Cell-Free Fetal DNA: A Novel Biomarker for Early Prediction of Pre-eclampsia and Other Obstetric Complications

Author(s): Naina Kumar*, Amit Kant Singh.

Journal Name: Current Hypertension Reviews

Volume 15 , Issue 1 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Hypertensive disorder of pregnancy, especially Pre-eclampsia is one of the major causes of increased maternal and perinatal morbidity and mortality all over the world. Early prediction of pre-eclampsia is the need of modern obstetrics, as this can timely prevent the progress of disease as well as related fetal and maternal morbidity and mortality. In addition to the screening of fetal aneuploidies, Rhesus-D status, fetal sex, single gene disorders, the cell-free fetal Deoxyribonucleic acid (DNA) quantification has emerged as a promising biomarker for the prediction of pre-eclampsia. Hence, its use can help in the early prediction of hypertensive disorders of pregnancy, especially pre-eclampsia even before the appearance of symptoms. Furthermore, in future, it can also help in the determination of the complete DNA sequence of every gene of the fetus. The present review focuses on recent literature concerning the use of cell-free fetal DNA in early prediction of preeclampsia as well as for non-invasive prenatal genetic screening of fetus for various disorders.

Methods: The recent literature related to cell-free fetal DNA was searched from numerous English language journals and published peer-reviewed articles on Pubmed, Google Scholar, MEDLINE and various government agencies till 2016.

Keywords: Apoptosis, deoxyribonucleic acid, fetus, gestation, placenta, preeclampsia, pregnancy.

[1]
Health Canada Special report on maternal mortality and severe morbidity in Canada Enhanced surveillance: the path to prevention Ottawa: Minister of Public Works and Government Services Canada; 2004 Available at: www.publications.gc.ca/collections/ Collection/H39-4-44-2004E.pdf
[2]
Centre for Maternal and Child EnquiriesSaving mothers’ lives: Reviewing maternal deaths to make motherhood safer: 2006-08. The eighth report on confidential inquiries into maternal deaths in the United Kingdom. BJOG 2011; 118(Suppl. 1): 1-203.
[3]
Magee LA, Pels A, Helewa M, Rey E, von Dadelszen P. Canadian Hypertensive Disorders of Pregnancy Working GroupDiagnosis, evaluation, and management of the hypertensive disorders of pregnancy: Executive summary. J Obstet Gynaecol Can 2014; 36(5): 416-41.
[4]
Gillon TER, Pels A, von Dadelszen P, MacDonell K, Magee LA. Hypertensive disorders of pregnancy: A systematic review of international clinical practice guidelines. PLoS One 2014; 9(12): e113715.
[5]
Leeman L, Fontaine P. Hypertensive disorders of pregnancy. Am Fam Physician 2008; 78(1): 93-100.
[6]
North RA, McCowan LM, Dekker GA, et al. Clinical risk prediction for pre-eclampsia in nulliparous women: Development of model in international prospective cohort. BMJ 2011; 342: d1875.
[7]
Poon LC, Nicolaides KH. Early prediction of preeclampsia. Obstet Gynecol Int 2014; 2014: 297397.
[8]
Scazzocchio E, Figueras F. Contemporary prediction of preeclampsia. Curr Opin Obstet Gynecol 2011; 23(2): 65-71.
[9]
Angeli F, Angeli E, Reboldi G, Verdecchia P. Hypertensive disorders during pregnancy: Clinical applicability of risk prediction models. J Hypertens 2011; 29(12): 2320-3.
[10]
Myatt L, Clifton RG, Roberts JM, et al. Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) Maternal-Fetal Medicine Units (MFMU) Network. First-trimester prediction of preeclampsia in nulliparous women at low risk. Obstet Gynecol 2012; 119(6): 1234-42.
[11]
Committee Opinion No.638: First-trimester risk assessment for early-onset preeclampsia. Obstet Gynecol 2015; 126(3): e25-7.
[12]
Lo YM, Corbetta N, Chamberlain PF, et al. Presence of fetal DNA in maternal plasma and serum. Lancet 1997; 350(9076): 485-7.
[13]
Lo YM, Zhang J, Leung TN, Lau TK, Chang AM, Hjelm NM. Rapid clearance of fetal DNA from maternal plasma. Am J Hum Genet 1999; 64(1): 218-24.
[14]
Kitzman JO, Snyder MW, Ventura M, et al. Noninvasive whole-genome sequencing of a human fetus. Sci Transl Med 2012; 4(137): 137ra76.
[15]
Hahn S, Huppertz B, Holzgreve W. Fetal cells and cell-free fetal nucleic acids in maternal blood: New tools to study abnormal placentation? Placenta 2005; 26(7): 515-26.
[16]
Masuzaki H, Miura K, Yoshiura KI, Yoshimura S, Niikawa N, Ishimaru T. Detection of cell-free placental DNA in maternal plasma: direct evidence from three cases of confined placental mosaicism. J Med Genet 2004; 41(4): 289-92.
[17]
Sifakis S, Koukou Z, Spandidos DA. Cell-free fetal DNA and pregnancy-related complications. Mol Med Rep 2015; 11(4): 2367-72. [review].
[18]
Lo YM. Fetal DNA in maternal plasma: Biology and diagnostic applications. Clin Chem 2000; 46(12): 1903-6.
[19]
Martin A, Krishna I, Badell M, Samuel A. Can the quantity of cell-free fetal DNA predict preeclampsia: A systematic review. Prenat Diagn 2014; 34(7): 685-91.
[20]
Seval MM, Karabulut HG, Tükün A, Koç A. Cell-free fetal DNA in the plasma of pregnant women with preeclampsia. Clin Exp Obstet Gynecol 2015; 42(6): 787-91.
[21]
Lo YM, Leung TN, Tein MS, et al. Quantitative abnormalities of fetal DNA in maternal serum in preeclampsia. Clin Chem 1999; 45(2): 184-8.
[22]
Park HJ, Shim SS, Cha DH. Combined screening for early detection of pre-eclampsia. Int J Mol Sci 2015; 16(8): 17952-74.
[23]
Zhao F, Wang J, Liu R, et al. Quantification and application of the placental epigenetic signature of the RASSF1A gene in maternal plasma. Prenat Diagn 2010; 30(8): 778-82.
[24]
Sifakis S, Zaravinos A, Maiz N, Spandidos DA, Nicolaides KH. First-trimester maternal plasma cell-free fetal DNA and preeclampsia. Am J Obstet Gynecol 2009; 201(5): 472.e1-7.
[25]
Lazar L, Rigó J Jr, Nagy B, et al. Relationship of circulating cell-free DNA levels to cell-free fetal DNA levels, clinical characteristics and laboratory parameters in preeclampsia. BMC Med Genet 2009; 10: 120.
[26]
Smid M, Galbiati S, Lojacono A, et al. Correlation of fetal DNA levels in maternal plasma with Doppler status in pathological pregnancies. Prenat Diagn 2006; 26(9): 785-90.
[27]
Yu H, Shen Y, Ge Q, et al. Quantification of maternal serum cell-free fetal DNA in early-onset preeclampsia. Int J Mol Sci 2013; 14(4): 7571-82.
[28]
Levine RJ, Qian C, Leshane ES, et al. Two-stage elevation of cell-free fetal DNA in maternal sera before onset of preeclampsia. Am J Obstet Gynecol 2004; 190(3): 707-13.
[29]
Farina A, Sekizawa A, Sugito Y, et al. Fetal DNA in maternal plasma as a screening variable for preeclampsia. A preliminary nonparametric analysis of detection rate in low-risk nonsymptomatic patients. Prenat Diagn 2004; 24(2): 83-6.
[30]
Lau TW, Leung TN, Chan LY, et al. Fetal DNA clearance from maternal plasma is impaired in preeclampsia. Clin Chem 2002; 48(12): 2141-6.
[31]
Redman CW. Current topic: Pre-eclampsia and the placenta. Placenta 1991; 12(4): 301-8.
[32]
McMaster-Fay RA, Hyett JA. Cell-free fetal DNA in the pathogenesis of preeclampsia. Am J Obstet Gynecol 2016; 214(4): 548.
[33]
McMaster-Fay RA. Pre-eclampsia: A disease of oxidative stress resulting from the catabolism of DNA (primarily fetal) to uric acid by xanthine oxidase in the maternal liver; a hypothesis. Biosci Hypotheses 2008; 1: 35-43.
[34]
Zhong XY, Holzgreve W, Hahn S. The levels of circulatory cell free fetal DNA in maternal plasma are elevated prior to the onset of preeclampsia. Hypertens Pregnancy 2002; 21(1): 77-83.
[35]
Wataganara T, Bianchi DW. Fetal cell-free nucleic acids in the maternal circulation: new clinical applications. Ann N Y Acad Sci 2004; 1022: 90-9.
[36]
Scharfe-Nugent A, Corr SC, Carpenter SB, et al. TLR9 provokes inflammation in response to fetal DNA: Mechanism for fetal loss in preterm birth and preeclampsia. J Immunol 2012; 188(11): 5706-12.
[37]
Cotter AM, Martin CM, O’leary JJ, Daly SF. Increased fetal DNA in the maternal circulation in early pregnancy is associated with an increased risk of preeclampsia. Am J Obstet Gynecol 2004; 191(2): 515-20.
[38]
Miranda ML, Macher HC, Muñoz-Hernández R, et al. Role of circulating cell-free DNA levels in patients with severe preeclampsia and HELLP syndrome. Am J Hypertens 2013; 26(12): 1377-80.
[39]
Tjoa ML, Cindrova-Davies T, Spasic-Boskovic O, Bianchi DW, Burton GJ. Trophoblastic oxidative stress and the release of cell-free feto-placental DNA. Am J Pathol 2006; 169(2): 400-4.
[40]
Contro E, Bernabini D, Farina A. Cell-free fetal DNA for the prediction of pre-eclampsia at the first and second trimesters: A systematic review and meta-analysis. Mol Diagn Ther 2017; 21(2): 125-35.
[41]
Committee Opinion No.640: Cell-free DNA screening for fetal aneuploidy. Obstet Gynecol 2015; 126(3): e31-7.
[42]
Huppertz B, Kingdom JC. Apoptosis in the trophoblast--role of apoptosis in placental morphogenesis. J Soc Gynecol Investig 2004; 11(6): 353-62.
[43]
Taglauer ES, Wilkins-Haug L, Bianchi DW. Review: Cell-free fetal DNA in the maternal circulation as an indication of placental health and disease. Placenta 2014; 35(Suppl.): S64-8.
[44]
Litton C, Stone J, Eddleman K, Lee MJ. Noninvasive prenatal diagnosis: Past, present, and future. Mt Sinai J Med 2009; 76(6): 521-8.
[45]
Yuen RK, Peñaherrera MS, von Dadelszen P, McFadden DE, Robinson WP. DNA methylation profiling of human placentas reveals promoter hypomethylation of multiple genes in early-onset preeclampsia. Eur J Hum Genet 2010; 18(9): 1006-12.
[46]
Hahn S, Rusterholz C, Hösli I, Lapaire O. Cell-free nucleic acids as potential markers for preeclampsia. Placenta 2011; 32(Suppl.): S17-20.
[47]
Hyett JA, Gardener G, Stojilkovic-Mikic T, et al. Reduction in diagnostic and therapeutic interventions by non-invasive determination of fetal sex in early pregnancy. Prenat Diagn 2005; 25(12): 1111-6.
[48]
Honda H, Miharu N, Ohashi Y, et al. Fetal gender determination in early pregnancy through qualitative and quantitative analysis of fetal DNA in maternal serum. Hum Genet 2002; 110(1): 75-9.
[49]
Rijnders RJ, van der Schoot CE, Bossers B, de Vroede MA, Christiaens GC. Fetal sex determination from maternal plasma in pregnancies at risk for congenital adrenal hyperplasia. Obstet Gynecol 2001; 98(3): 374-8.
[50]
Bianchi DW. Circulating fetal DNA: Its origin and diagnostic potential-a review. Placenta 2004; 25(Suppl. A): S93-S101.
[51]
Sifakis S, Papantoniou N, Kappou D, Antsaklis A. Noninvasive prenatal diagnosis of Down syndrome: Current knowledge and novel insights. J Perinat Med 2012; 40(4): 319-27.
[52]
Lim JH, Kim MH, Han YJ, et al. Cell-free fetal DNA and cell-free total DNA levels in spontaneous abortion with fetal chromosomal aneuploidy. PLoS One 2013; 8(2): e56787.
[53]
Turner MJ, Martin CM, O’Leary JJ. Detection of fetal Rhesus D gene in whole blood of women booking for routine antenatal care. Eur J Obstet Gynecol Reprod Biol 2003; 108(1): 29-32.
[54]
Finning KM, Martin PG, Soothill PW, Avent ND. Prediction of fetal D status from maternal plasma: introduction of a new noninvasive fetal RHD genotyping service. Transfusion 2002; 42(8): 1079-85.
[55]
González-González MC, García-Hoyos M, Trujillo MJ, et al. Prenatal detection of a cystic fibrosis mutation in fetal DNA from maternal plasma. Prenat Diagn 2002; 22(10): 946-8.
[56]
Ershova E, Sergeeva V, Klimenko M, et al. Circulating cell-free DNA concentration and DNase I activity of peripheral blood plasma change in case of pregnancy with intrauterine growth restriction compared to normal pregnancy. Biomed Rep 2017; 7(4): 319-24.
[57]
Alberry MS, Maddocks DG, Hadi MA, et al. Quantification of cell-free fetal DNA in maternal plasma in normal pregnancies and in pregnancies with placental dysfunction. Am J Obstet Gynecol 2009; 200(1): 98.e1-6.
[58]
Al Nakib M, Desbrière R, Bonello N, et al. Total and fetal cell-free DNA analysis in maternal blood as markers of placental insufficiency in intrauterine growth restriction. Fetal Diagn Ther 2009; 26(1): 24-8.
[59]
Sekizawa A, Jimbo M, Saito H, et al. Cell-free fetal DNA in the plasma of pregnant women with severe fetal growth restriction. Am J Obstet Gynecol 2003; 188(2): 480-4.
[60]
Farina A, LeShane ES, Romero R, et al. High levels of fetal cell-free DNA in maternal serum: A risk factor for spontaneous preterm delivery. Am J Obstet Gynecol 2005; 193(2): 421-5.
[61]
Dugoff L, Barberio A, Whittaker PG, Schwartz N, Sehdev H, Bastek JA. Cell-free DNA fetal fraction and preterm birth. Am J Obstet Gynecol 2016; 215(2): 231.e1-7.
[62]
Jakobsen TR, Clausen FB, Rode L, Dziegiel MH, Tabor A. High levels of fetal DNA are associated with increased risk of spontaneous preterm delivery. Prenat Diagn 2012; 32(9): 840-5.
[63]
Illanes S, Gomez R, Fornes R, et al. Free fetal DNA levels in patients at risk of preterm labour. Prenat Diagn 2011; 31(11): 1082-5.
[64]
Stein W, Müller S, Gutensohn K, Emons G, Legler T. Cell-free fetal DNA and adverse outcome in low-risk pregnancies. Eur J Obstet Gynecol Reprod Biol 2013; 166(1): 10-3.
[65]
Wang E, Batey A, Struble C, Musci T, Song K, Oliphant A. Gestational age and maternal weight effects on fetal cell-free DNA in maternal plasma. Prenat Diagn 2013; 33(7): 662-6.
[66]
Smets EM, Visser A, Go AT, van Vugt JM, Oudejans CB. Novel biomarkers in preeclampsia. Clin Chim Acta 2006; 364(1-2): 22-32.
[67]
Chan KC, Zhang J, Hui AB, et al. Size distributions of maternal and fetal DNA in maternal plasma. Clin Chem 2004; 50(1): 88-92.
[68]
Li Y, Di Naro E, Vitucci A, Zimmermann B, Holzgreve W, Hahn S. Detection of paternally inherited fetal point mutations for betathalassemia using size-fractionated cell-free DNA in maternal plasma. JAMA 2005; 293(7): 843-9. Erratum in: JAMA 2005; 293(14): 1728.
[69]
Li Y, Holzgreve W, Page-Christiaens GC, Gille JJ, Hahn S. Improved prenatal detection of a fetal point mutation for achondroplasia by the use of size-fractionated circulatory DNA in maternal plasma--case report. Prenat Diagn 2004; 24(11): 896-8.
[70]
Zimmermann B, El-Sheikhah A, Nicolaides K, Holzgreve W, Hahn S. Optimized real-time quantitative PCR measurement of male fetal DNA in maternal plasma. Clin Chem 2005; 51(9): 1598-604.
[71]
Heid CA, Stevens J, Livak KJ, Williams PM. Real-time quantitative PCR. Genome Res 1996; 6(10): 986-94.
[72]
Zimmermann B, Levett L, Holzgreve W, Hahn S. Use of real-time polymerase chain reaction for detection of fetal aneuploidies. Meth of Mol Biy 2006; 336: 83-100.
[73]
Gunel T, Ermis H, Aydinli K. Real-time quantitative PCR for detection cell-free fetal DNA, prenatal diagnosis - morphology scan and invasive methods, Dr. Richard Choy (Ed.), InTech, 2012; DOI: 10.5772/26960. Available from: https://www.intechopen. com/books/prenatal-diagnosis-morphology-scan-and-invasive-methods/real-time-quantitative-pcr-for-detection-cell-free-fetal-dna
[74]
Zargari M, Sadeghi MR, Shahhosseiny MH, et al. Fetal sex determination using non-invasive method of cell-free fetal DNA in maternal plasma of pregnant women during 6(th)- 10(th) weeks of gestation. Avicenna J Med Biotechnol 2011; 3(4): 201-6.
[75]
Al-Yatama MK, Mustafa AS, Ali S, Abraham S, Khan Z, Khaja N. Detection of Y chromosome-specific DNA in the plasma and urine of pregnant women using nested polymerase chain reaction. Prenat Diagn 2001; 21(5): 399-402.
[76]
Lo YM, Lun FM, Chan KC, et al. Digital PCR for the molecular detection of fetal chromosomal aneuploidy. Proc Natl Acad Sci USA 2007; 104(32): 13116-21.
[77]
Quake S. At the interface of physics and biology. Biotechniques 2007; 43(1): 19.
[78]
Zimmermann BG, Grill S, Holzgreve W, Zhong XY, Jackson LG, Hahn S. Digital PCR: A powerful new tool for noninvasive prenatal diagnosis? Prenat Diagn 2008; 28(12): 1087-93.
[79]
Fan HC, Blumenfeld YJ, Chitkara U, Hudgins L, Quake SR. Noninvasive diagnosis of fetal aneuploidy by shotgun sequencing DNA from maternal blood. Proc Natl Acad Sci USA 2008; 105(42): 16266-71.
[80]
Chiu RW, Chan KC, Gao Y, et al. Noninvasive prenatal diagnosis of fetal chromosomal aneuploidy by massively parallel genomic sequencing of DNA in maternal plasma. Proc Natl Acad Sci USA 2008; 105(51): 20458-63.
[81]
Mardis ER. Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet 2008; 9: 387-402.
[82]
Ding C. Maldi-TOF mass spectrometry for analyzing cell-free fetal DNA in maternal plasma. Methods Mol Biol 2008; 444: 253-67.
[83]
Akolekar R, Farkas DH, VanAgtmael AL, Bombard AT, Nicolaides KH. Fetal sex determination using circulating cell-free fetal DNA (ccffDNA) at 11 to 13 weeks of gestation. Prenat Diagn 2010; 30(10): 918-23.
[84]
Callinan PA, Feinberg AP. The emerging science of epigenomics. Hum Mol Genet 2006; 15(Spec No 1): R95-R101.
[85]
Laird PW. Cancer epigenetics. Hum Mol Genet 2005; 14(Spec No 1): R65-76.
[86]
Tsui DW, Chiu RW, Lo YD. Epigenetic approaches for the detection of fetal DNA in maternal plasma. Chimerism 2010; 1(1): 30-5.
[87]
Ehrlich M. DNA methylation in cancer: Too much, but also too little. Oncogene 2002; 21(35): 5400-13.
[88]
Jones PA, Baylin SB. The epigenomics of cancer. Cell 2007; 128(4): 683-92.
[89]
Chim SS, Tong YK, Chiu RW, et al. Detection of the placental epigenetic signature of the maspin gene in maternal plasma. Proc Natl Acad Sci USA 2005; 102(41): 14753-8.
[90]
Tong YK, Chiu RW, Chan KC, Leung TY, Lo YM. Technical concerns about immunoprecipitation of methylated fetal DNA for noninvasive trisomy 21 diagnosis. Nat Med 2012; 18(9): 1327-8. author reply 1328-9.
[91]
Papageorgiou EA, Karagrigoriou A, Tsaliki E, Velissariou V, Carter NP, Patsalis PC. Fetal-specific DNA methylation ratio permits noninvasive prenatal diagnosis of trisomy 21. Nat Med 2011; 17(4): 510-3.
[92]
White HE, Dent CL, Hall VJ, Crolla JA, Chitty LS. Evaluation of a novel assay for detection of the fetal marker RASSF1A: Facilitating improved diagnostic reliability of noninvasive prenatal diagnosis. PLoS One 2012; 7(9): e45073.
[93]
Xu XP, Gan HY, Li FX, et al. A method to quantify cell-free fetal DNA fraction in maternal plasma using next generation sequencing: Its application in non-invasive prenatal chromosomal aneuploidy detection. PLoS One 2016; 11(1): e0146997.
[94]
Pergament E, Cuckle H, Zimmermann B, et al. Single-nucleotide polymorphism-based noninvasive prenatal screening in a high-risk and low-risk cohort. Obstet Gynecol 2014; 124(2 Pt 1): 210-8.
[95]
Van den Veyver IB. Recent advances in prenatal genetic screening and testing. F1000 Res 2016; 5: 2591.
[96]
Yurkiewicz IR, Korf BR, Lehmann LS. Prenatal whole-genome sequencing--is the quest to know a fetus’s future ethical? N Engl J Med 2014; 370(3): 195-7.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 15
ISSUE: 1
Year: 2019
Page: [57 - 63]
Pages: 7
DOI: 10.2174/1573402114666180516131832
Price: $58

Article Metrics

PDF: 48
HTML: 2