Perspectives and New Aspects of Metalloproteinases’ Inhibitors in the Therapy of CNS Disorders: From Chemistry to Medicine

Author(s): Anna Boguszewska-Czubara* , Barbara Budzynska , Krystyna Skalicka-Wozniak , Jacek Kurzepa .

Journal Name: Current Medicinal Chemistry

Volume 26 , Issue 18 , 2019

  Journal Home
Translate in Chinese

Abstract:

Matrix metalloproteinases (MMPs) play a key role in remodeling of the extracellular matrix (ECM) and, at the same time, influence cell differentiation, migration, proliferation, and survival. Their importance in a variety of human diseases including cancer, rheumatoid arthritis, pulmonary emphysema and fibrotic disorders has been known for many years but special attention should be paid on the role of MMPs in the central nervous system (CNS) disorders.

Till now, there are not many well documented physiological MMP target proteins in the brain but only some pathological ones. Numerous neurodegenerative diseases are a consequence of or result in disturbed remodeling of brain ECM, therefore proper action of MMPs as well as control of their activity may play crucial roles in the development of these diseases.

In the present review, we discuss the role of metalloproteinase inhibitors, from the wellknown natural endogenous tissue inhibitors of metalloproteinases (TIMPs) to the exogenous synthetic ones like (4-phenoxyphenylsulfonyl)methylthiirane (SB-3CT), tetracyclines, batimastat (BB-94) and FN-439. As the MMP-TIMP system has been well described in physiological development as well as in pathological conditions mainly in neoplastic diseases, the knowledge about the enzymatic system in mammalian brain tissue still remains poorly understood in this context. Therefore, we focus on MMPs inhibition in the context of the physiological function of the adult brain as well as pathological conditions including neurodegenerative diseases, brain injuries, and others.

Keywords: CNS disorders, MMPs inhibition, brain, metalloproteinases, neoplasctic diseases, TIMPs.

[1]
Iyer, R.P.; Patterson, N.L.; Fields, G.B.; Lindsey, M.L. The history of matrix metalloproteinases: milestones, myths, and misperceptions. Am. J. Physiol. Heart Circ. Physiol., 2012, 303(8), H919-H930.
[http://dx.doi.org/10.1152/ajpheart.00577.2012]] [PMID: 22904159]
[2]
Fic, P.; Zakrocka, I.; Kurzepa, J.; Stepulak, A. Matrix metalloproteinases and atherosclerosis. Postepy Hig. Med. Dosw.,(Online), 2011, 65, 16-27.
[http://dx.doi.org/10.5604/17322693.931536]
[3]
Jaoude, J.; Koh, Y. Matrix metalloproteinases in exercise and obesity. Vasc. Health Risk Manag., 2016, 12, 287-295.
[http://dx.doi.org/10.2147/VHRM.S103877] [PMID: 27471391]
[4]
Pardo, A.; Selman, M. MMP-1: the elder of the family. Int. J. Biochem. Cell Biol., 2005, 37(2), 283-288.
[http://dx.doi.org/10.1016/j.biocel.2004.06.017] [PMID: 15474975]
[5]
McCawley, L.J.; Matrisian, L.M. Matrix metalloproteinases: they’re not just for matrix anymore! Curr. Opin. Cell Biol., 2001, 13(5), 534-540.
[http://dx.doi.org/10.1016/S0955-0674(00)00248-9] [PMID: 11544020]
[6]
Zhou, Y.; Cui, Z.; Xia, X.; Liu, C.; Zhu, X.; Cao, J.; Wu, Y.; Zhou, L.; Ben, Z.; Song, Y.; Zhang, H.; Zhang, D. Matrix metalloproteinase-1 (MMP-1) expression in rat spinal cord injury model. Cell. Mol. Neurobiol., 2014, 34(8), 1151-1163.
[http://dx.doi.org/10.1007/s10571-014-0090-5] [PMID: 25073870]
[7]
Lenglet, S.; Mach, F.; Montecucco, F. Role of matrix metalloproteinase-8 in atherosclerosis. Mediators Inflamm., 2013, 2013659282
[http://dx.doi.org/10.1155/2013/659282] [PMID: 23365489]
[8]
Van Lint, P.; Libert, C. Matrix metalloproteinase-8: cleavage can be decisive. Cytokine Growth Factor Rev., 2006, 17(4), 217-223.
[http://dx.doi.org/10.1016/j.cytogfr.2006.04.001] [PMID: 16820317]
[9]
Lee, E.J.; Han, J.E.; Woo, M.S.; Shin, J.A.; Park, E.M.; Kang, J.L.; Moon, P.G.; Baek, M.C.; Son, W.S.; Ko, Y.T.; Choi, J.W.; Kim, H.S. Matrix metalloproteinase-8 plays a pivotal role in neuroinflammation by modulating TNFalpha activation J. Immune. (Baltimore, Md.: 1950), 2014, 193(5), 2384- 2393.
[10]
Knäuper, V.; Cowell, S.; Smith, B.; López-Otin, C.; O’Shea, M.; Morris, H.; Zardi, L.; Murphy, G. The role of the C-terminal domain of human collagenase-3 (MMP-13) in the activation of procollagenase-3, substrate specificity, and tissue inhibitor of metalloproteinase interaction. J. Biol. Chem., 1997, 272(12), 7608-7616.
[http://dx.doi.org/10.1074/jbc.272.12.7608] [PMID: 9065415]
[11]
Leeman, M.F.; Curran, S.; Murray, G.I. The structure, regulation, and function of human matrix metalloproteinase-13. Crit. Rev. Biochem. Mol. Biol., 2002, 37(3), 149-166.
[http://dx.doi.org/10.1080/10409230290771483] [PMID: 12139441]
[12]
Cossins, J.; Dudgeon, T.J.; Catlin, G.; Gearing, A.J.; Clements, J.M. Identification of MMP-18, a putative novel human matrix metalloproteinase. Biochem. Biophys. Res. Commun., 1996, 228(2), 494-498.
[http://dx.doi.org/10.1006/bbrc.1996.1688] [PMID: 8920941]
[13]
Opdenakker, G.; Van den Steen, P.E.; Van Damme, J. Gelatinase B: a tuner and amplifier of immune functions. Trends Immunol., 2001, 22(10), 571-579.
[http://dx.doi.org/10.1016/S1471-4906(01)02023-3] [PMID: 11574282]
[14]
Mott, J.D.; Werb, Z. Regulation of matrix biology by matrix metalloproteinases. Curr. Opin. Cell Biol., 2004, 16(5), 558-564.
[http://dx.doi.org/10.1016/j.ceb.2004.07.010] [PMID: 15363807]
[15]
Loy, M.; Burggraf, D.; Martens, K.H.; Liebetrau, M.; Wunderlich, N.; Bültemeier, G.; Nemori, R.; Hamann, G.F. A gelatin in situ-overlay technique localizes brain matrix metalloproteinase activity in experimental focal cerebral ischemia. J. Neurosci. Methods, 2002, 116(2), 125-133.
[http://dx.doi.org/10.1016/S0165-0270(02)00037-7] [PMID: 12044662]
[16]
Sang, Q.X.; Birkedal-Hansen, H.; Van Wart, H.E. Proteolytic and non-proteolytic activation of human neutrophil progelatinase B. Biochim. Biophys. Acta, 1995, 1251(2), 99-108.
[http://dx.doi.org/10.1016/0167-4838(95)00086-A] [PMID: 7669817]
[17]
Lee, J.Y.; Choi, H.Y.; Yune, T.Y. MMP-3 secreted from endothelial cells of blood vessels after spinal cord injury activates microglia, leading to oligodendrocyte cell death. Neurobiol. Dis., 2015, 82, 141-151.
[http://dx.doi.org/10.1016/j.nbd.2015.06.002] [PMID: 26079709]
[18]
Thorns, V.; Walter, G.F.; Thorns, C. Expression of MMP-2, MMP-7, MMP-9, MMP-10 and MMP-11 in human astrocytic and oligodendroglial gliomas. Anticancer Res., 2003, 23(5A), 3937-3944.
[PMID: 14666700]
[19]
Yadav, L.; Puri, N.; Rastogi, V.; Satpute, P.; Ahmad, R.; Kaur, G. Matrix metalloproteinases and cancer - roles in threat and therapy. Asian Pac. J. Cancer Prev., 2014, 15(3), 1085-1091.
[http://dx.doi.org/10.7314/APJCP.2014.15.3.1085] [PMID: 24606423]
[20]
Rome, C.; Arsaut, J.; Taris, C.; Couillaud, F.; Loiseau, H. MMP-7 (matrilysin) expression in human brain tumors. Mol. Carcinog., 2007, 46(6), 446-452.
[http://dx.doi.org/10.1002/mc.20293] [PMID: 17219436]
[21]
Cossins, J.A.; Clements, J.M.; Ford, J.; Miller, K.M.; Pigott, R.; Vos, W.; Van der Valk, P.; De Groot, C.J. Enhanced expression of MMP-7 and MMP-9 in demyelinating multiple sclerosis lesions. Acta Neuropathol., 1997, 94(6), 590-598.
[http://dx.doi.org/10.1007/s004010050754] [PMID: 9444361]
[22]
Sameshima, T.; Nabeshima, K.; Toole, B.P.; Yokogami, K.; Okada, Y.; Goya, T.; Koono, M.; Wakisaka, S. Glioma cell extracellular matrix metalloproteinase inducer (EMMPRIN) (CD147) stimulates production of membrane-type matrix metalloproteinases and activated gelatinase A in co-cultures with brain-derived fibroblasts. Cancer Lett., 2000, 157(2), 177-184.
[http://dx.doi.org/10.1016/S0304-3835(00)00485-7] [PMID: 10936678]
[23]
Nakada, M.; Nakamura, H.; Ikeda, E.; Fujimoto, N.; Yamashita, J.; Sato, H.; Seiki, M.; Okada, Y. Expression and tissue localization of membrane-type 1, 2, and 3 matrix metalloproteinases in human astrocytic tumors. Am. J. Pathol., 1999, 154(2), 417-428.
[http://dx.doi.org/10.1016/S0002-9440(10)65288-1] [PMID: 10027400]
[24]
Baranger, K.; Marchalant, Y.; Bonnet, A.E.; Crouzin, N.; Carrete, A.; Paumier, J.M.; Py, N.A.; Bernard, A.; Bauer, C.; Charrat, E.; Moschke, K.; Seiki, M.; Vignes, M.; Lichtenthaler, S.F.; Checler, F.; Khrestchatisky, M.; Rivera, S. MT5-MMP is a new pro-amyloidogenic proteinase that promotes amyloid pathology and cognitive decline in a transgenic mouse model of Alzheimer’s disease. Cell. Mol. Life Sci., 2016, 73(1), 217-236.
[http://dx.doi.org/10.1007/s00018-015-1992-1] [PMID: 26202697]
[25]
Svedin, P.; Hagberg, H.; Mallard, C. Expression of MMP-12 after neonatal hypoxic-ischemic brain injury in mice. Dev. Neurosci., 2009, 31(5), 427-436.
[http://dx.doi.org/10.1159/000232561] [PMID: 19672072]
[26]
Jaworski, D.M. Developmental regulation of membrane type-5 matrix metalloproteinase (MT5-MMP) expression in the rat nervous system. Brain Res., 2000, 860(1-2), 174-177.
[http://dx.doi.org/10.1016/S0006-8993(00)02035-7] [PMID: 10727639]
[27]
Dzwonek, J.; Rylski, M.; Kaczmarek, L. Matrix metalloproteinases and their endogenous inhibitors in neuronal physiology of the adult brain. FEBS Lett., 2004, 567(1), 129-135.
[http://dx.doi.org/10.1016/j.febslet.2004.03.070] [PMID: 15165905]
[28]
Sun, J.H.; Tan, L.; Yu, J.T. Post-stroke cognitive impairment: epidemiology, mechanisms and management. Ann. Transl. Med., 2014, 2(8), 80.
[PMID: 25333055]
[29]
Kurzepa, J.; Kurzepa, J.; Golab, P.; Czerska, S.; Bielewicz, J. The significance of matrix metalloproteinase (MMP)-2 and MMP-9 in the ischemic stroke. Int. J. Neurosci., 2014, 124(10), 707-716.
[http://dx.doi.org/10.3109/00207454.2013.872102] [PMID: 24304146]
[30]
Ramos-Fernandez, M.; Bellolio, M.F.; Stead, L.G. Matrix metalloproteinase-9 as a marker for acute ischemic stroke: a systematic review. J. Stroke Cerebrovasc. Dis., 2011, 20(1), 47-54.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2009.10.008] [PMID: 21044610]
[31]
Cojocarui, I.M.; Cojocaru, M.; Sapira, V.; Socoliuc, G.; Hertea, C.; Paveliu, S. Changes in plasma matrix metalloproteinase-9 levels in patients with acute ischemic stroke. Rom. J. Intern. Med., 2012, 50(2), 155-158.
[PMID: 23326959]
[32]
Gołąb, P.; Boguszewska-Czubara, A.; Kiełbus, M.; Kurzepa, J. The rtPA increases MMP-9 activity in serum during ischaemic stroke. Neurol. Neurochir. Pol., 2014, 48(5), 309-314.
[http://dx.doi.org/10.1016/j.pjnns.2014.07.012] [PMID: 25440008]
[33]
Park, K.P.; Rosell, A.; Foerch, C.; Xing, C.; Kim, W.J.; Lee, S.; Opdenakker, G.; Furie, K.L.; Lo, E.H. Plasma and brain matrix metalloproteinase-9 after acute focal cerebral ischemia in rats. Stroke, 2009, 40(8), 2836-2842.
[http://dx.doi.org/10.1161/STROKEAHA.109.554824] [PMID: 19556529]
[34]
Clark, A.W.; Krekoski, C.A.; Bou, S.S.; Chapman, K.R.; Edwards, D.R. Increased gelatinase A (MMP-2) and gelatinase B (MMP-9) activities in human brain after focal ischemia. Neurosci. Lett., 1997, 238(1-2), 53-56.
[http://dx.doi.org/10.1016/S0304-3940(97)00859-8] [PMID: 9464653]
[35]
Asahi, M.; Asahi, K.; Jung, J.C.; del Zoppo, G.J.; Fini, M.E.; Lo, E.H. Role for matrix metalloproteinase 9 after focal cerebral ischemia: effects of gene knockout and enzyme inhibition with BB-94. J. Cereb. Blood Flow Metab., 2000, 20(12), 1681-1689.
[http://dx.doi.org/10.1097/00004647-200012000-00007] [PMID: 11129784]
[36]
Rosenberg, G.A.; Mun-Bryce, S.; Wesley, M.; Kornfeld, M. Collagenase-induced intracerebral hemorrhage in rats. Stroke, 1990, 21(5), 801-807.
[http://dx.doi.org/10.1161/01.STR.21.5.801] [PMID: 2160142]
[37]
Yamada, H.; Yoneda, M.; Inaguma, S.; Watanabe, D.; Banno, S.; Yoshikawa, K.; Mizutani, K.; Iwaki, M.; Zako, M. Infliximab counteracts tumor necrosis factor-α-enhanced induction of matrix metalloproteinases that degrade claudin and occludin in non-pigmented ciliary epithelium. Biochem. Pharmacol., 2013, 85(12), 1770-1782.
[http://dx.doi.org/10.1016/j.bcp.2013.04.006] [PMID: 23603294]
[38]
Montaner, J.; Alvarez-Sabín, J.; Molina, C.A.; Anglés, A.; Abilleira, S.; Arenillas, J.; Monasterio, J. Matrix metalloproteinase expression is related to hemorrhagic transformation after cardioembolic stroke. Stroke, 2001, 32(12), 2762-2767.
[http://dx.doi.org/10.1161/hs1201.99512] [PMID: 11739970]
[39]
Montaner, J.; Molina, C.A.; Monasterio, J.; Abilleira, S.; Arenillas, J.F.; Ribó, M.; Quintana, M.; Alvarez-Sabín, J. Matrix metalloproteinase-9 pretreatment level predicts intracranial hemorrhagic complications after thrombolysis in human stroke. Circulation, 2003, 107(4), 598-603.
[http://dx.doi.org/10.1161/01.CIR.0000046451.38849.90] [PMID: 12566373]
[40]
Castellanos, M.; Leira, R.; Serena, J.; Pumar, J.M.; Lizasoain, I.; Castillo, J.; Dávalos, A. Plasma metalloproteinase-9 concentration predicts hemorrhagic transformation in acute ischemic stroke. Stroke, 2003, 34(1), 40-46.
[http://dx.doi.org/10.1161/01.STR.0000046764.57344.31] [PMID: 12511748]
[41]
Kreisel, S.H.; Stroick, M.; Reuter, B.; Senn, E.; Hennerici, M.G.; Fatar, M. MMP-2 concentrations in stroke according to etiology: adjusting for enzyme degradation in stored deep-frozen serum and other methodological pitfalls. J. Clin. Neurosci., 2012, 19(11), 1564-1567.
[http://dx.doi.org/10.1016/j.jocn.2011.10.026] [PMID: 22959677]
[42]
Lucivero, V.; Prontera, M.; Mezzapesa, D.M.; Petruzzellis, M.; Sancilio, M.; Tinelli, A.; Di Noia, D.; Ruggieri, M.; Federico, F. Different roles of matrix metalloproteinases-2 and -9 after human ischaemic stroke. Neurol. Sci., 2007, 28(4), 165-170.
[http://dx.doi.org/10.1007/s10072-007-0814-0] [PMID: 17690845]
[43]
Calabrese, V.; Giordano, J.; Signorile, A.; Laura Ontario, M.; Castorina, S.; De Pasquale, C.; Eckert, G.; Calabrese, E.J. Major pathogenic mechanisms in vascular dementia: Roles of cellular stress response and hormesis in neuroprotection. J. Neurosci. Res., 2016, 94(12), 1588-1603.
[http://dx.doi.org/10.1002/jnr.23925] [PMID: 27662637]
[44]
Sharma, N.; Singh, A.N. Exploring biomarkers for Alzheimer’s disease. J. Clin. Diagn. Res., 2016, 10(7), KE01-KE06.
[PMID: 27630867]
[45]
Duits, F.H.; Hernandez-Guillamon, M.; Montaner, J.; Goos, J.D.C.; Montañola, A.; Wattjes, M.P.; Barkhof, F.; Scheltens, P.; Teunissen, C.E.; van der Flier, W.M. Matrix metalloproteinases in Alzheimer’s disease and concurrent cerebral microbleeds. J. Alzheimers Dis., 2015, 48(3), 711-720.
[http://dx.doi.org/10.3233/JAD-143186] [PMID: 26402072]
[46]
Selkoe, D.J. In: Handbook of clinical neurology: Dementias. Vinken, P., Bruyn, G., Klawans, H., Jong, J.M.B.V.d., Goetz, C., Tanner, C., Aminoff, M., Wolf, F.A. de, Moser, H.W., Vecht, C.J., Appenzeller, O., Meinardi, H., Swaab, D.F., Cervero, F., Jensen, T.S., Eisen, A.A., Shaw, P.J., Koller, W.C., Melamed, E., Portegies, P., Berger, J.R., Mastaglia, F.L., Hilton-Jones, D., Sarnat, H.B., Curatolo, P., Duyckaerts, C., Litvan, I., Young, G.B., Wijdicks, E.F., Engel, A.G., Finger, S., Boller, F., Tyler, K.L., Roos, K.L., Tunkel, A.R., Nappi, G., Moskowitz, M.A., Montagna, P., Chokroverty, S., Kennard, C., Leigh, R.J.L., Subramony, S.H., Dürr, A., Schlaepfer, T.E., Nemeroff, C.B., Tselis, A.C., Booss, J., Eds.;North-Holland/Elsevier: Amsterdam 1969-2014 89. 245-260.
[47]
Willem, M.; Tahirovic, S.; Busche, M.A.; Ovsepian, S.V.; Chafai, M.; Kootar, S.; Hornburg, D.; Evans, L.D.B.; Moore, S.; Daria, A.; Hampel, H.; Müller, V.; Giudici, C.; Nuscher, B.; Wenninger-Weinzierl, A.; Kremmer, E.; Heneka, M.T.; Thal, D.R.; Giedraitis, V.; Lannfelt, L.; Müller, U.; Livesey, F.J.; Meissner, F.; Herms, J.; Konnerth, A.; Marie, H.; Haass, C. η-Secretase processing of APP inhibits neuronal activity in the hippocampus. Nature, 2015, 526(7573), 443-447.
[http://dx.doi.org/10.1038/nature14864] [PMID: 26322584]
[48]
Mroczko, B.; Groblewska, M.; Barcikowska, M. The role of matrix metalloproteinases and tissue inhibitors of metalloproteinases in the pathophysiology of neurodegeneration: a literature study. J. Alzheimers Dis., 2013, 37(2), 273-283.
[http://dx.doi.org/10.3233/JAD-130647] [PMID: 23792694]
[49]
Adair, J.C.; Charlie, J.; Dencoff, J.E.; Kaye, J.A.; Quinn, J.F.; Camicioli, R.M.; Stetler-Stevenson, W.G.; Rosenberg, G.A. Measurement of gelatinase B (MMP-9) in the cerebrospinal fluid of patients with vascular dementia and Alzheimer disease. Stroke, 2004, 35(6), e159-e162.
[http://dx.doi.org/10.1161/01.STR.0000127420.10990.76] [PMID: 15105518]
[50]
Lorenzl, S.; Buerger, K.; Hampel, H.; Beal, M.F. Profiles of matrix metalloproteinases and their inhibitors in plasma of patients with dementia. Int. Psychogeriatr., 2008, 20(1), 67-76.
[http://dx.doi.org/10.1017/S1041610207005790] [PMID: 17697439]
[51]
Horstmann, S.; Budig, L.; Gardner, H.; Koziol, J.; Deuschle, M.; Schilling, C.; Wagner, S. Matrix metalloproteinases in peripheral blood and cerebrospinal fluid in patients with Alzheimer’s disease. Int. Psychogeriatr., 2010, 22(6), 966-972.
[http://dx.doi.org/10.1017/S1041610210000827] [PMID: 20561382]
[52]
Michel, P.P.; Hirsch, E.C.; Hunot, S. Understanding dopaminergic cell death pathways in Parkinson disease. Neuron, 2016, 90(4), 675-691.
[http://dx.doi.org/10.1016/j.neuron.2016.03.038] [PMID: 27196972]
[53]
Garcia-Ptacek, S.; Kramberger, M.G. Parkinson disease and dementia. J. Geriatr. Psychiatry Neurol., 2016, 29(5), 261-270.
[http://dx.doi.org/10.1177/0891988716654985] [PMID: 27502301]
[54]
Lorenzl, S.; Albers, D.S.; Narr, S.; Chirichigno, J.; Beal, M.F. Expression of MMP-2, MMP-9, and MMP-1 and their endogenous counterregulators TIMP-1 and TIMP-2 in postmortem brain tissue of Parkinson’s disease. Exp. Neurol., 2002, 178(1), 13-20.
[http://dx.doi.org/10.1006/exnr.2002.8019] [PMID: 12460604]
[55]
Oh, S.H.; Kim, H.N.; Park, H.J.; Shin, J.Y.; Kim, D.Y.; Lee, P.H. The cleavage effect of mesenchymal stem cell and its derived matrix metalloproteinase-2 on extracellular alpha-synuclein aggregates in parkinsonian models. Stem Cells Transl. Med., 2017, 6(3), 949-961.
[http://dx.doi.org/10.5966/sctm.2016-0111] [PMID: 28297586]
[56]
He, X.; Zhang, L.; Yao, X.; Hu, J.; Yu, L.; Jia, H.; An, R.; Liu, Z.; Xu, Y. Association studies of MMP-9 in Parkinson’s disease and amyotrophic lateral sclerosis. PLoS One, 2013, 8(9)e73777
[http://dx.doi.org/10.1371/journal.pone.0073777] [PMID: 24040066]
[57]
Lorenzl, S.; Calingasan, N.; Yang, L.; Albers, D.S.; Shugama, S.; Gregorio, J.; Krell, H.W.; Chirichigno, J.; Joh, T.; Beal, M.F. Matrix metalloproteinase-9 is elevated in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism in mice. Neuromolecular Med., 2004, 5(2), 119-132.
[http://dx.doi.org/10.1385/NMM:5:2:119] [PMID: 15075439]
[58]
Chung, Y.C.; Kim, Y.S.; Bok, E.; Yune, T.Y.; Maeng, S.; Jin, B.K. MMP-3 contributes to nigrostriatal dopaminergic neuronal loss, BBB damage, and neuroinflammation in an MPTP mouse model of Parkinson’s disease. Mediators Inflamm., 2013.2013370526
[http://dx.doi.org/10.1155/2013/370526] [PMID: 23853428]
[59]
Choi, D.H.; Kim, E.M.; Son, H.J.; Joh, T.H.; Kim, Y.S.; Kim, D.; Flint Beal, M.; Hwang, O. A novel intracellular role of matrix metalloproteinase-3 during apoptosis of dopaminergic cells. J. Neurochem., 2008, 106(1), 405-415.
[http://dx.doi.org/10.1111/j.1471-4159.2008.05399.x] [PMID: 18397366]
[60]
McClain, J.A.; Phillips, L.L.; Fillmore, H.L. Increased MMP-3 and CTGF expression during lipopolysaccharide-induced dopaminergic neurodegeneration. Neurosci. Lett., 2009, 460(1), 27-31.
[http://dx.doi.org/10.1016/j.neulet.2009.05.044] [PMID: 19463894]
[61]
Maeda, A.; Sobel, R.A. Matrix metalloproteinases in the normal human central nervous system, microglial nodules, and multiple sclerosis lesions. J. Neuropathol. Exp. Neurol., 1996, 55(3), 300-309.
[http://dx.doi.org/10.1097/00005072-199603000-00005] [PMID: 8786388]
[62]
Rosenberg, G.A.; Dencoff, J.E.; Correa, N., Jr; Reiners, M.; Ford, C.C. Effect of steroids on CSF matrix metalloproteinases in multiple sclerosis: relation to blood-brain barrier injury. Neurology, 1996, 46(6), 1626-1632.
[http://dx.doi.org/10.1212/WNL.46.6.1626] [PMID: 8649561]
[63]
Waubant, E.; Goodkin, D.E.; Gee, L.; Bacchetti, P.; Sloan, R.; Stewart, T.; Andersson, P.B.; Stabler, G.; Miller, K. Serum MMP-9 and TIMP-1 levels are related to MRI activity in relapsing multiple sclerosis. Neurology, 1999, 53(7), 1397-1401.
[http://dx.doi.org/10.1212/WNL.53.7.1397] [PMID: 10534241]
[64]
Fainardi, E.; Castellazzi, M.; Bellini, T.; Manfrinato, M.C.; Baldi, E.; Casetta, I.; Paolino, E.; Granieri, E.; Dallocchio, F. Cerebrospinal fluid and serum levels and intrathecal production of active matrix metalloproteinase-9 (MMP-9) as markers of disease activity in patients with multiple sclerosis. Mult. Scler., 2006, 12(3), 294-301.
[http://dx.doi.org/10.1191/135248506ms1274oa] [PMID: 16764342]
[65]
Stüve, O.; Dooley, N.P.; Uhm, J.H.; Antel, J.P.; Francis, G.S.; Williams, G.; Yong, V.W. Interferon beta-1b decreases the migration of T lymphocytes in vitro: effects on matrix metalloproteinase-9. Ann. Neurol., 1996, 40(6), 853-863.
[http://dx.doi.org/10.1002/ana.410400607] [PMID: 9007090]
[66]
Boz, C.; Ozmenoglu, M.; Velioglu, S.; Kilinc, K.; Orem, A.; Alioglu, Z.; Altunayoglu, V. Matrix metalloproteinase-9 (MMP-9) and tissue inhibitor of matrix metalloproteinase (TIMP-1) in patients with relapsing-remitting multiple sclerosis treated with interferon beta. Clin. Neurol. Neurosurg., 2006, 108(2), 124-128.
[http://dx.doi.org/10.1016/j.clineuro.2005.01.005] [PMID: 16412833]
[67]
Dubois, B.; Leary, S.M.; Nelissen, I.; Opdenakker, G.; Giovannoni, G.; Thompson, A.J. Serum gelatinase B/MMP-9 in primary progressive multiple sclerosis patients treated with interferon-beta-1a. J. Neurol., 2003, 250(9), 1037-1043.
[http://dx.doi.org/10.1007/s00415-003-0110-8] [PMID: 14504963]
[68]
Clements, J.M.; Cossins, J.A.; Wells, G.M.; Corkill, D.J.; Helfrich, K.; Wood, L.M.; Pigott, R.; Stabler, G.; Ward, G.A.; Gearing, A.J.; Miller, K.M. Matrix metalloproteinase expression during experimental autoimmune encephalomyelitis and effects of a combined matrix metalloproteinase and tumour necrosis factor-alpha inhibitor. J. Neuroimmunol., 1997, 74(1-2), 85-94.
[http://dx.doi.org/10.1016/S0165-5728(96)00210-X] [PMID: 9119983]
[69]
Leppert, D.; Ford, J.; Stabler, G.; Grygar, C.; Lienert, C.; Huber, S.; Miller, K.M.; Hauser, S.L.; Kappos, L. Matrix metalloproteinase-9 (gelatinase B) is selectively elevated in CSF during relapses and stable phases of multiple sclerosis. Brain, 1998, 121(Pt 12), 2327-2334.
[http://dx.doi.org/10.1093/brain/121.12.2327] [PMID: 9874483]
[70]
Nelissen, I.; Vandenbroeck, K.; Fiten, P.; Hillert, J.; Olsson, T.; Marrosu, M.G.; Opdenakker, G. Polymorphism analysis suggests that the gelatinase B gene is not a susceptibility factor for multiple sclerosis. J. Neuroimmunol., 2000, 105(1), 58-63.
[http://dx.doi.org/10.1016/S0165-5728(00)00189-2] [PMID: 10713364]
[71]
Kieseier, B.C.; Kiefer, R.; Clements, J.M.; Miller, K.; Wells, G.M.; Schweitzer, T.; Gearing, A.J.; Hartung, H.P. Matrix metalloproteinase-9 and -7 are regulated in experimental autoimmune encephalomyelitis. Brain, 1998, 121(Pt 1), 159-166.
[http://dx.doi.org/10.1093/brain/121.1.159] [PMID: 9549496]
[72]
Vos, C.M.; van Haastert, E.S.; de Groot, C.J.; van der Valk, P.; de Vries, H.E. Matrix metalloproteinase-12 is expressed in phagocytotic macrophages in active multiple sclerosis lesions. J. Neuroimmunol., 2003, 138(1-2), 106-114.
[http://dx.doi.org/10.1016/S0165-5728(03)00036-5] [PMID: 12742660]
[73]
Kim, Y.S.; Joh, T.H. Matrix metalloproteinases, new insights into the understanding of neurodegenerative disorders. Biomol. Ther. (Seoul), 2012, 20(2), 133-143.
[http://dx.doi.org/10.4062/biomolther.2012.20.2.133] [PMID: 24116286]
[74]
Xu, Q.; Cao, X.; Pan, J.; Ye, Y.; Xie, Y.; Ohara, N.; Ji, H. Extracellular matrix metalloproteinase inducer (EMMPRIN) remodels the extracellular matrix through enhancing matrix metalloproteinases (MMPs) and inhibiting tissue inhibitors of MMPs expression in HPV-positive cervical cancer cells. Eur. J. Gynaecol. Oncol., 2015, 36(5), 539-545.
[PMID: 26513879]
[75]
Latronico, T.; Branà, M.T.; Gramegna, P.; Fasano, A.; Di Bari, G.; Liuzzi, G.M. Inhibition of myelin-cleaving poteolytic activities by interferon-beta in rat astrocyte cultures. Comparative analysis between gelatinases and calpain-II. PLoS One, 2013, 8(2)e49656
[http://dx.doi.org/10.1371/journal.pone.0049656] [PMID: 23390485]
[76]
Cui, N.; Wang, H.; Long, Y.; Su, L.; Liu, D. Dexamethasone suppressed LPS-induced matrix metalloproteinase and its effect on endothelial glycocalyx shedding. Mediators Inflamm., 2015.2015912726
[http://dx.doi.org/10.1155/2015/912726] [PMID: 26199464]
[77]
McCarthy, S.M.; Bove, P.F.; Matthews, D.E.; Akaike, T.; van der Vliet, A. Nitric oxide regulation of MMP-9 activation and its relationship to modifications of the cysteine switch. Biochemistry, 2008, 47(21), 5832-5840.
[http://dx.doi.org/10.1021/bi702496v] [PMID: 18452312]
[78]
Rosenblum, G.; Meroueh, S.; Toth, M.; Fisher, J.F.; Fridman, R.; Mobashery, S.; Sagi, I. Molecular structures and dynamics of the stepwise activation mechanism of a matrix metalloproteinase zymogen: challenging the cysteine switch dogma. J. Am. Chem. Soc., 2007, 129(44), 13566-13574.
[http://dx.doi.org/10.1021/ja073941l] [PMID: 17929919]
[79]
Briasoulis, A.; Tousoulis, D.; Papageorgiou, N.; Kampoli, A.M.; Androulakis, E.; Antoniades, C.; Tsiamis, E.; Latsios, G.; Stefanadis, C. Novel therapeutic approaches targeting matrix metalloproteinases in cardiovascular disease. Curr. Top. Med. Chem., 2012, 12(10), 1214-1221.
[http://dx.doi.org/10.2174/1568026611208011214] [PMID: 22519451]
[80]
Lambert, E.; Dassé, E.; Haye, B.; Petitfrère, E. TIMPs as multifacial proteins. Crit. Rev. Oncol. Hematol., 2004, 49(3), 187-198.
[http://dx.doi.org/10.1016/j.critrevonc.2003.09.008] [PMID: 15036259]
[81]
Brew, K.; Dinakarpandian, D.; Nagase, H. Tissue inhibitors of metalloproteinases: evolution, structure and function. Biochim. Biophys. Acta, 2000, 1477(1-2), 267-283.
[http://dx.doi.org/10.1016/S0167-4838(99)00279-4] [PMID: 10708863]
[82]
Brew, K.; Nagase, H. The tissue inhibitors of metalloproteinases (TIMPs): An ancient family with structural and functional diversity. Biochim. Biophys. Acta, 2010, 1803(1), 55-71.
[http://dx.doi.org/10.1016/j.bbamcr.2010.01.003] [PMID: 20080133]
[83]
Arpino, V.; Brock, M.; Gill, S.E. The role of TIMPs in regulation of extracellular matrix proteolysis. Matrix Biol., 2015, 44-46, 247-254.
[http://dx.doi.org/10.1016/j.matbio.2015.03.005] [PMID: 25805621]
[84]
Docherty, A.J.; Lyons, A.; Smith, B.J.; Wright, E.M.; Stephens, P.E.; Harris, T.J.; Murphy, G.; Reynolds, J.J. Sequence of human tissue inhibitor of metalloproteinases and its identity to erythroid-potentiating activity. Nature, 1985, 318(6041), 66-69.
[http://dx.doi.org/10.1038/318066a0] [PMID: 3903517]
[85]
Stetler-Stevenson, W.G.; Bersch, N.; Golde, D.W. Tissue inhibitor of metalloproteinase-2 (TIMP-2) has erythroid-potentiating activity. FEBS Lett., 1992, 296(2), 231-234.
[http://dx.doi.org/10.1016/0014-5793(92)80386-U] [PMID: 1370805]
[86]
Batra, J.; Robinson, J.; Soares, A.S.; Fields, A.P.; Radisky, D.C.; Radisky, E.S. Matrix metalloproteinase-10 (MMP-10) interaction with tissue inhibitors of metalloproteinases TIMP-1 and TIMP-2: binding studies and crystal structure. J. Biol. Chem., 2012, 287(19), 15935-15946.
[http://dx.doi.org/10.1074/jbc.M112.341156] [PMID: 22427646]
[87]
Moss, M.L.; Jin, S.L.; Becherer, J.D.; Bickett, D.M.; Burkhart, W.; Chen, W.J.; Hassler, D.; Leesnitzer, M.T.; McGeehan, G.; Milla, M.; Moyer, M.; Rocque, W.; Seaton, T.; Schoenen, F.; Warner, J.; Willard, D. Structural features and biochemical properties of TNF-alpha converting enzyme (TACE). J. Neuroimmunol., 1997, 72(2), 127-129.
[http://dx.doi.org/10.1016/S0165-5728(96)00180-4] [PMID: 9042103]
[88]
Rivera, S.; Tremblay, E.; Timsit, S.; Canals, O.; Ben-Ari, Y.; Khrestchatisky, M. Tissue inhibitor of metalloproteinases-1 (TIMP-1) is differentially induced in neurons and astrocytes after seizures: evidence for developmental, immediate early gene, and lesion response. J. Neurosci., 1997, 17(11), 4223-4235.
[http://dx.doi.org/10.1523/JNEUROSCI.17-11-04223.1997] [PMID: 9151739]
[89]
von Gertten, C.; Holmin, S.; Mathiesen, T.; Nordqvist, A.C. Increases in matrix metalloproteinase-9 and tissue inhibitor of matrix metalloproteinase-1 mRNA after cerebral contusion and depolarisation. J. Neurosci. Res., 2003, 73(6), 803-810.
[http://dx.doi.org/10.1002/jnr.10729] [PMID: 12949906]
[90]
Fager, N.; Jaworski, D.M. Differential spatial distribution and temporal regulation of tissue inhibitor of metalloproteinase mRNA expression during rat central nervous system development. Mech. Dev., 2000, 98(1-2), 105-109.
[http://dx.doi.org/10.1016/S0925-4773(00)00437-8] [PMID: 11044612]
[91]
Rivera, S.; Ogier, C.; Jourquin, J.; Timsit, S.; Szklarczyk, A.W.; Miller, K.; Gearing, A.J.; Kaczmarek, L.; Khrestchatisky, M. Gelatinase B and TIMP-1 are regulated in a cell- and time-dependent manner in association with neuronal death and glial reactivity after global forebrain ischemia. Eur. J. Neurosci., 2002, 15(1), 19-32.
[http://dx.doi.org/10.1046/j.0953-816x.2001.01838.x] [PMID: 11860503]
[92]
Szymocha, R.; Akaoka, H.; Brisson, C.; Beurton-Marduel, P.; Chalon, A.; Bernard, A.; Didier-Bazes, M.; Belin, M.F.; Giraudon, P. Astrocytic alterations induced by HTLV type 1-infected T lymphocytes: a role for Tax-1 and tumor necrosis factor alpha. AIDS Res. Hum. Retroviruses, 2000, 16(16), 1723-1729.
[http://dx.doi.org/10.1089/08892220050193218] [PMID: 11080817]
[93]
Tan, H.K.; Heywood, D.; Ralph, G.S.; Bienemann, A.; Baker, A.H.; Uney, J.B. Tissue inhibitor of metalloproteinase 1 inhibits excitotoxic cell death in neurons. Mol. Cell. Neurosci., 2003, 22(1), 98-106.
[http://dx.doi.org/10.1016/S1044-7431(02)00024-6] [PMID: 12595242]
[94]
Chaillan, F.A.; Rivera, S.; Marchetti, E.; Jourquin, J.; Werb, Z.; Soloway, P.D.; Khrestchatisky, M.; Roman, F.S. Involvement of tissue inhibition of metalloproteinases-1 in learning and memory in mice. Behav. Brain Res., 2006, 173(2), 191-198.
[http://dx.doi.org/10.1016/j.bbr.2006.06.020] [PMID: 16860884]
[95]
Khuth, S.T.; Akaoka, H.; Pagenstecher, A.; Verlaeten, O.; Belin, M.F.; Giraudon, P.; Bernard, A. Morbillivirus infection of the mouse central nervous system induces region-specific upregulation of MMPs and TIMPs correlated to inflammatory cytokine expression. J. Virol., 2001, 75(17), 8268-8282.
[http://dx.doi.org/10.1128/JVI.75.17.8268-8282.2001] [PMID: 11483772]
[96]
Jaworski, D.M.; Soloway, P.; Caterina, J.; Falls, W.A. Tissue inhibitor of metalloproteinase-2(TIMP-2)-deficient mice display motor deficits. J. Neurobiol., 2006, 66(1), 82-94.
[http://dx.doi.org/10.1002/neu.20205] [PMID: 16216006]
[97]
Jaworski, D.M.; Boone, J.; Caterina, J.; Soloway, P.; Falls, W.A. Prepulse inhibition and fear-potentiated startle are altered in tissue inhibitor of metalloproteinase-2 (TIMP-2) knockout mice. Brain Res., 2005, 1051(1-2), 81-89.
[http://dx.doi.org/10.1016/j.brainres.2005.05.057] [PMID: 15979591]
[98]
Smith, M.R.; Kung, H.; Durum, S.K.; Colburn, N.H.; Sun, Y. TIMP-3 induces cell death by stabilizing TNF-alpha receptors on the surface of human colon carcinoma cells. Cytokine, 1997, 9(10), 770-780.
[http://dx.doi.org/10.1006/cyto.1997.0233] [PMID: 9344510]
[99]
Li, N.G.; Tang, Y.P.; Duan, J.A.; Shi, Z.H. Matrix metalloproteinase inhibitors: a patent review (2011 - 2013). Expert Opin. Ther. Pat., 2014, 24(9), 1039-1052.
[http://dx.doi.org/10.1517/13543776.2014.937424] [PMID: 25098768]
[100]
Skiles, J.W.; Gonnella, N.C.; Jeng, A.Y. The design, structure, and therapeutic application of matrix metalloproteinase inhibitors. Curr. Med. Chem., 2001, 8(4), 425-474.
[http://dx.doi.org/10.2174/0929867013373417] [PMID: 11172697]
[101]
Stellas, D.; Patsavoudi, E. Inhibiting matrix metalloproteinases, an old story with new potentials for cancer treatment. Anticancer. Agents Med. Chem., 2012, 12(7), 707-717.
[http://dx.doi.org/10.2174/187152012802650246] [PMID: 22292747]
[102]
King, S.E. Matrix metalloproteinases: new directions toward inhibition in the fight against cancers. Future Med. Chem., 2016, 8(3), 297-309.
[http://dx.doi.org/10.4155/fmc.15.184] [PMID: 26910530]
[103]
Lapchak, P.A.; Chapman, D.F.; Zivin, J.A. Metalloproteinase inhibition reduces thrombolytic (tissue plasminogen activator)-induced hemorrhage after thromboembolic stroke. Stroke, 2000, 31(12), 3034-3040.
[http://dx.doi.org/10.1161/01.STR.31.12.3034] [PMID: PMID: 11108768]
[104]
Coussens, L.M.; Fingleton, B.; Matrisian, L.M. Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science, 2002, 295(5564), 2387-2392.
[http://dx.doi.org/10.1126/science.1067100] [PMID: 11923519]
[105]
Overall, C.M.; López-Otín, C. Strategies for MMP inhibition in cancer: innovations for the post-trial era. Nat. Rev. Cancer, 2002, 2(9), 657-672.
[http://dx.doi.org/10.1038/nrc884] [PMID: 12209155]
[106]
Nelson, A.R.; Fingleton, B.; Rothenberg, M.L.; Matrisian, L.M. Matrix metalloproteinases: biologic activity and clinical implications. J. Clin. Oncol., 2000, 18(5), 1135-1149.
[http://dx.doi.org/10.1200/JCO.2000.18.5.1135] [PMID: 10694567]
[107]
Brown, S.; Bernardo, M.M.; Li, Z.H.; Kotra, L.P.; Tanaka, Y.; Fridman, R.; Mobashery, S. Potent and selective mechanism-based inhibition of gelatinases. J. Am. Chem. Soc., 2000, 122, 6799-6800.
[http://dx.doi.org/10.1021/ja001461n]
[108]
Lee, M.; Villegas-Estrada, A.; Celenza, G.; Boggess, B.; Toth, M.; Kreitinger, G.; Forbes, C.; Fridman, R.; Mobashery, S.; Chang, M. Metabolism of a highly selective gelatinase inhibitor generates active metabolite. Chem. Biol. Drug Des., 2007, 70(5), 371-382.
[http://dx.doi.org/10.1111/j.1747-0285.2007.00577.x] [PMID: 17927722]
[109]
Cui, J.; Chen, S.; Zhang, C.; Meng, F.; Wu, W.; Hu, R.; Hadass, O.; Lehmidi, T.; Blair, G.J.; Lee, M.; Chang, M.; Mobashery, S.; Sun, G.Y.; Gu, Z. Inhibition of MMP-9 by a selective gelatinase inhibitor protects neurovasculature from embolic focal cerebral ischemia. Mol. Neurodegener., 2012, 7, 21.
[http://dx.doi.org/10.1186/1750-1326-7-21] [PMID: 22587708]
[110]
Gu, Z.; Cui, J.; Brown, S.; Fridman, R.; Mobashery, S.; Strongin, A.Y.; Lipton, S.A. A highly specific inhibitor of matrix metalloproteinase-9 rescues laminin from proteolysis and neurons from apoptosis in transient focal cerebral ischemia. J. Neurosci., 2005, 25(27), 6401-6408.
[http://dx.doi.org/10.1523/JNEUROSCI.1563-05.2005] [PMID: 16000631]
[111]
Guo, Z.D.; Zhang, X.D.; Wu, H.T.; Lin, B.; Sun, X.C.; Zhang, J.H. Matrix metalloproteinase 9 inhibition reduces early brain injury in cortex after subarachnoid hemorrhage. Acta Neurochir. Suppl. (Wien), 2011, 110(Pt 1), 81-84.
[http://dx.doi.org/10.1007/978-3-7091-0353-1_15] [PMID: 21116920]
[112]
Liu, H.; Shubayev, V.I. Matrix metalloproteinase-9 controls proliferation of NG2+ progenitor cells immediately after spinal cord injury. Exp. Neurol., 2011, 231(2), 236-246.
[http://dx.doi.org/10.1016/j.expneurol.2011.06.015] [PMID: 21756907]
[113]
Ranasinghe, H.S.; Scheepens, A.; Sirimanne, E.; Mitchell, M.D.; Williams, C.E.; Fraser, M. Inhibition of MMP-9 activity following hypoxic ischemia in the developing brain using a highly specific inhibitor. Dev. Neurosci., 2012, 34(5), 417-427.
[http://dx.doi.org/10.1159/000343257] [PMID: 23171520]
[114]
Jia, F.; Yin, Y.H.; Gao, G.Y.; Wang, Y.; Cen, L.; Jiang, J.Y. MMP-9 inhibitor SB-3CT attenuates behavioral impairments and hippocampal loss after traumatic brain injury in rat. J. Neurotrauma, 2014, 31(13), 1225-1234.
[http://dx.doi.org/10.1089/neu.2013.3230] [PMID: 24661104]
[115]
Hadass, O.; Tomlinson, B.N.; Gooyit, M.; Chen, S.; Purdy, J.J.; Walker, J.M.; Zhang, C.; Giritharan, A.B.; Purnell, W.; Robinson, C.R., II; Shin, D.; Schroeder, V.A.; Suckow, M.A.; Simonyi, A.; Sun, G.Y.; Mobashery, S.; Cui, J.; Chang, M.; Gu, Z. Selective inhibition of matrix metalloproteinase-9 attenuates secondary damage resulting from severe traumatic brain injury. PLoS One, 2013, 8(10)e76904
[http://dx.doi.org/10.1371/journal.pone.0076904] [PMID: 24194849]
[116]
Semple, B.D.; Noble-Haeusslein, L.J.; Gooyit, M.; Tercovich, K.G.; Peng, Z.; Nguyen, T.T.; Schroeder, V.A.; Suckow, M.A.; Chang, M.; Raber, J.; Trivedi, A. Early gelatinase activity is not a determinant of long-term recovery after traumatic brain injury in the immature mouse. PLoS One, 2015, 10(11)e0143386
[http://dx.doi.org/10.1371/journal.pone.0143386] [PMID: 26588471]
[117]
Gao, M.; Zhang, H.; Trivedi, A.; Mahasenan, K.V.; Schroeder, V.A.; Wolter, W.R.; Suckow, M.A.; Mobashery, S.; Noble-Haeusslein, L.J.; Chang, M. Selective inhibition of MMP-2 does not alter neurological recovery after spinal cord injury. ACS Chem. Neurosci., 2016, 7(11), 1482-1487.
[http://dx.doi.org/10.1021/acschemneuro.6b00217] [PMID: 27551907]
[118]
Jiang, X.; Namura, S.; Nagata, I. Matrix metalloproteinase inhibitor KB-R7785 attenuates brain damage resulting from permanent focal cerebral ischemia in mice. Neurosci. Lett., 2001, 305(1), 41-44.
[http://dx.doi.org/10.1016/S0304-3940(01)01800-6] [PMID: 11356303]
[119]
Brundula, V.; Rewcastle, N.B.; Metz, L.M.; Bernard, C.C.; Yong, V.W. Targeting leukocyte MMPs and transmigration: minocycline as a potential therapy for multiple sclerosis. Brain, 2002, 125(Pt 6), 1297-1308.
[http://dx.doi.org/10.1093/brain/awf133] [PMID: 12023318]
[120]
Nessler, S.; Dodel, R.; Bittner, A.; Reuss, S.; Du, Y.; Hemmer, B.; Sommer, N. Effect of minocycline in experimental autoimmune encephalomyelitis. Ann. Neurol., 2002, 52(5), 689-690.
[http://dx.doi.org/10.1002/ana.10353] [PMID: 12402274]
[121]
Popovic, N.; Schubart, A.; Goetz, B.D.; Zhang, S.C.; Linington, C.; Duncan, I.D. Inhibition of autoimmune encephalomyelitis by a tetracycline. Ann. Neurol., 2002, 51(2), 215-223.
[http://dx.doi.org/10.1002/ana.10092] [PMID: 11835378]
[122]
Clark, W.M.; Calcagno, F.A.; Gabler, W.L.; Smith, J.R.; Coull, B.M. Reduction of central nervous system reperfusion injury in rabbits using doxycycline treatment. Stroke, 1994, 25(7), 1411-1415.
[http://dx.doi.org/10.1161/01.STR.25.7.1411] [PMID: 8023357]
[123]
Burggraf, D.; Trinkl, A.; Dichgans, M.; Hamann, G.F. Doxycycline inhibits MMPs via modulation of plasminogen activators in focal cerebral ischemia. Neurobiol. Dis., 2007, 25(3), 506-513.
[http://dx.doi.org/10.1016/j.nbd.2006.10.013] [PMID: 17166729]
[124]
Lee, C.Z.; Xu, B.; Hashimoto, T.; McCulloch, C.E.; Yang, G.Y.; Young, W.L. Doxycycline suppresses cerebral matrix metalloproteinase-9 and angiogenesis induced by focal hyperstimulation of vascular endothelial growth factor in a mouse model. Stroke, 2004, 35(7), 1715-1719.
[http://dx.doi.org/10.1161/01.STR.0000129334.05181.b6] [PMID: 15166398]
[125]
Switzer, J.A.; Hess, D.C.; Ergul, A.; Waller, J.L.; Machado, L.S.; Portik-Dobos, V.; Pettigrew, L.C.; Clark, W.M.; Fagan, S.C. Matrix metalloproteinase-9 in an exploratory trial of intravenous minocycline for acute ischemic stroke. Stroke, 2011, 42(9), 2633-2635.
[http://dx.doi.org/10.1161/STROKEAHA.111.618215] [PMID: 21737808]
[126]
Murata, Y.; Rosell, A.; Scannevin, R.H.; Rhodes, K.J.; Wang, X.; Lo, E.H. Extension of the thrombolytic time window with minocycline in experimental stroke. Stroke, 2008, 39(12), 3372-3377.
[http://dx.doi.org/10.1161/STROKEAHA.108.514026] [PMID: 18927459]
[127]
Chen, X.; Ma, L.; Jiang, Y.; Chen, S.; Zhu, C.; Liu, M.; Ma, X.; Zhu, D.; Liu, Y.; Peng, F.; Wang, Q.; Pi, R. Minocycline up-regulates the expression of brain-derived neurotrophic factor and nerve growth factor in experimental autoimmune encephalomyelitis. Eur. J. Pharmacol., 2012, 686(1-3), 124-129.
[http://dx.doi.org/10.1016/j.ejphar.2012.04.043] [PMID: 22575526]
[128]
Chen, X.; Ma, X.; Jiang, Y.; Pi, R.; Liu, Y.; Ma, L. The prospects of minocycline in multiple sclerosis. J. Neuroimmunol., 2011, 235(1-2), 1-8.
[http://dx.doi.org/10.1016/j.jneuroim.2011.04.006] [PMID: 21565409]
[129]
Wang, X.; Zhu, S.; Drozda, M.; Zhang, W.; Stavrovskaya, I.G.; Cattaneo, E.; Ferrante, R.J.; Kristal, B.S.; Friedlander, R.M. Minocycline inhibits caspase-independent and -dependent mitochondrial cell death pathways in models of Huntington’s disease. Proc. Natl. Acad. Sci. USA, 2003, 100(18), 10483-10487.
[http://dx.doi.org/10.1073/pnas.1832501100] [PMID: 12930891]
[130]
Kalonia, H.; Mishra, J.; Kumar, A. Targeting neuro-inflammatory cytokines and oxidative stress by minocycline attenuates quinolinic-acid-induced Huntington’s disease-like symptoms in rats. Neurotox. Res., 2012, 22(4), 310-320.
[http://dx.doi.org/10.1007/s12640-012-9315-x] [PMID: 22392362]
[131]
Kriz, J.; Nguyen, M.D.; Julien, J.P. Minocycline slows disease progression in a mouse model of amyotrophic lateral sclerosis. Neurobiol. Dis., 2002, 10(3), 268-278.
[http://dx.doi.org/10.1006/nbdi.2002.0487] [PMID: 12270689]
[132]
Bilousova, T.V.; Dansie, L.; Ngo, M.; Aye, J.; Charles, J.R.; Ethell, D.W.; Ethell, I.M. Minocycline promotes dendritic spine maturation and improves behavioural performance in the fragile X mouse model. J. Med. Genet., 2009, 46(2), 94-102.
[http://dx.doi.org/10.1136/jmg.2008.061796] [PMID: 18835858]
[133]
Paribello, C.; Tao, L.; Folino, A.; Berry-Kravis, E.; Tranfaglia, M.; Ethell, I.M.; Ethell, D.W. Open-label add-on treatment trial of minocycline in fragile X syndrome. BMC Neurol., 2010, 10, 91.
[http://dx.doi.org/10.1186/1471-2377-10-91] [PMID: 20937127]
[134]
Siller, S.S.; Broadie, K. Neural circuit architecture defects in a Drosophila model of Fragile X syndrome are alleviated by minocycline treatment and genetic removal of matrix metalloproteinase. Dis. Model. Mech., 2011, 4(5), 673-685.
[http://dx.doi.org/10.1242/dmm.008045] [PMID: 21669931]
[135]
Utari, A.; Chonchaiya, W.; Rivera, S.M.; Schneider, A.; Hagerman, R.J.; Faradz, S.M.; Ethell, I.M.; Nguyen, D.V. Side effects of minocycline treatment in patients with fragile X syndrome and exploration of outcome measures. Am. J. Intellect. Dev. Disabil. , 2010, 115(5), 433-443.
[http://dx.doi.org/10.1352/1944-7558-115.5.433] [PMID: 20687826]
[136]
Lee, S.R.; Tsuji, K.; Lee, S.R.; Lo, E.H. Role of matrix metalloproteinases in delayed neuronal damage after transient global cerebral ischemia. J. Neurosci., 2004, 24(3), 671-678.
[http://dx.doi.org/10.1523/JNEUROSCI.4243-03.2004] [PMID: 14736853]
[137]
Asahi, M.; Wang, X.; Mori, T.; Sumii, T.; Jung, J.C.; Moskowitz, M.A.; Fini, M.E.; Lo, E.H. Effects of matrix metalloproteinase-9 gene knock-out on the proteolysis of blood-brain barrier and white matter components after cerebral ischemia. J. Neurosci., 2001, 21(19), 7724-7732.
[http://dx.doi.org/10.1523/JNEUROSCI.21-19-07724.2001] [PMID: 11567062]
[138]
Ricci, S.; Grandgirard, D.; Wenzel, M.; Braccini, T.; Salvatore, P.; Oggioni, M.R.; Leib, S.L.; Koedel, U. Inhibition of matrix metalloproteinases attenuates brain damage in experimental meningococcal meningitis. BMC Infect. Dis., 2014, 14, 726.
[http://dx.doi.org/10.1186/s12879-014-0726-6] [PMID: 25551808]
[139]
Walker, E.J.; Rosenberg, G.A. TIMP-3 and MMP-3 contribute to delayed inflammation and hippocampal neuronal death following global ischemia. Exp. Neurol., 2009, 216(1), 122-131.
[http://dx.doi.org/10.1016/j.expneurol.2008.11.022] [PMID: 19111539]
[140]
Bozdagi, O.; Nagy, V.; Kwei, K.T.; Huntley, G.W. In vivo roles for matrix metalloproteinase-9 in mature hippocampal synaptic physiology and plasticity. J. Neurophysiol., 2007, 98(1), 334-344.
[http://dx.doi.org/10.1152/jn.00202.2007] [PMID: 17493927]
[141]
Nagy, V.; Bozdagi, O.; Matynia, A.; Balcerzyk, M.; Okulski, P.; Dzwonek, J.; Costa, R.M.; Silva, A.J.; Kaczmarek, L.; Huntley, G.W. Matrix metalloproteinase-9 is required for hippocampal late-phase long-term potentiation and memory. J. Neurosci., 2006, 26(7), 1923-1934.
[http://dx.doi.org/10.1523/JNEUROSCI.4359-05.2006] [PMID: 16481424]
[142]
Olson, M.L.; Meighan, P.C.; Brown, T.E.; Asay, A.L.; Benoist, C.C.; Harding, J.W.; Wright, J.W. Hippocampal MMP-3 elevation is associated with passive avoidance conditioning. Regul. Pept., 2008, 146(1-3), 19-25.
[http://dx.doi.org/10.1016/j.regpep.2007.07.004] [PMID: 17698214]
[143]
Meighan, S.E.; Meighan, P.C.; Choudhury, P.; Davis, C.J.; Olson, M.L.; Zornes, P.A.; Wright, J.W.; Harding, J.W. Effects of extracellular matrix-degrading proteases matrix metalloproteinases 3 and 9 on spatial learning and synaptic plasticity. J. Neurochem., 2006, 96(5), 1227-1241.
[http://dx.doi.org/10.1111/j.1471-4159.2005.03565.x] [PMID: 16464240]
[144]
Wright, J.W.; Brown, T.E.; Harding, J.W. Inhibition of hippocampal matrix metalloproteinase-3 and -9 disrupts spatial memory. Neural Plast., 2007, 2007, 73813.
[http://dx.doi.org/10.1155/2007/73813] [PMID: 17502908]
[145]
Meighan, P.C.; Meighan, S.E.; Davis, C.J.; Wright, J.W.; Harding, J.W. Effects of matrix metalloproteinase inhibition on short- and long-term plasticity of schaffer collateral/CA1 synapses. J. Neurochem., 2007, 102(6), 2085-2096.
[http://dx.doi.org/10.1111/j.1471-4159.2007.04682.x] [PMID: 17587312]
[146]
Brown, T.E.; Forquer, M.R.; Cocking, D.L.; Jansen, H.T.; Harding, J.W.; Sorg, B.A. Role of matrix metalloproteinases in the acquisition and reconsolidation of cocaine-induced conditioned place preference. Learn. Mem., 2007, 14(3), 214-223.
[http://dx.doi.org/10.1101/lm.476207] [PMID: 17353546]
[147]
Natarajan, R.; Harding, J.W.; Wright, J.W. A role for matrix metalloproteinases in nicotine-induced conditioned place preference and relapse in adolescent female rats. J. Exp. Neurosci., 2013, 7, 1-14.
[http://dx.doi.org/10.4137/JEN.S11381] [PMID: 25157203]
[148]
Chaudhary, A.K.; Pandya, S.; Ghosh, K.; Nadkarni, A. Matrix metalloproteinase and its drug targets therapy in solid and hematological malignancies: an overview. Mutat. Res., 2013, 753(1), 7-23.
[http://dx.doi.org/10.1016/j.mrrev.2013.01.002] [PMID: 23370482]
[149]
Vandenbroucke, R.E.; Libert, C. Is there new hope for therapeutic matrix metalloproteinase inhibition? Nat. Rev. Drug Discov., 2014, 13(12), 904-927.
[http://dx.doi.org/10.1038/nrd4390] [PMID: 25376097]
[150]
Lozonschi, L.; Sunamura, M.; Kobari, M.; Egawa, S.; Ding, L.; Matsuno, S. Controlling tumor angiogenesis and metastasis of C26 murine colon adenocarcinoma by a new matrix metalloproteinase inhibitor, KB-R7785, in two tumor models. Cancer Res., 1999, 59(6), 1252-1258.
[PMID: 10096556]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 26
ISSUE: 18
Year: 2019
Page: [3208 - 3224]
Pages: 17
DOI: 10.2174/0929867325666180514111500
Price: $58

Article Metrics

PDF: 17
HTML: 2
EPUB: 1
PRC: 1