Cyclooxygenase-2 Inhibitors as a Therapeutic Target in Inflammatory Diseases

Author(s): Miguel D. Ferrer , Carla Busquets-Cortés , Xavier Capó , Silvia Tejada , Josep A. Tur , Antoni Pons , Antoni Sureda* .

Journal Name: Current Medicinal Chemistry

Volume 26 , Issue 18 , 2019

Abstract:

Inflammation plays a crucial role in the development of many complex diseases and disorders including autoimmune diseases, metabolic syndrome, neurodegenerative diseases, and cardiovascular pathologies. Prostaglandins play a regulatory role in inflammation. Cyclooxygenases are the main mediators of inflammation by catalyzing the initial step of arachidonic acid metabolism and prostaglandin synthesis. The differential expression of the constitutive isoform COX-1 and the inducible isoform COX-2, and the finding that COX-1 is the major form expressed in the gastrointestinal tract, lead to the search for COX-2-selective inhibitors as anti-inflammatory agents that might diminish the gastrointestinal side effects of traditional non-steroidal anti-inflammatory drugs (NSAIDs). COX-2 isoform is expressed predominantly in inflammatory cells and decidedly upregulated in chronic and acute inflammations, becoming a critical target for many pharmacological inhibitors. COX-2 selective inhibitors happen to show equivalent efficacy with that of conventional NSAIDs, but they have reduced gastrointestinal side effects. This review would elucidate the most recent findings on selective COX-2 inhibition and their relevance to human pathology, concretely in inflammatory pathologies characterized by a prolonged pro-inflammatory status, including autoimmune diseases, metabolic syndrome, obesity, atherosclerosis, neurodegenerative diseases, chronic obstructive pulmonary disease, arthritis, chronic inflammatory bowel disease and cardiovascular pathologies.

Keywords: Cyclooxygenase, COX inhibitors, inflammation, interleukin, natural compound. prostaglandin.

[1]
Cicchitti, L.; Martelli, M.; Cerritelli, F. Chronic inflammatory disease and osteopathy: A systematic review. PLoS One, 2015, 10(3)e0121327
[http://dx.doi.org/10.1371/journal.pone.0121327] [PMID: 25781621]
[2]
Sun, S.; Ji, Y.; Kersten, S.; Qi, L. Mechanisms of inflammatory responses in obese adipose tissue. Annu. Rev. Nutr., 2012, 32, 261-286.
[http://dx.doi.org/10.1146/annurev-nutr-071811-150623] [PMID: 22404118]
[3]
Feghali, C.A.; Wright, T.M. Cytokines in acute and chronic inflammation. Front. Biosci., 1997, 2, d12-d26.
[http://dx.doi.org/10.2741/A171] [PMID: 9159205]
[4]
Koj, A. Initiation of acute phase response and synthesis of cytokines. Biochim. Biophys. Acta, 1996, 1317(2), 84-94.
[http://dx.doi.org/10.1016/S0925-4439(96)00048-8] [PMID: 8950192]
[5]
Pahl, H.L. Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene, 1999, 18(49), 6853-6866.
[http://dx.doi.org/10.1038/sj.onc.1203239] [PMID: 10602461]
[6]
Katori, M.; Majima, M. Cyclooxygenase-2: its rich diversity of roles and possible application of its selective inhibitors. Inflamm. Res., 2000, 49(8), 367-392.
[http://dx.doi.org/10.1007/s000110050605] [PMID: 11028754]
[7]
Chandrasekharan, N.V.; Dai, H.; Roos, K.L.; Evanson, N.K.; Tomsik, J.; Elton, T.S.; Simmons, D.L. COX-3, a cyclooxygenase-1 variant inhibited by acetaminophen and other analgesic/antipyretic drugs: cloning, structure, and expression. Proc. Natl. Acad. Sci. USA, 2002, 99(21), 13926-13931.
[http://dx.doi.org/10.1073/pnas.162468699] [PMID: 12242329]
[8]
Ricciotti, E.; FitzGerald, G.A. Prostaglandins and inflammation. Arterioscler. Thromb. Vasc. Biol., 2011, 31(5), 986-1000.
[http://dx.doi.org/10.1161/ATVBAHA.110.207449] [PMID: 21508345]
[9]
Smith, W.L.; DeWitt, D.L.; Garavito, R.M. Cyclooxygenases: structural, cellular, and molecular biology. Annu. Rev. Biochem., 2000, 69, 145-182.
[http://dx.doi.org/10.1146/annurev.biochem.69.1.145] [PMID: 10966456]
[10]
Järving, R.; Järving, I.; Kurg, R.; Brash, A.R.; Samel, N. On the evolutionary origin of cyclooxygenase (COX) isozymes: characterization of marine invertebrate COX genes points to independent duplication events in vertebrate and invertebrate lineages. J. Biol. Chem., 2004, 279(14), 13624-13633.
[http://dx.doi.org/10.1074/jbc.M313258200] [PMID: 14732711]
[11]
Sanz, A.; Moreno, J.I.; Castresana, C. PIOX, a new pathogen-induced oxygenase with homology to animal cyclooxygenase. Plant Cell, 1998, 10(9), 1523-1537.
[http://dx.doi.org/10.1105/tpc.10.9.1523] [PMID: 9724698]
[12]
Dubois, R.N.; Abramson, S.B.; Crofford, L.; Gupta, R.A.; Simon, L.S.; Van De Putte, L.B.; Lipsky, P.E. Cyclooxygenase in biology and disease. FASEB J., 1998, 12(12), 1063-1073.
[http://dx.doi.org/10.1096/fasebj.12.12.1063] [PMID: 9737710]
[13]
Kulmacz, R.J.; van der Donk, W.A.; Tsai, A.L. Comparison of the properties of prostaglandin H synthase-1 and -2. Prog. Lipid Res., 2003, 42(5), 377-404.
[http://dx.doi.org/10.1016/S0163-7827(03)00023-7] [PMID: 12814642]
[14]
Vane, J.R.; Bakhle, Y.S.; Botting, R.M. Cyclooxygenases 1 and 2. Annu. Rev. Pharmacol. Toxicol., 1998, 38, 97-120.
[http://dx.doi.org/10.1146/annurev.pharmtox.38.1.97] [PMID: 9597150]
[15]
Kujubu, D.A.; Fletcher, B.S.; Varnum, B.C.; Lim, R.W.; Herschman, H.R. TIS10, a phorbol ester tumor promoter-inducible mRNA from Swiss 3T3 cells, encodes a novel prostaglandin synthase/cyclooxygenase homologue. J. Biol. Chem., 1991, 266(20), 12866-12872.
[PMID: 1712772]
[16]
Xie, W.L.; Chipman, J.G.; Robertson, D.L.; Erikson, R.L.; Simmons, D.L. Expression of a mitogen-responsive gene encoding prostaglandin synthase is regulated by mRNA splicing. Proc. Natl. Acad. Sci. USA, 1991, 88(7), 2692-2696.
[http://dx.doi.org/10.1073/pnas.88.7.2692] [PMID: 1849272]
[17]
Qin, N.; Zhang, S.P.; Reitz, T.L.; Mei, J.M.; Flores, C.M. Cloning, expression, and functional characterization of human cyclooxygenase-1 splicing variants: evidence for intron 1 retention. J. Pharmacol. Exp. Ther., 2005, 315(3), 1298-1305.
[http://dx.doi.org/10.1124/jpet.105.090944] [PMID: 16141368]
[18]
Simmons, D.L.; Botting, R.M.; Hla, T. Cyclooxygenase isozymes: the biology of prostaglandin synthesis and inhibition. Pharmacol. Rev., 2004, 56(3), 387-437.
[http://dx.doi.org/10.1124/pr.56.3.3] [PMID: 15317910]
[19]
Smyth, E.M.; Grosser, T.; Wang, M.; Yu, Y.; FitzGerald, G.A. Prostanoids in health and disease. J. Lipid Res., 2009, 50(Suppl.), S423-S428.
[20]
Trappe, T.A.; Liu, S.Z. Effects of prostaglandins and COX-inhibiting drugs on skeletal muscle adaptations to exercise. J. Appl. Physiol., 2013, 115(6), 909-919.
[http://dx.doi.org/10.1152/japplphysiol.00061.2013] [PMID: 23539318]
[21]
Weinheimer, E.M.; Jemiolo, B.; Carroll, C.C.; Harber, M.P.; Haus, J.M.; Burd, N.A.; LeMoine, J.K.; Trappe, S.W.; Trappe, T.A. Resistance exercise and cyclooxygenase (COX) expression in human skeletal muscle: implications for COX-inhibiting drugs and protein synthesis. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2007, 292(6), R2241-R2248.
[http://dx.doi.org/10.1152/ajpregu.00718.2006] [PMID: 17322116]
[22]
Morita, I.; Schindler, M.; Regier, M.K.; Otto, J.C.; Hori, T.; DeWitt, D.L.; Smith, W.L. Different intracellular locations for prostaglandin endoperoxide H synthase-1 and -2. J. Biol. Chem., 1995, 270(18), 10902-10908.
[http://dx.doi.org/10.1074/jbc.270.18.10902] [PMID: 7738031]
[23]
Blobaum, A.L.; Marnett, L.J. Structural and functional basis of cyclooxygenase inhibition. J. Med. Chem., 2007, 50(7), 1425-1441.
[http://dx.doi.org/10.1021/jm0613166] [PMID: 17341061]
[24]
DeWitt, D.L. Cox-2-selective inhibitors: the new super aspirins. Mol. Pharmacol., 1999, 55(4), 625-631.
[PMID: 10101019]
[25]
Garavito, R.M.; Mulichak, A.M. The structure of mammalian cyclooxygenases. Annu. Rev. Biophys. Biomol. Struct., 2003, 32, 183-206.
[http://dx.doi.org/10.1146/annurev.biophys.32.110601.141906] [PMID: 12574066]
[26]
Marnett, L.J.; Rowlinson, S.W.; Goodwin, D.C.; Kalgutkar, A.S.; Lanzo, C.A. Arachidonic acid oxygenation by COX-1 and COX-2. Mechanisms of catalysis and inhibition. J. Biol. Chem., 1999, 274(33), 22903-22906.
[http://dx.doi.org/10.1074/jbc.274.33.22903] [PMID: 10438452]
[27]
Hermanson, D.J.; Gamble-George, J.C.; Marnett, L.J.; Patel, S. Substrate-selective COX-2 inhibition as a novel strategy for therapeutic endocannabinoid augmentation. Trends Pharmacol. Sci., 2014, 35(7), 358-367.
[http://dx.doi.org/10.1016/j.tips.2014.04.006] [PMID: 24845457]
[28]
Xu, S.; Rouzer, C.A.; Marnett, L.J. Oxicams, a class of nonsteroidal anti-inflammatory drugs and beyond. IUBMB Life, 2014, 66(12), 803-811.
[http://dx.doi.org/10.1002/iub.1334] [PMID: 25537198]
[30]
Schneider, C.; Pratt, D.A.; Porter, N.A.; Brash, A.R. Control of oxygenation in lipoxygenase and cyclooxygenase catalysis. Chem. Biol., 2007, 14(5), 473-488.
[http://dx.doi.org/10.1016/j.chembiol.2007.04.007] [PMID: 17524979]
[31]
Tsai, A.L.; Palmer, G.; Wu, G.; Peng, S.; Okeley, N.M.; van der Donk, W.A.; Kulmacz, R.J. Structural characterization of arachidonyl radicals formed by aspirin-treated prostaglandin H synthase-2. J. Biol. Chem., 2002, 277(41), 38311-38321.
[http://dx.doi.org/10.1074/jbc.M206961200] [PMID: 12167656]
[32]
Tsai, A.L.; Kulmacz, R.J. Prostaglandin H synthase: resolved and unresolved mechanistic issues. Arch. Biochem. Biophys., 2010, 493(1), 103-124.
[http://dx.doi.org/10.1016/j.abb.2009.08.019] [PMID: 19728984]
[33]
Malkowski, M.G.; Ginell, S.L.; Smith, W.L.; Garavito, R.M. The productive conformation of arachidonic acid bound to prostaglandin synthase. Science, 2000, 289(5486), 1933-1937.
[http://dx.doi.org/10.1126/science.289.5486.1933] [PMID: 10988074]
[34]
Laneuville, O.; Breuer, D.K.; Xu, N.; Huang, Z.H.; Gage, D.A.; Watson, J.T.; Lagarde, M.; DeWitt, D.L.; Smith, W.L. Fatty acid substrate specificities of human prostaglandin-endoperoxide H synthase-1 and -2. Formation of 12-hydroxy-(9Z, 13E/Z, 15Z)- octadecatrienoic acids from alpha-linolenic acid. J. Biol. Chem., 1995, 270(33), 19330-19336.
[http://dx.doi.org/10.1074/jbc.270.33.19330] [PMID: 7642610]
[35]
Marnett, L.J.; Kalgutkar, A.S. Cyclooxygenase 2 inhibitors: discovery, selectivity and the future. Trends Pharmacol. Sci., 1999, 20(11), 465-469.
[http://dx.doi.org/10.1016/S0165-6147(99)01385-1] [PMID: 10542447]
[36]
Kulmacz, R.J.; Wang, L.H. Comparison of hydroperoxide initiator requirements for the cyclooxygenase activities of prostaglandin H synthase-1 and -2. J. Biol. Chem., 1995, 270(41), 24019-24023.
[http://dx.doi.org/10.1074/jbc.270.41.24019] [PMID: 7592599]
[37]
Tsai, Al.; Wu, G.; Palmer, G.; Bambai, B.; Koehn, J.A.; Marshall, P.J.; Kulmacz, R.J. Rapid kinetics of tyrosyl radical formation and heme redox state changes in prostaglandin H synthase-1 and -2. J. Biol. Chem., 1999, 274(31), 21695-21700.
[http://dx.doi.org/10.1074/jbc.274.31.21695] [PMID: 10419480]
[38]
Xiao, G.; Chen, W.; Kulmacz, R.J. Comparison of structural stabilities of prostaglandin H synthase-1 and -2. J. Biol. Chem., 1998, 273(12), 6801-6811.
[http://dx.doi.org/10.1074/jbc.273.12.6801] [PMID: 9506982]
[39]
Yuan, C.; Rieke, C.J.; Rimon, G.; Wingerd, B.A.; Smith, W.L. Partnering between monomers of cyclooxygenase-2 homodimers. Proc. Natl. Acad. Sci. USA, 2006, 103(16), 6142-6147.
[http://dx.doi.org/10.1073/pnas.0601805103] [PMID: 16606823]
[40]
Prusakiewicz, J.J.; Duggan, K.C.; Rouzer, C.A.; Marnett, L.J. Differential sensitivity and mechanism of inhibition of COX-2 oxygenation of arachidonic acid and 2-arachidonoylglycerol by ibuprofen and mefenamic acid. Biochemistry, 2009, 48(31), 7353-7355.
[http://dx.doi.org/10.1021/bi900999z] [PMID: 19603831]
[41]
Sharma, N.P.; Dong, L.; Yuan, C.; Noon, K.R.; Smith, W.L. Asymmetric acetylation of the cyclooxygenase-2 homodimer by aspirin and its effects on the oxygenation of arachidonic, eicosapentaenoic, and docosahexaenoic acids. Mol. Pharmacol., 2010, 77(6), 979-986.
[http://dx.doi.org/10.1124/mol.109.063115] [PMID: 20194532]
[42]
Sidhu, R.S.; Lee, J.Y.; Yuan, C.; Smith, W.L. Comparison of cyclooxygenase-1 crystal structures: cross-talk between monomers comprising cyclooxygenase-1 homodimers. Biochemistry, 2010, 49(33), 7069-7079.
[http://dx.doi.org/10.1021/bi1003298] [PMID: 20669977]
[43]
Kulmacz, R.J.; Lands, W.E. Prostaglandin H synthase. Stoichiometry of heme cofactor. J. Biol. Chem., 1984, 259(10), 6358-6363.
[PMID: 6427213]
[44]
Kulmacz, R.J.; Lands, W.E. Stoichiometry and kinetics of the interaction of prostaglandin H synthase with anti-inflammatory agents. J. Biol. Chem., 1985, 260(23), 12572-12578.
[PMID: 3930499]
[45]
Dong, L.; Sharma, N.P.; Jurban, B.J.; Smith, W.L. Pre-existent asymmetry in the human cyclooxygenase-2 sequence homodimer. J. Biol. Chem., 2013, 288(40), 28641-28655.
[http://dx.doi.org/10.1074/jbc.M113.505503] [PMID: 23955344]
[46]
Dong, L.; Vecchio, A.J.; Sharma, N.P.; Jurban, B.J.; Malkowski, M.G.; Smith, W.L. Human cyclooxygenase-2 is a sequence homodimer that functions as a conformational heterodimer. J. Biol. Chem., 2011, 286(21), 19035-19046.
[http://dx.doi.org/10.1074/jbc.M111.231969] [PMID: 21467029]
[47]
Yuan, C.; Sidhu, R.S.; Kuklev, D.V.; Kado, Y.; Wada, M.; Song, I.; Smith, W.L. Cyclooxygenase Allosterism, Fatty Acid-mediated Cross-talk between Monomers of Cyclooxygenase Homodimers. J. Biol. Chem., 2009, 284(15), 10046-10055.
[http://dx.doi.org/10.1074/jbc.M808634200] [PMID: 19218248]
[48]
Duggan, K.C.; Walters, M.J.; Musee, J.; Harp, J.M.; Kiefer, J.R.; Oates, J.A.; Marnett, L.J. Molecular basis for cyclooxygenase inhibition by the non-steroidal anti-inflammatory drug naproxen. J. Biol. Chem., 2010, 285(45), 34950-34959.
[http://dx.doi.org/10.1074/jbc.M110.162982] [PMID: 20810665]
[49]
Larsen, L.N.; Dahl, E.; Bremer, J. Peroxidative oxidation of leuco-dichlorofluorescein by prostaglandin H synthase in prostaglandin biosynthesis from polyunsaturated fatty acids. Biochim. Biophys. Acta, 1996, 1299(1), 47-53.
[http://dx.doi.org/10.1016/0005-2760(95)00188-3] [PMID: 8555252]
[50]
Malkowski, M.G.; Thuresson, E.D.; Lakkides, K.M.; Rieke, C.J.; Micielli, R.; Smith, W.L.; Garavito, R.M. Structure of eicosapentaenoic and linoleic acids in the cyclooxygenase site of prostaglandin endoperoxide H synthase-1. J. Biol. Chem., 2001, 276(40), 37547-37555.
[http://dx.doi.org/10.1074/jbc.M105982200] [PMID: 11477109]
[51]
Rieke, C.J.; Mulichak, A.M.; Garavito, R.M.; Smith, W.L. The role of arginine 120 of human prostaglandin endoperoxide H synthase-2 in the interaction with fatty acid substrates and inhibitors. J. Biol. Chem., 1999, 274(24), 17109-17114.
[http://dx.doi.org/10.1074/jbc.274.24.17109] [PMID: 10358065]
[52]
Rowlinson, S.W.; Crews, B.C.; Lanzo, C.A.; Marnett, L.J. The binding of arachidonic acid in the cyclooxygenase active site of mouse prostaglandin endoperoxide synthase-2 (COX-2). A putative L-shaped binding conformation utilizing the top channel region. J. Biol. Chem., 1999, 274(33), 23305-23310.
[http://dx.doi.org/10.1074/jbc.274.33.23305] [PMID: 10438506]
[53]
Needleman, P.; Whitaker, M.O.; Wyche, A.; Watters, K.; Sprecher, H.; Raz, A. Manipulation of platelet aggregation by prostaglandins and their fatty acid precursors: pharmacological basis for a therapeutic approach. Prostaglandins, 1980, 19(1), 165-181.
[http://dx.doi.org/10.1016/0090-6980(80)90163-X] [PMID: 6247744]
[54]
Lagarde, M.; Drouot, B.; Guichardant, M.; Dechavanne, M. Uptake and effect on arachidonic acid oxygenation of some icosaenoic acids in human platelets. Biomed. Biochim. Acta, 1984, 43(8-9), S319-S322.
[PMID: 6097236]
[55]
Spector, A.A.; Kaduce, T.L.; Figard, P.H.; Norton, K.C.; Hoak, J.C.; Czervionke, R.L. Eicosapentaenoic acid and prostacyclin production by cultured human endothelial cells. J. Lipid Res., 1983, 24(12), 1595-1604.
[PMID: 6321621]
[56]
Dong, L.; Zou, H.; Yuan, C.; Hong, Y.H.; Kuklev, D.V.; Smith, W.L. Different fatty acids compete with arachidonic acid for binding to the allosteric or catalytic subunits of cyclooxygenases to regulate prostanoid synthesis. J. Biol. Chem., 2016, 291(8), 4069-4078.
[http://dx.doi.org/10.1074/jbc.M115.698001] [PMID: 26703471]
[57]
Serhan, C.N.; Clish, C.B.; Brannon, J.; Colgan, S.P.; Chiang, N.; Gronert, K. Novel functional sets of lipid-derived mediators with antiinflammatory actions generated from omega-3 fatty acids via cyclooxygenase 2-nonsteroidal antiinflammatory drugs and transcellular processing. J. Exp. Med., 2000, 192(8), 1197-1204.
[http://dx.doi.org/10.1084/jem.192.8.1197] [PMID: 11034610]
[58]
Smith, W.L. Nutritionally essential fatty acids and biologically indispensable cyclooxygenases. Trends Biochem. Sci., 2008, 33(1), 27-37.
[http://dx.doi.org/10.1016/j.tibs.2007.09.013] [PMID: 18155912]
[59]
Holtzman, M.J.; Turk, J.; Shornick, L.P. Identification of a pharmacologically distinct prostaglandin H synthase in cultured epithelial cells. J. Biol. Chem., 1992, 267(30), 21438-21445.
[PMID: 1400457]
[60]
Lecomte, M.; Laneuville, O.; Ji, C.; DeWitt, D.L.; Smith, W.L. Acetylation of human prostaglandin endoperoxide synthase-2 (cyclooxygenase-2) by aspirin. J. Biol. Chem., 1994, 269(18), 13207-13215.
[PMID: 8175750]
[61]
Chiang, N.; Gronert, K.; Clish, C.B.; O’Brien, J.A.; Freeman, M.W.; Serhan, C.N. Leukotriene B4 receptor transgenic mice reveal novel protective roles for lipoxins and aspirin-triggered lipoxins in reperfusion. J. Clin. Invest., 1999, 104(3), 309-316.
[http://dx.doi.org/10.1172/JCI7016] [PMID: 10430612]
[62]
Chiang, N.; Takano, T.; Clish, C.B.; Petasis, N.A.; Tai, H.H.; Serhan, C.N. Aspirin-triggered 15-epi-lipoxin A4 (ATL) generation by human leukocytes and murine peritonitis exudates: development of a specific 15-epi-LXA4 ELISA. J. Pharmacol. Exp. Ther., 1998, 287(2), 779-790.
[PMID: 9808710]
[63]
Xiao, G.; Tsai, A.L.; Palmer, G.; Boyar, W.C.; Marshall, P.J.; Kulmacz, R.J. Analysis of hydroperoxide-induced tyrosyl radicals and lipoxygenase activity in aspirin-treated human prostaglandin H synthase-2. Biochemistry, 1997, 36(7), 1836-1845.
[http://dx.doi.org/10.1021/bi962476u] [PMID: 9048568]
[64]
Serhan, C.N.; Chiang, N.; Van Dyke, T.E. Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nat. Rev. Immunol., 2008, 8(5), 349-361.
[http://dx.doi.org/10.1038/nri2294] [PMID: 18437155]
[65]
Zarghi, A.; Arfaei, S. Selective COX-2 Inhibitors: a review of their structure-activity relationships. Iran. J. Pharm. Res., 2011, 10(4), 655-683.
[PMID: 24250402]
[66]
Rao, P.; Knaus, E.E. Evolution of nonsteroidal anti-inflammatory drugs (NSAIDs): cyclooxygenase (COX) inhibition and beyond. J. Pharm. Pharm. Sci., 2008, 11(2), 81s-110s.
[http://dx.doi.org/10.18433/J3T886] [PMID: 19203472]
[67]
Patrono, C. Cardiovascular effects of cyclooxygenase-2 inhibitors: a mechanistic and clinical perspective. Br. J. Clin. Pharmacol., 2016, 82(4), 957-964.
[http://dx.doi.org/10.1111/bcp.13048] [PMID: 27317138]
[68]
Perrone, M.G.; Scilimati, A.; Simone, L.; Vitale, P. Selective COX-1 inhibition: A therapeutic target to be reconsidered. Curr. Med. Chem., 2010, 17(32), 3769-3805.
[http://dx.doi.org/10.2174/092986710793205408] [PMID: 20858219]
[69]
Hawkey, C.J. COX-2 inhibitors. Lancet, 1999, 353(9149), 307-314.
[http://dx.doi.org/10.1016/S0140-6736(98)12154-2] [PMID: 9929039]
[70]
Hawkey, C.J. COX-1 and COX-2 inhibitors. Best Pract. Res. Clin. Gastroenterol., 2001, 15(5), 801-820.
[http://dx.doi.org/10.1053/bega.2001.0236] [PMID: 11566042]
[71]
White, W.B. Cardiovascular effects of the cyclooxygenase inhibitors. Hypertension, 2007, 49(3), 408-418.
[http://dx.doi.org/10.1161/01.HYP.0000258106.74139.25] [PMID: 17261646]
[72]
Sklyarov, A.Y.; Panasyuk, N.B.; Fomenko, I.S. Role of nitric oxide-synthase and cyclooxygenase/lipooxygenase systems in development of experimental ulcerative colitis. J. Physiol. Pharmacol., 2011, 62(1), 65-73.
[PMID: 21451211]
[73]
Martín, A.R.; Villegas, I.; Alarcón de la Lastra, C. The COX-2 inhibitor, rofecoxib, ameliorates dextran sulphate sodium induced colitis in mice. Inflamm. Res., 2005, 54(4), 145-151.
[http://dx.doi.org/10.1007/s00011-004-1337-2] [PMID: 15883736]
[74]
Gornet, J.M.; Hassani, Z.; Modiglian, R.; Lémann, M. Exacerbation of Crohn’s colitis with severe colonic hemorrhage in a patient on rofecoxib. Am. J. Gastroenterol., 2002, 97(12), 3209-3210.
[http://dx.doi.org/10.1111/j.1572-0241.2002.07142.x] [PMID: 12492220]
[75]
Matuk, R.; Crawford, J.; Abreu, M.T.; Targan, S.R.; Vasiliauskas, E.A.; Papadakis, K.A. The spectrum of gastrointestinal toxicity and effect on disease activity of selective cyclooxygenase-2 inhibitors in patients with inflammatory bowel disease. Inflamm. Bowel Dis., 2004, 10(4), 352-356.
[http://dx.doi.org/10.1097/00054725-200407000-00005] [PMID: 15475742]
[76]
Miao, X.P.; Ouyang, Q.; Li, H.Y.; Wen, Z.H.; Zhang, D.K.; Cui, X.Y. Role of selective cyclooxygenase-2 inhibitors in exacerbation of inflammatory bowel disease: A systematic review and meta-analysis. Curr. Ther. Res. Clin. Exp., 2008, 69(3), 181-191.
[http://dx.doi.org/10.1016/j.curtheres.2008.06.009] [PMID: 24692797]
[77]
Bijlsma, J.W.; Knahr, K. Strategies for the prevention and management of osteoarthritis of the hip and knee. Best Pract. Res. Clin. Rheumatol., 2007, 21(1), 59-76.
[http://dx.doi.org/10.1016/j.berh.2006.08.013] [PMID: 17350544]
[78]
de Boer, T.N.; Huisman, A.M.; Polak, A.A.; Niehoff, A.G.; van Rinsum, A.C.; Saris, D.; Bijlsma, J.W.; Lafeber, F.J.; Mastbergen, S.C. The chondroprotective effect of selective COX-2 inhibition in osteoarthritis: ex vivo evaluation of human cartilage tissue after in vivo treatment. Osteoarthritis Cartilage, 2009, 17(4), 482-488.
[http://dx.doi.org/10.1016/j.joca.2008.09.002] [PMID: 18926729]
[79]
Ding, C.; Cicuttini, F.; Jones, G. Do NSAIDs affect longitudinal changes in knee cartilage volume and knee cartilage defects in older adults? Am. J. Med., 2009, 122(9), 836-842.
[http://dx.doi.org/10.1016/j.amjmed.2009.03.022] [PMID: 19699379]
[80]
Raynauld, J.P.; Martel-Pelletier, J.; Beaulieu, A.; Bessette, L.; Morin, F.; Choquette, D.; Haraoui, B.; Abram, F.; Pelletier, J.P. An open-label pilot study evaluating by magnetic resonance imaging the potential for a disease-modifying effect of celecoxib compared to a modelized historical control cohort in the treatment of knee osteoarthritis. Semin. Arthritis Rheum., 2010, 40(3), 185-192.
[http://dx.doi.org/10.1016/j.semarthrit.2009.10.003] [PMID: 20132966]
[81]
Sawitzke, A.D.; Shi, H.; Finco, M.F.; Dunlop, D.D.; Bingham, C.O., III; Harris, C.L.; Singer, N.G.; Bradley, J.D.; Silver, D.; Jackson, C.G.; Lane, N.E.; Oddis, C.V.; Wolfe, F.; Lisse, J.; Furst, D.E.; Reda, D.J.; Moskowitz, R.W.; Williams, H.J.; Clegg, D.O. The effect of glucosamine and/or chondroitin sulfate on the progression of knee osteoarthritis: a report from the glucosamine/chondroitin arthritis intervention trial. Arthritis Rheum., 2008, 58(10), 3183-3191.
[http://dx.doi.org/10.1002/art.23973] [PMID: 18821708]
[82]
Alvarez-Soria, M.A.; Largo, R.; Santillana, J.; Sánchez-Pernaute, O.; Calvo, E.; Hernández, M.; Egido, J.; Herrero-Beaumont, G. Long term NSAID treatment inhibits COX-2 synthesis in the knee synovial membrane of patients with osteoarthritis: differential proinflammatory cytokine profile between celecoxib and aceclofenac. Ann. Rheum. Dis., 2006, 65(8), 998-1005.
[http://dx.doi.org/10.1136/ard.2005.046920] [PMID: 16476713]
[83]
Sanchez, C.; Mateus, M.M.; Defresne, M.P.; Crielaard, J.M.; Reginster, J.Y.; Henrotin, Y.E. Metabolism of human articular chondrocytes cultured in alginate beads. Longterm effects of interleukin 1beta and nonsteroidal antiinflammatory drugs. J. Rheumatol., 2002, 29(4), 772-782.
[PMID: 11950021]
[84]
Katagiri, M.; Ogasawara, T.; Hoshi, K.; Chikazu, D.; Kimoto, A.; Noguchi, M.; Sasamata, M.; Harada, S.; Akama, H.; Tazaki, H.; Chung, U.I.; Takato, T.; Nakamura, K.; Kawaguchi, H. Suppression of adjuvant-induced arthritic bone destruction by cyclooxygenase-2 selective agents with and without inhibitory potency against carbonic anhydrase II. J. Bone Miner. Res., 2006, 21(2), 219-227.
[http://dx.doi.org/10.1359/JBMR.051025] [PMID: 16418777]
[85]
Noguchi, M.; Kimoto, A.; Kobayashi, S.; Yoshino, T.; Miyata, K.; Sasamata, M. Effect of celecoxib, a cyclooxygenase-2 inhibitor, on the pathophysiology of adjuvant arthritis in rat. Eur. J. Pharmacol., 2005, 513(3), 229-235.
[http://dx.doi.org/10.1016/j.ejphar.2005.01.058] [PMID: 15862805]
[86]
Tsuboi, H.; Nampei, A.; Matsui, Y.; Hashimoto, J.; Kawai, S.; Ochi, T.; Yoshikawa, H. Celecoxib prevents juxta-articular osteopenia and growth plate destruction adjacent to inflamed joints in rats with collagen-induced arthritis. Mod. Rheumatol., 2007, 17(2), 115-122.
[http://dx.doi.org/10.3109/s10165-007-0552-4] [PMID: 17437166]
[87]
Hochberg, M.C. Treatment of rheumatoid arthritis and osteoarthritis with COX-2-selective inhibitors: a managed care perspective. Am. J. Manag. Care, 2002, 8(17)(Suppl.), S502-S517.
[PMID: 12458820]
[88]
Shen, H.; Sprott, H.; Aeschlimann, A.; Gay, R.E.; Michel, B.A.; Gay, S.; Sprott, H. Analgesic action of acetaminophen in symptomatic osteoarthritis of the knee. Rheumatology (Oxford), 2006, 45(6), 765-770.
[http://dx.doi.org/10.1093/rheumatology/kei253] [PMID: 16449370]
[89]
Theiler, R.; Bischoff, H.A.; Good, M.; Uebelhart, D. Rofecoxib improves quality of life in patients with hip or knee osteoarthritis. Swiss Med. Wkly., 2002, 132(39-40), 566-573.
[PMID: 12571763]
[90]
Yamagata, K.; Andreasson, K.I.; Kaufmann, W.E.; Barnes, C.A.; Worley, P.F. Expression of a mitogen-inducible cyclooxygenase in brain neurons: regulation by synaptic activity and glucocorticoids. Neuron, 1993, 11(2), 371-386.
[http://dx.doi.org/10.1016/0896-6273(93)90192-T] [PMID: 8352945]
[91]
Oliveira, M.S.; Furian, A.F.; Royes, L.F.; Fighera, M.R.; Fiorenza, N.G.; Castelli, M.; Machado, P.; Bohrer, D.; Veiga, M.; Ferreira, J.; Cavalheiro, E.A.; Mello, C.F. Cyclooxygenase-2/PGE2 pathway facilitates pentylenetetrazol-induced seizures. Epilepsy Res., 2008, 79(1), 14-21.
[http://dx.doi.org/10.1016/j.eplepsyres.2007.12.008] [PMID: 18255268]
[92]
Akula, K.K.; Dhir, A.; Kulkarni, S.K. Rofecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor increases pentylenetetrazol seizure threshold in mice: possible involvement of adenosinergic mechanism. Epilepsy Res., 2008, 78(1), 60-70.
[http://dx.doi.org/10.1016/j.eplepsyres.2007.10.008] [PMID: 18054463]
[93]
Claycomb, R.J.; Hewett, S.J.; Hewett, J.A. Prophylactic, prandial rofecoxib treatment lacks efficacy against acute PTZ-induced seizure generation and kindling acquisition. Epilepsia, 2011, 52(2), 273-283.
[http://dx.doi.org/10.1111/j.1528-1167.2010.02889.x] [PMID: 21219314]
[94]
Krymchantowski, A.V.; Bigal, M.E. Rofecoxib in migraine. Expert Rev. Neurother., 2005, 5(1), 55-61.
[http://dx.doi.org/10.1586/14737175.5.1.55] [PMID: 15853474]
[95]
Aisen, P.S.; Thal, L.J.; Ferris, S.H.; Assaid, C.; Nessly, M.L.; Giuliani, M.J.; Lines, C.R.; Norman, B.A.; Potter, W.Z. Rofecoxib in patients with mild cognitive impairment: further analyses of data from a randomized, double-blind, trial. Curr. Alzheimer Res., 2008, 5(1), 73-82.
[http://dx.doi.org/10.2174/156720508783884602] [PMID: 18288935]
[96]
Aisen, P.S. Evaluation of selective COX-2 inhibitors for the treatment of Alzheimer’s disease. J. Pain Symptom Manage., 2002, 23(4)(Suppl.), S35-S40.
[http://dx.doi.org/10.1016/S0885-3924(02)00374-3] [PMID: 11992749]
[97]
Cakała, M.; Malik, A.R.; Strosznajder, J.B. Inhibitor of cyclooxygenase-2 protects against amyloid beta peptide-evoked memory impairment in mice. Pharmacol. Rep., 2007, 59(2), 164-172.
[PMID: 17556794]
[98]
Minghetti, L. Cyclooxygenase-2 (COX-2) in inflammatory and degenerative brain diseases. J. Neuropathol. Exp. Neurol., 2004, 63(9), 901-910.
[http://dx.doi.org/10.1093/jnen/63.9.901] [PMID: 15453089]
[99]
Nivsarkar, M.; Banerjee, A.; Padh, H. Cyclooxygenase inhibitors: a novel direction for Alzheimer’s management. Pharmacol. Rep., 2008, 60(5), 692-698.
[PMID: 19066416]
[100]
Reines, S.A.; Block, G.A.; Morris, J.C.; Liu, G.; Nessly, M.L.; Lines, C.R.; Norman, B.A.; Baranak, C.C. Rofecoxib: no effect on Alzheimer’s disease in a 1-year, randomized, blinded, controlled study. Neurology, 2004, 62(1), 66-71.
[http://dx.doi.org/10.1212/WNL.62.1.66] [PMID: 14718699]
[101]
Breitner, J.C.; Baker, L.D.; Montine, T.J.; Meinert, C.L.; Lyketsos, C.G.; Ashe, K.H.; Brandt, J.; Craft, S.; Evans, D.E.; Green, R.C.; Ismail, M.S.; Martin, B.K.; Mullan, M.J.; Sabbagh, M.; Tariot, P.N. Extended results of the Alzheimer’s disease anti-inflammatory prevention trial. Alzheimers Dement., 2011, 7(4), 402-411.
[http://dx.doi.org/10.1016/j.jalz.2010.12.014] [PMID: 21784351]
[102]
Soininen, H.; West, C.; Robbins, J.; Niculescu, L. Long-term efficacy and safety of celecoxib in Alzheimer’s disease. Dement. Geriatr. Cogn. Disord., 2007, 23(1), 8-21.
[http://dx.doi.org/10.1159/000096588] [PMID: 17068392]
[103]
Bourgain, R.H.; Six, F.; Andries, R. The action of cyclooxygenase and prostacyclin-synthetase inhibitors on platelet-vessel wall interaction. Artery, 1980, 8(1), 96-100.
[PMID: 6775620]
[104]
Lifschitz, M.D. Renal effects of nonsteroidal anti-inflammatory agents. J. Lab. Clin. Med., 1983, 102(3), 313-323.
[PMID: 6411840]
[105]
Tang, S.Y.; Monslow, J.; Todd, L.; Lawson, J.; Puré, E.; FitzGerald, G.A. Cyclooxygenase-2 in endothelial and vascular smooth muscle cells restrains atherogenesis in hyperlipidemic mice. Circulation, 2014, 129(17), 1761-1769.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.113.007913] [PMID: 24519928]
[106]
Moran, A.E.; Roth, G.A.; Narula, J.; Mensah, G.A. 1990-2010 global cardiovascular disease atlas. Glob. Heart, 2014, 9(1), 3-16.
[http://dx.doi.org/10.1016/j.gheart.2014.03.1220] [PMID: 25432106]
[107]
Aw, T.J.; Haas, S.J.; Liew, D.; Krum, H. Meta-analysis of cyclooxygenase-2 inhibitors and their effects on blood pressure. Arch. Intern. Med., 2005, 165(5), 490-496.
[http://dx.doi.org/10.1001/archinte.165.5.ioi50013] [PMID: 15710786]
[108]
Pope, J.E.; Anderson, J.J.; Felson, D.T. A meta-analysis of the effects of nonsteroidal anti-inflammatory drugs on blood pressure. Arch. Intern. Med., 1993, 153(4), 477-484.
[http://dx.doi.org/10.1001/archinte.1993.00410040045007] [PMID: 8435027]
[109]
Harirforoosh, S.; Aghazadeh-Habashi, A.; Jamali, F. Extent of renal effect of cyclo-oxygenase-2-selective inhibitors is pharmacokinetic dependent. Clin. Exp. Pharmacol. Physiol., 2006, 33(10), 917-924.
[http://dx.doi.org/10.1111/j.1440-1681.2006.04464.x] [PMID: 17002668]
[110]
Kohli, P.; Steg, P.G.; Cannon, C.P.; Smith, S.C., Jr; Eagle, K.A.; Ohman, E.M.; Alberts, M.J.; Hoffman, E.; Guo, J.; Simon, T.; Sorbets, E.; Goto, S.; Bhatt, D.L. NSAID use and association with cardiovascular outcomes in outpatients with stable atherothrombotic disease. Am J Med, 2014, 127, 53-60. e51
[http://dx.doi.org/10.1016/j.amjmed.2013.08.017]
[111]
Bombardier, C.; Laine, L.; Reicin, A.; Shapiro, D.; Burgos-Vargas, R.; Davis, B.; Day, R.; Ferraz, M.B.; Hawkey, C.J.; Hochberg, M.C.; Kvien, T.K.; Schnitzer, T.J. Comparison of upper gastrointestinal toxicity of rofecoxib and naproxen in patients with rheumatoid arthritis. VIGOR Study Group. N Engl J Med, 2000, 343, 1520-1528.1522 p following 1528.
[http://dx.doi.org/10.1056/NEJM20001123343210]
[112]
Bresalier, R.S.; Sandler, R.S.; Quan, H.; Bolognese, J.A.; Oxenius, B.; Horgan, K.; Lines, C.; Riddell, R.; Morton, D.; Lanas, A.; Konstam, M.A.; Baron, J.A. Cardiovascular events associated with rofecoxib in a colorectal adenoma chemoprevention trial. N. Engl. J. Med., 2005, 352(11), 1092-1102.
[http://dx.doi.org/10.1056/NEJMoa050493] [PMID: 15713943]
[113]
Silverstein, F.E.; Faich, G.; Goldstein, J.L.; Simon, L.S.; Pincus, T.; Whelton, A.; Makuch, R.; Eisen, G.; Agrawal, N.M.; Stenson, W.F.; Burr, A.M.; Zhao, W.W.; Kent, J.D.; Lefkowith, J.B.; Verburg, K.M.; Geis, G.S. Gastrointestinal toxicity with celecoxib vs nonsteroidal anti-inflammatory drugs for osteoarthritis and rheumatoid arthritis: the CLASS study: A randomized controlled trial. Celecoxib Long-term Arthritis Safety Study. JAMA, 2000, 284(10), 1247-1255.
[http://dx.doi.org/10.1001/jama.284.10.1247] [PMID: 10979111]
[114]
Cardiovascular and cerebrovascular events in the randomized, controlled Alzheimer’s Disease Anti-Inflammatory Prevention Trial (ADAPT). PLoS Clin. Trials, 2006, 1(7)e33
[http://dx.doi.org/10.1371/journal.pctr.0010033] [PMID: 17111043]
[115]
Solomon, S.D.; Pfeffer, M.A.; McMurray, J.J.; Fowler, R.; Finn, P.; Levin, B.; Eagle, C.; Hawk, E.; Lechuga, M.; Zauber, A.G.; Bertagnolli, M.M.; Arber, N.; Wittes, J. Effect of celecoxib on cardiovascular events and blood pressure in two trials for the prevention of colorectal adenomas. Circulation, 2006, 114(10), 1028-1035.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.636746] [PMID: 16943394]
[116]
Kearney, P.M.; Baigent, C.; Godwin, J.; Halls, H.; Emberson, J.R.; Patrono, C. Do selective cyclo-oxygenase-2 inhibitors and traditional non-steroidal anti-inflammatory drugs increase the risk of atherothrombosis? Meta-analysis of randomised trials. BMJ, 2006, 332(7553), 1302-1308.
[http://dx.doi.org/10.1136/bmj.332.7553.1302] [PMID: 16740558]
[117]
White, W.B.; West, C.R.; Borer, J.S.; Gorelick, P.B.; Lavange, L.; Pan, S.X.; Weiner, E.; Verburg, K.M. Risk of cardiovascular events in patients receiving celecoxib: a meta-analysis of randomized clinical trials. Am. J. Cardiol., 2007, 99(1), 91-98.
[http://dx.doi.org/10.1016/j.amjcard.2006.07.069] [PMID: 17196469]
[118]
Asghar, W.; Jamali, F. The effect of COX-2-selective meloxicam on the myocardial, vascular and renal risks: a systematic review. Inflammopharmacology, 2015, 23(1), 1-16.
[http://dx.doi.org/10.1007/s10787-014-0225-9] [PMID: 25515365]
[119]
Bhala, N.; Emberson, J.; Merhi, A.; Abramson, S.; Arber, N.; Baron, J.A.; Bombardier, C.; Cannon, C.; Farkouh, M.E.; FitzGerald, G.A.; Goss, P.; Halls, H.; Hawk, E.; Hawkey, C.; Hennekens, C.; Hochberg, M.; Holland, L.E.; Kearney, P.M.; Laine, L.; Lanas, A.; Lance, P.; Laupacis, A.; Oates, J.; Patrono, C.; Schnitzer, T.J.; Solomon, S.; Tugwell, P.; Wilson, K.; Wittes, J.; Baigent, C. Vascular and upper gastrointestinal effects of non-steroidal anti-inflammatory drugs: meta-analyses of individual participant data from randomised trials. Lancet, 2013, 382(9894), 769-779.
[http://dx.doi.org/10.1016/S0140-6736(13)60900-9] [PMID: 23726390]
[120]
Antman, E.M.; Bennett, J.S.; Daugherty, A.; Furberg, C.; Roberts, H.; Taubert, K.A. Use of nonsteroidal antiinflammatory drugs: an update for clinicians: a scientific statement from the American Heart Association. Circulation, 2007, 115(12), 1634-1642.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.181424] [PMID: 17325246]
[121]
Byun, E.B.; Sung, N.Y.; Byun, E.H.; Song, D.S.; Kim, J.K.; Park, J.H.; Song, B.S.; Park, S.H.; Lee, J.W.; Byun, M.W.; Kim, J.H. The procyanidin trimer C1 inhibits LPS-induced MAPK and NF-κB signaling through TLR4 in macrophages. Int. Immunopharmacol., 2013, 15(2), 450-456.
[http://dx.doi.org/10.1016/j.intimp.2012.11.021] [PMID: 23261363]
[122]
Byun, E.B.; Sung, N.Y.; Park, J.N.; Yang, M.S.; Park, S.H.; Byun, E.H. Gamma-irradiated resveratrol negatively regulates LPS-induced MAPK and NF-κB signaling through TLR4 in macrophages. Int. Immunopharmacol., 2015, 25(2), 249-259.
[http://dx.doi.org/10.1016/j.intimp.2015.02.015] [PMID: 25701505]
[123]
Byun, E.B.; Sung, N.Y.; Yang, M.S.; Lee, B.S.; Song, D.S.; Park, J.N.; Kim, J.H.; Jang, B.S.; Choi, D.S.; Park, S.H.; Yu, Y.B.; Byun, E.H. Anti-inflammatory effect of gamma-irradiated genistein through inhibition of NF-κB and MAPK signaling pathway in lipopolysaccharide-induced macrophages. Food Chem. Toxicol., 2014, 74, 255-264.
[http://dx.doi.org/10.1016/j.fct.2014.08.019] [PMID: 25447760]
[124]
Chao, C.L.; Weng, C.S.; Chang, N.C.; Lin, J.S.; Kao, S.T.; Ho, F.M. Naringenin more effectively inhibits inducible nitric oxide synthase and cyclooxygenase-2 expression in macrophages than in microglia. Nutr. Res., 2010, 30(12), 858-864.
[http://dx.doi.org/10.1016/j.nutres.2010.10.011] [PMID: 21147369]
[125]
Endale, M.; Park, S.C.; Kim, S.; Kim, S.H.; Yang, Y.; Cho, J.Y.; Rhee, M.H. Quercetin disrupts tyrosine-phosphorylated phosphatidylinositol 3-kinase and myeloid differentiation factor-88 association, and inhibits MAPK/AP-1 and IKK/NF-κB-induced inflammatory mediators production in RAW 264.7 cells. Immunobiology, 2013, 218(12), 1452-1467.
[http://dx.doi.org/10.1016/j.imbio.2013.04.019] [PMID: 23735482]
[126]
Shin, J.S.; Yun, K.J.; Chung, K.S.; Seo, K.H.; Park, H.J.; Cho, Y.W.; Baek, N.I.; Jang, D.; Lee, K.T. Monotropein isolated from the roots of Morinda officinalis ameliorates proinflammatory mediators in RAW 264.7 macrophages and dextran sulfate sodium (DSS)-induced colitis via NF-κB inactivation. Food Chem. Toxicol., 2013, 53, 263-271.
[http://dx.doi.org/10.1016/j.fct.2012.12.013] [PMID: 23261679]
[127]
Su, K.Y.; Yu, C.Y.; Chen, Y.P.; Hua, K.F.; Chen, Y.L. 3,4-Dihydroxytoluene, a metabolite of rutin, inhibits inflammatory responses in lipopolysaccharide-activated macrophages by reducing the activation of NF-κB signaling. BMC Complement. Altern. Med., 2014, 14, 21.
[http://dx.doi.org/10.1186/1472-6882-14-21] [PMID: 24417898]
[128]
Murakami, Y.; Kawata, A.; Ito, S.; Katayama, T.; Fujisawa, S. The Radical Scavenging activity and cytotoxicity of resveratrol, orcinol and 4-allylphenol and their inhibitory effects on cox-2 gene expression and Nf-kappab activation in RAW264.7 cells stimulated with Porphyromonas gingivalis-fimbriae. In Vivo, 2015, 29(3), 341-349.
[PMID: 25977379]
[129]
Lim, K.M.; Bae, S.; Koo, J.E.; Kim, E.S.; Bae, O.N.; Lee, J.Y. Suppression of skin inflammation in keratinocytes and acute/chronic disease models by caffeic acid phenethyl ester. Arch. Dermatol. Res., 2015, 307(3), 219-227.
[http://dx.doi.org/10.1007/s00403-014-1529-8] [PMID: 25501505]
[130]
Xiong, Y.; Chen, D.; Yu, C.; Lv, B.; Peng, J.; Wang, J.; Lin, Y. Citrus nobiletin ameliorates experimental colitis by reducing inflammation and restoring impaired intestinal barrier function. Mol. Nutr. Food Res., 2015, 59(5), 829-842.
[http://dx.doi.org/10.1002/mnfr.201400614] [PMID: 25655748]
[131]
Cam, A.; de Mejia, E.G. RGD-peptide lunasin inhibits Akt-mediated NF-κB activation in human macrophages through interaction with the αVβ3 integrin. Mol. Nutr. Food Res., 2012, 56(10), 1569-1581.
[http://dx.doi.org/10.1002/mnfr.201200301] [PMID: 22945510]
[132]
Feng, A.W.; Yu, C.; Mao, Q.; Li, N.; Li, Q.R.; Li, J.S. Berberine hydrochloride attenuates cyclooxygenase-2 expression in rat small intestinal mucosa during acute endotoxemia. Fitoterapia, 2011, 82(7), 976-982.
[http://dx.doi.org/10.1016/j.fitote.2011.05.013] [PMID: 21641970]
[133]
Kim, D.S.; Kim, S.J.; Kim, M.C.; Jeon, Y.D.; Um, J.Y.; Hong, S.H. The therapeutic effect of chelidonic acid on ulcerative colitis. Biol. Pharm. Bull., 2012, 35(5), 666-671.
[http://dx.doi.org/10.1248/bpb.35.666] [PMID: 22687399]
[134]
Fang, J.; Seki, T.; Tsukamoto, T.; Qin, H.; Yin, H.; Liao, L.; Nakamura, H.; Maeda, H. Protection from inflammatory bowel disease and colitis-associated carcinogenesis with 4-vinyl-2,6-dimethoxyphenol (canolol) involves suppression of oxidative stress and inflammatory cytokines. Carcinogenesis, 2013, 34(12), 2833-2841.
[http://dx.doi.org/10.1093/carcin/bgt309] [PMID: 24064222]
[135]
Wu, X.F.; Ouyang, Z.J.; Feng, L.L.; Chen, G.; Guo, W.J.; Shen, Y.; Wu, X.D.; Sun, Y.; Xu, Q. Suppression of NF-κB signaling and NLRP3 inflammasome activation in macrophages is responsible for the amelioration of experimental murine colitis by the natural compound fraxinellone. Toxicol. Appl. Pharmacol., 2014, 281(1), 146-156.
[http://dx.doi.org/10.1016/j.taap.2014.10.002] [PMID: 25448682]
[136]
Jeon, Y.J.; Kim, B.H.; Kim, S.; Oh, I.; Lee, S.; Shin, J.; Kim, T.Y. Rhododendrin ameliorates skin inflammation through inhibition of NF-κB, MAPK, and PI3K/Akt signaling. Eur. J. Pharmacol., 2013, 714(1-3), 7-14.
[http://dx.doi.org/10.1016/j.ejphar.2013.05.041] [PMID: 23764465]
[137]
Niu, X.; Wang, Y.; Li, W.; Mu, Q.; Li, H.; Yao, H.; Zhang, H. Protective effects of Isofraxidin against lipopolysaccharide-induced acute lung injury in mice. Int. Immunopharmacol., 2015, 24(2), 432-439.
[http://dx.doi.org/10.1016/j.intimp.2014.12.041] [PMID: 25596039]
[138]
Wu, S.Q.; Otero, M.; Unger, F.M.; Goldring, M.B.; Phrutivorapongkul, A.; Chiari, C.; Kolb, A.; Viernstein, H.; Toegel, S. Anti-inflammatory activity of an ethanolic Caesalpinia sappan extract in human chondrocytes and macrophages. J. Ethnopharmacol., 2011, 138(2), 364-372.
[http://dx.doi.org/10.1016/j.jep.2011.09.011] [PMID: 21963554]
[139]
Byun, M.W. Schizonepeta tenuifolia ethanol extract exerts anti-inflammatory activity through the inhibition of TLR4 signaling in lipopolysaccharide-stimulated macrophage cells. J. Med. Food, 2014, 17(3), 350-356.
[http://dx.doi.org/10.1089/jmf.2013.2928] [PMID: 24650252]
[140]
Lee, S.E.; Park, Y.S. Korean Red Ginseng water extract inhibits COX-2 expression by suppressing p38 in acrolein-treated human endothelial cells. J. Ginseng Res., 2014, 38(1), 34-39.
[http://dx.doi.org/10.1016/j.jgr.2013.11.004] [PMID: 24558308]
[141]
Kim, S.J.; Kim, Y.G.; Kim, D.S.; Jeon, Y.D.; Kim, M.C.; Kim, H.L.; Kim, S.Y.; Jang, H.J.; Lee, B.C.; Hong, S.H.; Um, J.Y. Oldenlandia diffusa ameliorates dextran sulphate sodium-induced colitis through inhibition of NF-kappaB activation. Am. J. Chin. Med., 2011, 39(5), 957-969.
[http://dx.doi.org/10.1142/S0192415X11009330] [PMID: 21905285]
[142]
Song, M.; Park, H.J. Anti-inflammatory effect of Phellinus linteus grown on germinated brown rice on dextran sodium sulfate-induced acute colitis in mice and LPS-activated macrophages. J. Ethnopharmacol., 2014, 154(2), 311-318.
[http://dx.doi.org/10.1016/j.jep.2013.12.059] [PMID: 24495471]
[143]
Park, S.Y.; Neupane, G.P.; Lee, S.O.; Lee, J.S.; Kim, M.Y.; Kim, S.Y.; Park, B.C.; Park, Y.J.; Kim, J.A. Protective effects of Pogostemon cablin Bentham water extract on inflammatory cytokine expression in TNBS-induced colitis in rats. Arch. Pharm. Res., 2014, 37(2), 253-262.
[http://dx.doi.org/10.1007/s12272-013-0260-x] [PMID: 24166708]
[144]
Xu, B.L.; Zhang, G.J.; Ji, Y.B. Active components alignment of Gegenqinlian decoction protects ulcerative colitis by attenuating inflammatory and oxidative stress. J. Ethnopharmacol., 2015, 162, 253-260.
[http://dx.doi.org/10.1016/j.jep.2014.12.042] [PMID: 25557032]
[145]
Niu, X.; Li, Y.; Li, W.; Hu, H.; Yao, H.; Li, H.; Mu, Q. The anti-inflammatory effects of Caragana tangutica ethyl acetate extract. J. Ethnopharmacol., 2014, 152(1), 99-105.
[http://dx.doi.org/10.1016/j.jep.2013.12.026] [PMID: 24406787]
[146]
Yimam, M.; Lee, Y.C.; Kim, T.W.; Moore, B.; Jiao, P.; Hong, M.; Kim, H.J.; Nam, J.B.; Kim, M.R.; Oh, J.S.; Cleveland, S.; Hyun, E.J.; Chu, M.; Jia, Q. Analgesic and anti-Inflammatory effect of UP3005, a botanical composition Containing two standardized extracts of Uncaria gambir and Morus alba. Pharmacognosy Res., 2015, 7(Suppl. 1), S39-S46.
[http://dx.doi.org/10.4103/0974-8490.157995] [PMID: 26109786]
[147]
Hayashi, S.; Ueno, N.; Murase, A.; Nakagawa, Y.; Takada, J. Novel acid-type cyclooxygenase-2 inhibitors: Design, synthesis, and structure-activity relationship for anti-inflammatory drug. Eur. J. Med. Chem., 2012, 50, 179-195.
[http://dx.doi.org/10.1016/j.ejmech.2012.01.053] [PMID: 22373734]
[148]
Li, X.; Peng, F.; Xie, C.; Wu, W.; Han, X.; Chen, L. (E)-3-(3,4-Dimethoxyphenyl)-1-(5-hydroxy-2,2-dimethyl-2H-chromen-6-yl)prop-2-en-1-one ameliorates the collagen-arthritis via blocking ERK/JNK and NF-κB signaling pathway. Int. Immunopharmacol., 2013, 17(4), 1125-1133.
[http://dx.doi.org/10.1016/j.intimp.2013.10.001] [PMID: 24135236]
[149]
Xu, J.; Jia, Y.Y.; Chen, S.R.; Ye, J.T.; Bu, X.Z.; Hu, Y.; Ma, Y.Z.; Guo, J.L.; Liu, P.Q. (E)-1-(4-ethoxyphenyl)-3-(4-nitrophenyl)-prop-2-en-1-one suppresses LPS-induced inflammatory response through inhibition of NF-κB signaling pathway. Int. Immunopharmacol., 2013, 15(4), 743-751.
[http://dx.doi.org/10.1016/j.intimp.2013.02.024] [PMID: 23499680]
[150]
Srinivas, V.; Mohan, C.D.; Baburajeev, C.P.; Rangappa, S.; Jagadish, S.; Fuchs, J.E.; Sukhorukov, A.Y. Chandra; Mason, D.J.; Sharath Kumar, K.S.; Madegowda, M.; Bender, A.; Basappa; Rangappa, K.S. Synthesis and characterization of novel oxazines and demonstration that they specifically target cyclooxygenase 2. Bioorg. Med. Chem. Lett., 2015, 25(15), 2931-2936.
[http://dx.doi.org/10.1016/j.bmcl.2015.05.047] [PMID: 26048794]
[151]
Carlson, N.G.; Rojas, M.A.; Redd, J.W.; Tang, P.; Wood, B.; Hill, K.E.; Rose, J.W. Cyclooxygenase-2 expression in oligodendrocytes increases sensitivity to excitotoxic death. J. Neuroinflammation, 2010, 7, 25.
[http://dx.doi.org/10.1186/1742-2094-7-25] [PMID: 20388219]
[152]
Choi, Y.; Lee, M.K.; Lim, S.Y.; Sung, S.H.; Kim, Y.C. Inhibition of inducible NO synthase, cyclooxygenase-2 and interleukin-1beta by torilin is mediated by mitogen-activated protein kinases in microglial BV2 cells. Br. J. Pharmacol., 2009, 156(6), 933-940.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00022.x] [PMID: 19298258]
[153]
Yoon, H.M.; Jang, K.J.; Han, M.S.; Jeong, J.W.; Kim, G.Y.; Lee, J.H.; Choi, Y.H. Ganoderma lucidum ethanol extract inhibits the inflammatory response by suppressing the NF-κB and toll-like receptor pathways in lipopolysaccharide-stimulated BV2 microglial cells. Exp. Ther. Med., 2013, 5(3), 957-963.
[http://dx.doi.org/10.3892/etm.2013.895] [PMID: 23408713]
[154]
Park, M.Y.; Jung, Y.S.; Park, J.H.; Choi, Y.W.; Lee, J.; Kim, C.M.; Baek, J.U.; Choi, B.T.; Shin, H.K. PMC-12, a Prescription of traditional Korean medicine, improves amyloid beta-induced cognitive deficits through modulation of neuroinflammation. Evid. Based Complement. Alternat. Med., 2015.2015768049
[http://dx.doi.org/10.1155/2015/768049] [PMID: 25945111]
[155]
Lee, D.; Park, J.; Yoon, J.; Kim, M.Y.; Choi, H.Y.; Kim, H. Neuroprotective effects of Eleutherococcus senticosus bark on transient global cerebral ischemia in rats. J. Ethnopharmacol., 2012, 139(1), 6-11.
[http://dx.doi.org/10.1016/j.jep.2011.05.024] [PMID: 21645606]
[156]
Khan, M.M.; Kempuraj, D.; Thangavel, R.; Zaheer, A. Protection of MPTP-induced neuroinflammation and neurodegeneration by Pycnogenol. Neurochem. Int., 2013, 62(4), 379-388.
[http://dx.doi.org/10.1016/j.neuint.2013.01.029] [PMID: 23391521]
[157]
Javed, H.; Vaibhav, K.; Ahmed, M.E.; Khan, A.; Tabassum, R.; Islam, F.; Safhi, M.M.; Islam, F. Effect of hesperidin on neurobehavioral, neuroinflammation, oxidative stress and lipid alteration in intracerebroventricular streptozotocin induced cognitive impairment in mice. J. Neurol. Sci., 2015, 348(1-2), 51-59.
[http://dx.doi.org/10.1016/j.jns.2014.10.044] [PMID: 25434716]
[158]
Kong, R.; Zhang, Y.; Zhang, S.; Liu, M.; Sun, W.; Xing, Y.; Guan, Y.; Han, C.; Liu, Z. Protective effect of ethanol extracts of the Chinese caterpillar Mushroom, Ophiocordyceps sinensis (Ascomycetes), on the experimental middle cerebral artery occlusion/reperfusion (MCAO/R) Model. Int. J. Med. Mushrooms, 2015, 17(10), 997-1003.
[http://dx.doi.org/10.1615/IntJMedMushrooms.v17.i10.90] [PMID: 26756191]
[159]
Engelhart, M.J.; Geerlings, M.I.; Ruitenberg, A.; van Swieten, J.C.; Hofman, A.; Witteman, J.C.; Breteler, M.M. Dietary intake of antioxidants and risk of Alzheimer disease. JAMA, 2002, 287(24), 3223-3229.
[http://dx.doi.org/10.1001/jama.287.24.3223] [PMID: 12076218]
[160]
Laurin, D.; Masaki, K.H.; Foley, D.J.; White, L.R.; Launer, L.J. Midlife dietary intake of antioxidants and risk of late-life incident dementia: The honolulu-asia aging study. Am. J. Epidemiol., 2004, 159(10), 959-967.
[http://dx.doi.org/10.1093/aje/kwh124] [PMID: 15128608]
[161]
White, L.R.; Petrovitch, H.; Ross, G.W.; Masaki, K.; Hardman, J.; Nelson, J.; Davis, D.; Markesbery, W. Brain aging and midlife tofu consumption. J. Am. Coll. Nutr., 2000, 19(2), 242-255.
[http://dx.doi.org/10.1080/07315724.2000.10718923] [PMID: 10763906]
[162]
Zhang, Q.; Piao, X.L.; Piao, X.S.; Lu, T.; Wang, D.; Kim, S.W. Preventive effect of Coptis chinensis and berberine on intestinal injury in rats challenged with lipopolysaccharides. Food Chem. Toxicol., 2011, 49(1), 61-69.
[http://dx.doi.org/10.1016/j.fct.2010.09.032] [PMID: 20932871]
[163]
Wu, J.; Chen, C.; Hu, X.; Cai, X.; Guan, Y.; Hu, H.; Wang, Q.; Chen, X.; Cai, B.; Jing, X. Suppressing cyclooxygenase-2 prevents nonalcoholic and inhibits apoptosis of hepatocytes that are involved in the Akt/p53 signal pathway. Biochem. Biophys. Res. Commun., 2016, 469(4), 1034-1040.
[http://dx.doi.org/10.1016/j.bbrc.2015.12.096] [PMID: 26723251]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 26
ISSUE: 18
Year: 2019
Page: [3225 - 3241]
Pages: 17
DOI: 10.2174/0929867325666180514112124
Price: $58

Article Metrics

PDF: 45
HTML: 1