Improving Feed Protein Utilization Rate in Cattle through Nutritional Approaches

Author(s): Guangyong Zhao*.

Journal Name: Current Protein & Peptide Science

Volume 20 , Issue 2 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Cattle supply important amounts of nutritious products such as beef and milk for human consumption. However, cattle excrete large amounts of feces and urine with low utilization rate of dietary crude protein (CP). These not only negatively affect the global environment by emissions of ammonia (NH3) and nitrous oxide (N2O) and bleaching the soil and underground water, but also increase the feed cost. The low nitrogen (N) utilization rate of cattle could possibly result from the activity of rumen microorganisms degrading feed CP. Many studies indicate that it is possible to manipulate the N metabolism to improve the N utilization rate of cattle through nutritional approaches, such as dietary supplementation of rumen protected essential amino acids (EAA) including methionine (Met), lysine (Lys) and EAA analogs or feeding rations with relatively low N concentration. It is necessary to study the microbial synthesis of EAA in the rumen, the requirements of EAA of cattle under different feeding regimes, and to develop products which are more efficient and less costly to improve the N utilization rate of cattle.

Keywords: Feed, protein, cattle, utilization, nutritional approaches, human consumption.

[1]
Schadereit, R.; Krawielitzki, K.; Żebrowska, T.; Kowalczyk, J.; Kreienbring, F. Intestinal nitrogen flow, total nitrogen and 15N balance in pigs labeled intravenously with 15N-leucine and fed a meat meal diet. J. Anim. Feed Sci., 1995, 4, 207-215.
[2]
Canh, T.T.; Aarnink, A.J.A.; Schutte, J.B.; Sutton, A.; Langout, D.J.; Verstegen, M.W.A. Dietary protein affects nitrogen excretion and ammonia emission from slurry of growing-finishing pigs. Livest. Prod. Sci., 1998, 56, 181-191.
[3]
Galassi, G.; Colombini, S.; Malagutti, L.; Crovetto, G.M.; Rapetti, L. Effects of high fibre and low protein diets on performance, digestibility, nitrogen excretion and ammonia emission in the heavy pig. Anim. Feed Sci. Technol., 2010, 161, 140-148.
[4]
Portejoie, S.; Dourmad, J.Y.; Martinez, J.; Lebreton, Y. Effect of lowering dietary crude protein on nitrogen excretion, manure composition and ammonia emission from fattening pigs. Livest. Prod. Sci., 2004, 91, 45-55.
[5]
De Paula Dorigan, J.C.; Sakomura, N.K.; Soares, L.; Fernandes, J.B.K.; Sünder, A.; Liebert, F. Modelling of lysine requirements in broiler hens based on daily nitrogen retention and efficiency of dietary lysine utilization. Anim. Feed Sci. Technol., 2017, 226, 29-38.
[6]
Gidenne, T.; Combes, S.; Fortun-Lamothe, L. Protein replacement by digestible fibre in the diet of growing rabbits. 1: Impact on digestive balance, nitrogen excretion and microbial activity. Anim. Feed Sci. Technol., 2013, 183, 132-141.
[7]
Tazzoli, M.; Trocino, A.; Birolo, M.; Radaelli, G.; Xicato, G. Optimizing feed efficiency and nitrogen excretion in growing rabbits by increasing dietary energy with high-starch, high-soluble fibre, low-insoluble fibre supply at low protein levels. Livest. Sci., 2015, 172, 59-68.
[8]
Laughren, L.C.; Young, A.W. Duodenal nitrogen flow in response to increasing dietary crude protein in sheep. J. Anim. Sci., 1979, 49, 211-220.
[9]
Sun, Z.H.; Tan, Z.L.; Liu, S.M.; Tayo, G.O.; Lin, B.; Teng, B.; Tang, S.X.; Wang, W.J.; Liao, Y.P.; Pan, Y.F.; Wang, J.R.; Zhao, X.G.; Hu, Y. Effects of dietary methionine and lysine sources on nutrient digestion, nitrogen utilization, and duodenal amino acid flow in growing goats. J. Anim. Sci., 2007, 85, 3340-3347.
[10]
Li, Y.L.; Beauchemin, K.A.; McAllister, T.A.; Yang, W.Z. Intakes and excretion route of nitrogen, phosphorus and sulfur by finishing beef heifers fed increasing levels of wheat dried distillers grains with solubles to substitute for barley grain and barley silage. Livest. Sci., 2014, 170, 43-52.
[11]
Hill, S.R.; Knowlton, K.F.; James, R.E.; Pearson, R.E.; Bethard, G.L.; Pence, K.J. Nitrogen and phosphorus retention and excretion in late-gestation dairy heifers. J. Dairy Sci., 2007, 90, 5634-5642.
[12]
Quellet, D.R.; Chiquette, J. Effect of dietary metabolizable protein level and live yeasts on ruminal fermentation and nitrogen utilization in lactating dairy cows on a high red clover silage diet. Anim. Feed Sci. Technol., 2016, 220, 73-82.
[13]
Schuba, J.; Suedekum, K.H.; Pfeffer, E.; Jayanegara, A. Excretion of fecal, urinary urea and urinary non-urea nitrogen by four ruminant species as influenced by dietary nitrogen intake: A meta-analysis. Livest. Sci., 2017, 198, 82-88.
[14]
Hoffman, P.C.; Simson, C.R.; Wattiaux, M. Limit feeding of gravid Holstein heifers: Effects on growth, manure nutrient excretion, and subsequent early lactation performance. J. Dairy Sci., 2007, 90, 946-954.
[15]
Smith, K.A.; Charles, D.R.; Moorhouse, D. Nitrogen excretion by farm livestock with respect to land spreading requirements and controlling nitrogen losses to ground and surface waters. Part 2: pigs and poultry. Bioresour. Technol., 2000, 71, 183-194.
[16]
Smith, K.A.; Charles, D.R.; Moorhouse, D. Nitrogen excretion by farm livestock with respect to land spreading requirements and controlling nitrogen losses to ground and surface waters. Part: Pigs and poultry. Bioresour. Technol., 2000, 71, 183-194.
[17]
Kume, S.; Nonaka, K.; Oshita, T.; Kozakai, T.; Hirooka, H. Effects of urinary excretion of nitrogen, potassium and sodium on urine volume in dairy cows. Livest. Sci., 2008, 115, 28-33.
[18]
Cheng, L.; Judson, H.G.; Bryant, R.H.; Mowat, H.; Guinot, L.; Hague, H. The effects of feeding cut plantain and perennial ryegrass-white clover pasture on diary heifer feed and water intake, apparent nutrient digestibility and nitrogen excretion in urine. Anim. Feed Sci. Technol., 2017, 229, 43-46.
[19]
Laubach, J.; Taghizadeh-Toosi, A.; Sherlock, R.R.; Kelliher, F.M. Measuring and modelling ammonia emissions from a regular pattern of cattle urine patches. Agric. For. Meteorol., 2012, 156, 1-17.
[20]
IPCC Climate Change 2014. Synthesis Peport. 2017 pp. 99..http://www.ipcc.ch/pdf/assessment-report/ar5/syr/SYR_AR5_LONGERREPORT_Corr2.pdf
[21]
Ravishankara, A.R.; Daniel, J.S.; Portmann, R.W. Nitrous oxide (N2O): The dominant ozone-depleting substance emitted in the 21st century. Science, 2009, 326, 123-125.
[22]
Guo, K.; Zoccarato, I.A. Dynamic model to predict the nitrogen excretion in growing-finishing cattle. Ecol. Modell., 2005, 87, 219-231.
[23]
Kurihara, Y.; Eadie, J.M.; Hobson, P.N.; Mann, S.O. Relationship between bacteria and ciliate protozoa in the sheep rumen. J. Gen. Microbiol., 1968, 51, 267-288.
[24]
Demeyer, D.I.; Van Nevel, C.J. Effects of defaunation on the metabolism of rumen micro-organisms. Br. J. Nutr., 1979, 42, 515-524.
[25]
Bird, S.H.; Leng, R.A. The effects of defaunation of the rumen on the growth of cattle on low-protein high-energy diets. Br. J. Nutr., 1978, 40, 163-167.
[26]
Bird, S.H.; Hill, M.K.; Leng, R.A. The effects of defaunation of the rumen on the growth of lambs on low-protein-high-energy diets. Br. J. Nutr., 1979, 42, 81-87.
[27]
Veira, D.M.; Ivan, M. Rumen ciliate protozoa: Effects on digestion in the stomach of sheep. J. Dairy Sci., 1983, 66, 1015-1022.
[28]
Ryle, M.; Ørskov, E.R. Rumen ciliates and tropical feeds. World Anim. Rev., 1987, 64, 23-26.
[29]
Ørskov, E.R.; Chen, X.B. Assessment of amino acid requirement in ruminants. Proceedings of a satellite Symposium of the 7th International Symposium on Ruminant Physiology, Hakone, Japan edited by Hoshino, S.; Onodera, R.; Minato, H.; Itabashi, H.; 1989.
[30]
Nolte, J.E.; Löest, C.A.; Ferreira, A.V.; Waggoner, J.W.; Mathis, C.P. Limiting amino acids for growing lambs fed a diet low in ruminallyundegradable protein. J. Anim. Sci., 2008, 86, 2627-2641.
[31]
Fraser, D.L.; Ørskov, E.R.; Whitelaw, F.G.; Franklin, M.F. Limiting amino acids in dairy cows given casein as the sole source of protein. Livest. Prod., 1991, 28, 235-252.
[32]
Campbell, C.G.; Titgemeyer, E.C.; Cochran, R.C.; Nagaraja, T.G.; Brandt Jr, R.T. Free amino acid supplementation to steers: Effects on ruminal fermentation and performance. J. Anim. Sci., 1997, 75, 1167-1178.
[33]
Cottle, D.J.; Velle, W. Degradation and outflow of amino acids from the rumen of sheep. Br. J. Nutr., 1988, 61, 397-408.
[34]
Mbanzamihigo, L.; Vandycke, E.; Demeyer, D.I. Degradation of methionine by rumen contents in vitro and efficiency of its protection. Anim. Feed Sci. Technol., 1997, 67, 339-347.
[35]
Dong, R.L.; Zhao, G.Y.; Chai, L.L.; Beauchemin, K.A. Prediction of urinary and fecal nitrogen excretion by beef cattle. J. Anim. Sci., 2014, 92, 4669-4681.
[36]
Leonard, C.; Stevenson, M.; Armentano, L.E. Effect of two levels of crude protein and methionine supplementation on performance of dairy cows. J. Dairy Sci., 2003, 86, 4033-4042.
[37]
Huhtanen, P.; Nousianinen, J.I.; Rinne, M.; Kytölä, K.; Khalill, H. Utilization and partition of dietary nitrogen in dairy cows fed grass silage-based diets. J. Dairy Sci., 2008, 91, 3589-3599.
[38]
Burke, F.; O’Donovan, M.A.; Murphy, J.J.; O’Mara, F.P.; Mulligan, F.J. Effect of pasture allowance and supplementation with maize silage and concentrates differing in crude protein concentration on milk production and nitrogen excretion by dairy cows. Livest. Sci., 2008, 114, 325-335.
[39]
Boonsinchai, N.; Potchanakon, M.; Kijparkorn, S. Effects of protein reduction and substitution of cassava for corn in broiler diets on growth performance, ileal protein digestibility and nitrogen excretion in feces. Anim. Feed Sci. Technol., 2016, 216, 185-196.
[40]
Fan, P.X.; Liu, P.; Song, P.X.; Chen, X.Y.; Ma, X. Moderate dietary protein restriction alters the composition of gut microbiota and improves ileal barrier function in adult pig model. Sci. Rep., 2017, 7, 43412.
[41]
Schroeder, G.F.; Titgemeyer, E.C.; Awawdeh, M.S.; Smith, J.S.; Gnad, D.P. Effects of energy level methionine utilization by growing steers. J. Anim. Sci., 2006, 84, 1497-1504.
[42]
Weekes, T.L.; Luimes, P.H.; Cant, J.P. Responses to amino acid imbalances and deficiencies in lactating dairy cows. J. Dairy Sci., 2006, 89, 2177-2187.
[43]
Zhou, J.W.; Mi, J.D.; Degen, A.A.; Ding, L.M.; Guo, X.S.; Shang, Z.H.; Wang, W.W. Urinary purine derivatives excretion, rumen microbial nitrogen synthesis and the efficiency of utilization of recycled urea in Tibetan and fine-wool sheep. Anim. Feed Sci. Technol., 2017, 227, 24-31.
[44]
Whitelaw, F.G.; Milne, J.S.; Chen, X.B. The effects of a rumen microbial fermentation on urea and nitrogen metabolism of sheep nourished by intragastric infusion. Exp. Physiol., 1991, 76, 91-101.
[45]
Rossi, F.; Maurizio, M.; Francesco, M.; Giovanna, C.; Gianfranco, P. Rumen degradation and intestinal digestibility of rumen protected amino acids: comparison between in situ and in vitro data. Anim. Feed Sci. Technol., 2003, 108, 223-229.
[46]
Lara, A.; Menoza, G.D.; Landois, L.; Barcena, R.; Sánchez-Torres, M.T.; Rojo, R.; Ayala, J.; Vega, S. Milk production in Holstein cows supplemented with different levels of ruminally protected methionine. Livest. Sci., 2006, 105, 105-108.
[47]
Schwab, C.G. Rumen-protected amino acids for dairy cattle: Progress towards determining lysine and methionine requirements. Anim. Feed Sci. Technol., 1996, 59, 87-101.
[48]
Papas, A.M.; Sniffen, C.J.; Muscato, T.V. Effectiveness of rumen-protected methionine for delivering methionine postruminally in dairy cows. J. Dairy Sci., 1984, 67, 545-552.
[49]
Berthiaume, B.; Thivierge, M.C.; Patton, R.A.; Dubreuil, P.; Stevenson, M. Effect of ruminally protected methionine on splanchnic metabolism of amino acids in lactating dairy cows. J. Dairy Sci., 2006, 89, 1621-1634.
[50]
Madsen, T.G.; Nielsen, L.; Nielson, M.O. Mammary nutrient uptake in response to dietary supplementation of rumen protected lysine and methionine in late and early lactating dairy goats. Small Rumin. Res., 2005, 56, 151-164.
[51]
Casper, D.P.; Schingoethe, D.J. Protected methionine supplementation to a barley-based diet for cows during early lactation. J. Dairy Sci., 1988, 71, 164-172.
[52]
Misciattelli, L.; Kristensen, V.F.; Vestergaard, M.; Weisbjerg, M.R.; Sejrsen, K.; Hveplund, T. Milk production, nutrient utilization, and endocrine responses to increased postruminal lysine and methionine supply in dairy cows. J. Dairy Sci., 2003, 86, 275-286.
[53]
Donahue, P.B.; Schwab, C.G.; Hylton, W.E. Methionine deficiency in early-weaned dairy calves fed pelleted rations based on corn and alfalfa or corn and soybean proteins. J. Dairy Sci., 1985, 68, 681-693.
[54]
Li, C.; Zhao, G.Y. Relationship between methionine supply, nitrogen retention and plasma insulin-like growth factor-I in growing sheep nourished by total intragastric infusions. Asian-Aust. J. Anim. Sci., 2011, 24, 1393-1398.
[55]
Pisulewski, P.M.; Rulquin, H.; Peyraud, J.L. Lactational and systemic responses of dairy cows to postruminal infusions of increasing amounts of methionine. J. Dairy Sci., 1996, 79, 1781-1791.
[56]
Rulquin, H.; Graulet, B.; Delaby, L.; Robert, J.C. Effects of different forms of methionine on lactational performance of dairy cows. J. Dairy Sci., 2006, 89, 4387-4394.
[57]
Stokes, M.R.; Clark, J.H. Performance of lactating dairy cows fed methionine analog at two concentrations of dietary crude protein. J. Dairy Sci., 1981, 64, 1686-1694.
[58]
He, L.; Han, M.; Farrar, S.; Ma, X. Editorial: Impacts and regulation of dietary nutrients on gut microbiome and immunity. Protein Pept. Lett., 2017, 24(5), 380-381.
[59]
Ma, N.; Tian, Y.; Wu, Y.; Ma, X. Contributions of the interaction between dietary protein and gut microbiota to intestinal health. Curr. Protein Pept. Sci., 2017, 18(8), 795-808.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 2
Year: 2019
Page: [164 - 171]
Pages: 8
DOI: 10.2174/1389203719666180514153236
Price: $58

Article Metrics

PDF: 17
HTML: 3