Supramolecular Solvent Based Liquid-Liquid Microextraction for Preconcentration of Selected Fluoroquinolone Antibiotics in Environmental Water Sample Prior to High Performance Liquid Chromatographic Determination

Author(s): Shirley K. Selahle, Philiswa N. Nomngongo*.

Journal Name: Current Analytical Chemistry

Volume 15 , Issue 6 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background and Objectives: A rapid, simple and environmental friendly supramolecular solvent (SUPRAS) based liquid-liquid microextraction method for preconcentration of ciprofloxacin (CIPRO), danofloxacin (DANO) and enrofloxacin (ENRO) from wastewater was developed.

Methods: This microextraction technique was coupled with high-performance liquid chromatography equipped with a diode array detector (HPLC-PDA) for detection and separation of the antibiotics. The SUPRAS composed of decanoic acid and tricaprylymethylammonium chloride. Optimum conditions for the extraction and preconcentration of all the antibiotics were obtained using surface response methodology (RSM) based on Box-Behnken design.

Results: Under optimum conditions, the limits of detection (LOD) and limit of quantification (LOQ) ranged from 0.06-0.14 µg L−1 and 0.22-0.47 μg L−1, respectively with the preconcentration factors ranging from 153-241. The linear dynamic ranges were between LOQ and 850 µg L−1 with correlation coefficients ranging from 0.9928 to 0.9999. The intra-day (n = 15) and inter-day (n = 5) precisions (expressed in terms of %RSD) for 50 µg L−1 of CIPRO, DANO and ENRO were in the range of 3.3–4% and 4.1–5.8%, respectively.

Conclusion: Lastly, the developed method was used for the extraction, preconcentration and quantification of selected CIPRO, DANO and ENRO in influent and effluent wastewater samples.

Keywords: Emerging pollutants, pharmaceuticals, fluoroquinolone antibiotics, supramolecular solvent based microextraction, wastewater, response methodology (RSM).

[1]
Williams, R.T. Human pharmaceuticals: assessing the impacts on aquatic ecosystems Ed.; Allen Press/ACG Publishing: Türkiye , 2005.
[2]
Larsson, D.J. Antibiotics in the environment. Ups. J. Med. Sci., 2014, 119(2), 108-112.
[3]
Suzuki, S.; Hoa, P.T. Distribution of quinolones, sulfonamides, tetracyclines in aquatic environment and antibiotic resistance in Indochina. Front. Microbiol., 2012, 3, 67.
[4]
Molu, Z.B.; Yurdakoç, K. Preparation and characterization of aluminum pillared K10 and KSF for adsorption of trimethoprim. Microporous Mesoporous Mater., 2010, 127(1-2), 50-60.
[5]
Michael, I.; Rizzo, L.; McArdell, C.S.; Manaia, C.M.; Merlin, C.; Schwartz, T. Urban waste water treatment plants as hotspots for the release of antibiotics in the environment: A review. Water Res., 2013, 47, 957-993.
[6]
Chang, X.; Meyer, M.T.; Liu, X.; Zhao, Q.; Chen, H.; Chen, J.A.; Qiu, Z.; Yang, L.; Cao, J.; Shu, W. Determination of antibiotics in sewage from hospitals, nursery and slaughter house, wastewater treatment plant and source water in Chongqing region of Three Gorge Reservoir in China. Environ. Pollut., 2010, 158(5), 1444-1450.
[7]
Wei, R.; Ge, F.; Huang, S.; Chen, M.; Wang, R. Occurrence of veterinary antibiotics in animal wastewater and surface water around farms in Jiangsu Province, China. Chemosphere, 2011, 82(10), 1408-1414.
[8]
Gracia-Lor, E.; Martínez, M.; Sancho, J.V.; Peñuela, G.; Hernández, F. Multi-class determination of personal care products and pharmaceuticals in environmental and wastewater samples by ultra-high performance liquid-chromatography-tandem mass spectrometry. Talanta, 2012, 99, 1011-1023.
[9]
Locatelli, M.A.F.; Sodré, F.F.; Jardim, W.F. Determination of antibiotics in Brazilian surface waters using liquid chromatography–electrospray tandem mass spectrometry. Arch. Environ. Contam. Toxicol., 2011, 60(3), 385-393.
[10]
Ashbolt, N.J.; Amézquita, A.; Backhaus, T.; Borriello, P.; Brandt, K.K.; Collignon, P.; Coors, A.; Finley, R.; Gaze, W.H.; Heberer, T.; Lawrence, J.R. Human Health Risk Assessment (HHRA) for environmental development and transfer of antibiotic resistance. Environ. Health Perspect., 2013, 121(9), 993.
[11]
Hernando, M.; Mezcua, M.; Fernández-Alba, A.R.; Barceló, D. Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments. Talanta, 2006, 69(2), 334-342.
[12]
Gulkowska, A.; Leung, H.W.; So, M.K.; Taniyasu, S.; Yamashita, N.; Yeung, L.W.; Richardson, B.J.; Lei, A.P.; Giesy, J.P.; Lam, P.K. Removal of antibiotics from wastewater by sewage treatment facilities in Hong Kong and Shenzhen, China. Water Res., 2008, 42(1-2), 395-403.
[13]
McArdell, C.S.; Molnar, E.; Suter, M.J.F.; Giger, W. Occurrence and fate of macrolide antibiotics in wastewater treatment plants and in the Glatt Valley Watershed, Switzerland. Environ. Sci. Technol., 2003, 37(24), 5479-5486.
[14]
Kümmerer, K. Pharmaceuticals in the environment. Ann. Rev. Environ. Resour., 2010, 35, 57-75.
[15]
Kümmerer, K. Antibiotics in the aquatic environment–a review–part II. Chemosphere, 2009, 75(4), 435-441.
[16]
Rizzo, L.; Manaia, C.; Merlin, C.; Schwartz, T.; Dagot, C.; Ploy, M.C.; Michael, I.; Fatta-Kassinos, D. Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: A review. Sci. Total Environ., 2013, 447, 345-360.
[17]
Zhou, L.J.; Ying, G.G.; Liu, S.; Zhao, J.L.; Chen, F.; Zhang, R.Q.; Peng, F.Q.; Zhang, Q.Q. Simultaneous determination of human and veterinary antibiotics in various environmental matrices by rapid resolution liquid chromatography–electrospray ionization tandem mass spectrometry. J. Chromatogr. A, 2012, 1244, 123-138.
[18]
Herrera-Herrera, A.V.; Hernández-Borges, J.; Borges-Miquel, T.M.; Rodríguez-Delgado, M.Á. Dispersive liquid–liquid microextraction combined with ultra-high performance liquid chromatography for the simultaneous determination of 25 sulfonamide and quinolone antibiotics in water samples. J. Pharm. Biomed. Anal., 2013, 75, 130-137.
[19]
Du, L.J.; Yi, L.; Ye, L.H.; Chen, Y.B.; Cao, J.; Peng, L.Q.; Shi, Y.T.; Wang, Q.Y.; Hu, Y.H. Miniaturized solid-phase extraction of macrolide antibiotics in honey and bovine milk using mesoporous MCM-41 silica as sorbent. J. Chromatogr. A, 2018, 1537, 10-20.
[20]
Kazemi, E.; Shabani, A.M.H.; Dadfarnia, S. Application of graphene oxide-silica composite reinforced hollow fibers as a novel device for pseudo-stir bar solid phase microextraction of sulfadiazine in different matrices prior to its spectrophotometric determination. Food Chem., 2017, 221, 783-789.
[21]
Ballesteros-Gómez, A.; Sicilia, M.; Rubio, S.D. Supramolecular solvents in the extraction of organic compounds. A review. Anal. Chim. Acta, 2010, 677(2), 108-130.
[22]
Mpupa, A.; Mashile, G.P.; Nomngongo, P.N. Vortex assisted-supramolecular solvent based microextraction coupled with spectrophotometric determination of triclosan in environmental water samples. Open Chem., 2017, 15(1), 255-262.
[23]
Ballesteros-Gómez, A.; Rubio, S.; Pérez-Bendito, D. Potential of supramolecular solvents for the extraction of contaminants in liquid foods. J. Chromatogr. A, 2009, 1216(3), 530-539.
[24]
Yazdi, A. Surfactant-based extraction methods. TrAC. Trends Anal. Chem., 2011, 30(6), 918-929.
[25]
García-Fonseca, S.; Ballesteros-Gómez, A.; Rubio, S.; Pérez-Bendito, D. Supramolecular solvent-based microextraction of ochratoxin A in raw wheat prior to liquid chromatography-fluorescence determination. J. Chromatogr. A, 2010, 1217(16), 2376-2382.
[26]
Scheel, G.L.; Tarley, C.R.T. Feasibility of supramolecular solvent-based microextraction for simultaneous preconcentration of herbicides from natural waters with posterior determination by HPLC-DAD. Microchem. J., 2017, 133, 650-657.
[27]
Cardeñosa, V.; Lunar, M.L.; Rubio, S. Generalized and rapid supramolecular solvent-based sample treatment for the determination of annatto in food. J. Chromatogr. A, 2011, 1218(50), 8996-9002.
[28]
Costi, E.M.; Sicilia, M.D.; Rubio, S. Supramolecular solvents in solid sample microextractions: Application to the determination of residues of oxolinic acid and flumequine in fish and shellfish. J. Chromatogr. A, 2010, 1217(9), 1447-1454.
[29]
Zohrabi, P.; Shamsipur, M.; Hashemi, M.; Hashemi, B. Liquid-phase microextraction of organophosphorus pesticides using supramolecular solvent as a carrier for ferrofluid. Talanta, 2016, 160, 340-346.
[30]
Rezaei, F.; Yamini, Y.; Moradi, M.; Daraei, B. Supramolecular solvent-based hollow fiber liquid phase microextraction of benzodiazepines. Anal. Chim. Acta, 2013, 804, 135-142.
[31]
Moradi, M.; Yamini, Y.; Tayyebi, M. Asiabi. Ultrasound-assisted liquid-phase microextraction based on a nanostructured supramolecular solvent. Anal. Bioanal. Chem., 2013, 405(12), 4235-4243.
[32]
Xu, H.; Mi, H.Y.; Guan, M.M.; Shan, H.Y.; Fei, Q.; Huan, Y.F.; Zhang, Z.Q.; Feng, G.D. Residue analysis of tetracyclines in milk by HPLC coupled with hollow fiber membranes-based dynamic liquid-liquid micro-extraction. Food Chem., 2017, 232, 198-202.
[33]
Jouyban, A.; Sorouraddin, M.H.; Farajzadeh, M.A.; Somi, M.H.; Fazeli-Bakhtiyari, R. Determination of five antiarrhythmic drugs in human plasma by dispersive liquid–liquid microextraction and high-performance liquid chromatography. Talanta, 2015, 134, 681-689.
[34]
Payán, M.R.; López, M.Á.B.; Fernández-Torres, R.; González, J.A.O.; Mochón, M.C. Hollow fiber-based liquid phase microextraction (HF-LPME) as a new approach for the HPLC determination of fluoroquinolones in biological and environmental matrices. J. Pharm. Biomed. Anal., 2011, 55(2), 332-341.
[35]
Rezaee, M.; Yamini, Y.; Shariati, S.; Esrafili, A.; Shamsipur, M. Dispersive liquid–liquid microextraction combined with high-performance liquid chromatography-UV detection as a very simple, rapid and sensitive method for the determination of bisphenol A in water samples. J. Chromatogr. A, 2009, 1216(9), 1511-1514.
[36]
Rahmani, M.; Ghasemi, E.; Sasani, M. Application of response surface methodology for air assisted-dispersive liquid-liquid microextraction of deoxynivalenol in rice samples prior to HPLC-DAD analysis and comparison with solid phase extraction cleanup. Talanta, 2017, 165, 27-32.
[37]
Shalash, M.; Makahleh, A.; Salhimi, S.M.; Saad, B. Vortex-assisted liquid-liquid–liquid microextraction followed by high performance liquid chromatography for the simultaneous determination of fourteen phenolic acids in honey, iced tea and canned coffee drinks. Talanta, 2017, 174, 428-435.
[38]
Harrabi, M.; Aloulou, F.; Rodriguez-Mozaz, S.; Verela, S.; Elluech, B. Rapid Analysis of Antibiotic Residues in Urban Wastewater of South Sfax WWTP by Ultra-High-Performance Liquid Chromatography Coupled to Quadrupole-Linear Ion Trap Tandem Mass Spectrometry.In: Euro-Mediterranean Conference for Environmental Integration; Springer: Cham, 2017, pp. 1131-1133.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 15
ISSUE: 6
Year: 2019
Page: [607 - 615]
Pages: 9
DOI: 10.2174/1573411014666180523093933
Price: $58

Article Metrics

PDF: 28
HTML: 2
EPUB: 1
PRC: 1