approaches to study of biofilms. Methods Enzymol., 1999, 310, 91-109.
[2]
Kostakioti, M.; Hadjifrangiskou, M.; Hultgren, S.J. Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the post antibiotic era. Cold Spring Harb. Perspect. Med., 2013, 3, a010306.
[3]
Sintim, H.O.; Smith, J.A.; Wang, J.; Nakayama, S.; Yan, L. Paradigm shift in discovering next-generation anti-infective agents: targeting quorum sensing, c-di-GMP signaling and biofilm formation in bacteria with small molecules. Future Med. Chem., 2010, 2, 1005-1035.
[4]
Zeng, Z.; Qian, L.; Cao, L.; Tan, H.; Huang, Y.; Xue, X.; Shen, Y.; Zhou, S. Virtual screening for novel quorum sensing inhibitors to eradicate biofilm formation of Pseudomonas aeruginosa. Appl. Microbiol. Biotechnol., 2008, 79, 119-126.
[5]
Hentzer, M.; Riedel, K.; Rasmussen, T.B.; Heydorn, A.; Andersen, J.B.; Parsek, M.R.; Rice, S.A.; Eberl, L.; Molin, S.; Hoiby, N.; Kjelleberg, S.; Givskov, M. Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound. Microbiology, 2002, 148, 87-102.
[6]
Park, S.; Kim, H.S.; Ok, K.; Kim, Y.; Park, H.D.; Byun, Y. Design, synthesis and biological evaluation of 4-(alkyloxy)-6-methyl-2H-pyran-2-one derivatives as quorum sensing inhibitors. Bioorg. Med. Chem. Lett., 2015, 25, 2913-2917.
[7]
Cegelski, L.; Pinkner, J.S.; Hammer, N.D.; Cusumano, C.K.; Hung, C.S.; Chorell, E.; Aberg, V.; Walker, J.N.; Seed, P.C.; Almqvist, F.; Chapman, M.R.; Hultgren, S.J. Small-molecule inhibitors target Escherichia coli amyloid biogenesis and biofilm formation. Nat. Chem. Biol., 2009, 5, 913-919.
[8]
Rogers, S.A.; Melander, C. Construction and screening of a 2-aminoimidazole library identifies a small molecule capable of inhibiting and dispersing bacterial biofilms across order, class, and phylum. Angew. Chem. Int. Ed. Engl., 2008, 47, 5229-5231.
[9]
Villain-Guillot, P.; Gualtieri, M.; Bastide, L.; Leonetti, J.P. In vitro activities of different inhibitors of bacterial transcription against Staphylococcus epidermidis biofilm. Antimicrob. Agents Chemother., 2007, 51, 3117-3121.
[10]
Reshamwala, S.M.; Mamidipally, C.; Pissurlenkar, R.R.; Coutinho, E.C.; Noronha, S.B. Evaluation of risedronate as an antibiofilm agent. J. Med. Microbiol., 2016, 65, 9-18.
[11]
Payne, D.J.; Gwynn, M.N.; Holmes, D.J.; Pompliano, D.L. Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat. Rev. Drug Discov., 2007, 6, 29-40.
[12]
Hayakawa, S.; Minato, H.; Katagiri, K. The ilicicolins, antibiotics from Cylindrocladium ilicicola. J. Antibiot. , 1971, 24, 653-654.
[13]
Dickinson, J.M.; Hanson, J.R.; Hitchcock, P.B.; Claydon, N. Structure and biosynthesis of harzianopyridone, an antifungal metabolite of Trichoderma harzianum. J. Chem. Soc., Perkin Transactions. 1, 1989, 11, 1885-1887.
[14]
S. Omura, H. Tomoda, K. Kimura, D. Z. Zhent, H. Kumagai, K. Igarashi, N. Imamura, Y. Takahashi, Y. Tanaka and Y. Iwai (1988) Atpenins, new antifungal antibiotics produced by Penicillium sp. Production, isolation, physico-chemical and biological properties. J. Antibiot. , 1988, 41, 1769-1773.
[15]
H. Kumagai, H. Nishida, N. Imamura, H. Tomoda, S. Omura and J. Bordner (1990) The structures of atpenins A4, A5 and B, new antifungal antibiotics produced by Penicillium sp. J. Antibiot. , 1990, 43, 1553-1558.
[16]
Alfatafta, A.A.; Gloer, J.B.; Scott, J.A.; Malloch, D. Apiosporamide, A new antifungal agent from the coprophilous fungus Apiospora montagnei. J. Nat. Prod., 1994, 57, 1696-1702.
[17]
Shibazaki, M.; Taniguchi, M.; Yokoi, T.; Nagai, K.; Watanabe, M.; Suzuki, K.; Yamamoto, T. YM-215343, a novel antifungal compound from Phoma sp. QN04621. J. Antibiot., 2004, 57, 379-382.
[18]
Jessen, H.J.; Gademann, K. 4-Hydroxy-2-pyridone alkaloids: Structures and synthetic approaches. Nat. Prod. Rep., 2010, 27, 1168-1185.
[19]
David John Haydon, L.G.C. Antibacterial condensed thiazoles US 8299065 B2 2012.
[20]
Lee, B.H.; Clothier, M.F.; Dutton, F.E.; Conder, G.A.; Johnson, S.S. Anthelmintic beta-hydroxyketoamides (BKAs). Bioorg. Med. Chem. Lett., 1998, 8, 3317-3320.
[21]
Altaf, M.; Miller, C.H.; Bellows, D.S.; O’Toole, R. Evaluation of the Mycobacterium smegmatis and BCG models for the discovery of Mycobacterium tuberculosis inhibitors. Tuberculosis (Edinb.), 2010, 90, 333-337.
[22]
Shi, T.; Fu, T.; Xie, J. Polyphosphate deficiency affects the sliding motility and biofilm formation of Mycobacterium smegmatis. Curr. Microbiol., 2011, 63, 470-476.
[23]
Abidi, S.H.; Ahmed, K.; Sherwani, S.K.; Bibi, N.; Kazmi, S.U. Detection of Mycobacterium smegmatis biofilm and its control by natural agents. Int. J. Curr. Microbiol. Appl. Sci., 2014, 3, 801-812.
[24]
Sachan, T.K.; Kumar, V. Antibiotic Susceptibility in Biofilms of Mycobacterium smegmatis. Int. J. App. Sci. Biotechnol., 2015, 3, 635-641.
[25]
Palomino, J.C.; Martin, A.; Camacho, M.; Guerra, H.; Swings, J.; Portaels, F. Resazurin microtiter assay plate: Simple and inexpe-nsive method for detection of drug resistance in Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2002, 46, 2720-2722.
[26]
Molinspiration Chemoinformatics Bratislava, S.R. Available at: http://www.molinspiration.com/(accessed April 2016)
[27]
Zhao, Y.H.; Abraham, M.H.; Le, J.; Hersey, A.; Luscombe, C.N.; Beck, G.; Sherborne, B.; Cooper, I. Rate-limited steps of human oral absorption and QSAR studies. Pharm. Res., 2002, 19, 1446-1457.
[28]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46, 3-26.
[29]
Zaheer, Z.; Khan, F.A.; Sangshetti, J.N.; Patil, R.H.; Lohar, K.S. Novel amalgamation of phthalazine-quinolines as biofilm inhibi-tors: One-pot synthesis, biological evaluation and in silico ADME prediction with favorable metabolic fate. Bioorg. Med. Chem. Lett., 2016, 26, 1696-1703.
[30]
Boyer, S.; Arnby, C.H.; Carlsson, L.; Smith, J.; Stein, V.; Glen, R.C. Reaction site mapping of xenobiotic biotransformations. J. Chem. Inf. Model., 2007, 47, 583-590.
[31]
Boyer, S.; Zamora, I. New methods in predictive metabolism. J. Comput. Aided Mol. Des., 2002, 16, 403-413.
[32]
Carlsson, L.; Spjuth, O.; Adams, S.; Glen, R.C.; Boyer, S. Use of historic metabolic biotransformation data as a means of anticipating metabolic sites using MetaPrint2D and Bioclipse. BMC Bioinformatics, 2010, 11, 362.
[33]
Syal, K.; Maiti, K.; Naresh, K.; Avaji, P.G.; Chatterji, D.; Jayaraman, N. Synthetic arabinomannan glycolipids impede myco-bacterial growth, sliding motility and biofilm structure. Glycoconj. J., 2016, 33, 1-15.


Rights & PermissionsPrintExport Cite as


Article Details

VOLUME: 15
ISSUE: 1
Year: 2019
Page: [28 - 37]
Pages: 10
DOI: 10.2174/1573406414666180525075755
Price: $58

Article Metrics

PDF: 29
HTML: 2