Anatomy, Modeling and Biomaterial Fabrication for Dental and Maxillofacial Applications

Anatomy, Modeling and Biomaterial Fabrication for Dental and Maxillofacial Applications

Ceramics have been used as biomaterials for oral and maxillofacial applications due to their excellent bioactivity, high hardness and wear resistance. One of the key drawbacks of synthetic implants ...
[view complete introduction]

US $
30

*(Excluding Mailing and Handling)



Patient Matching

Pp. 67-75 (9)

Andy H. Choi and Besim Ben-Nissan

Abstract

The ability to extract data from computed tomography (CT) or any other appropriate imaging technology to generate the patient’s own model is already a common practice. For example, by integrating computerized modeling with medical imaging, it would be possible to determine the correct location, configuration, size and number of implants needed to address the patient’s functional and restorative needs. Furthermore, this approach can be used to define the form and mechanical requirements of implants and prostheses employed in the treatment of mandibular and maxillary fractures with fixation and reduction of the fracture obtained with minimal osteosynthesis plate bulk, number and size. This integrated system can be coupled with modern rapid prototyping such as 3D printing and laser sintering to produce superstructures and patient matched dental devices and guides.

Keywords:

Bone density, Cancellous bone, Cortical bone, Computed tomography, CT, Elastic properties, Finite element analysis, Finite element modeling, Hounsfield unit, Material properties, Strength.

Affiliation:

Faculty of Science University of Technology Sydney Australia.