PEG Acoustic Levitation Treatment for Historic Wood Preservation Investigated by Means of FTIR Spectroscopy and Wavelets

Author(s): Maria T. Caccamo*, Antonio Cannuli.

Journal Name: Current Chemical Biology

Volume 13 , Issue 1 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: The combination of Fourier Transform InfraRed and levitation techniques, both on levitated water mixtures of Polyethylene Glycols (PEG)s and on wood finds, allows to follow the polymeric drying process as a function of time through the O-H and C-H stretching contributions and to investigate the wood thermal response.

Objective: The aim of this paper is to report the FTIR investigations on wood fines, extracted from a 700’ dated wooden crucifix.

Methods: At first, different acoustically levitated Polyethylene Glycol (PEG) aqueous solutions were investigated by FTIR in order to characterize the levitation induced dehydration process; then the wood fines, after having been treated by immerging them into the PEG aqueous solutions, were acoustically levitated and investigated; finally the treated fines were again studied by IR spectroscopy through a thermic cycle in the 25 ÷ 350 °C temperature range. Levitation technique furnishes an innovative approach to sample treatment allowing, in the case of solutions, to obtain highly concentrated mixtures starting from diluted solutions while, in the case of wood find treatments, to increase the polymer solution penetration within the wood matrix.

Results: It clearly emerges that, in the PEG200/PEG600 comparison, the lighter polymer shows a higher effectiveness in terms of thermal restraint.

Conclusion: Acoustic levitation, in combination with IR spectroscopy, reveals to be a very powerful technique in many applications concerning wood preservation and conservation. It clearly emerges that, in the comparison with PEG600, PEG200 shows a higher effectiveness in terms of thermal restraint.

Keywords: Acoustic levitation, infrared spectroscopy, polyethylene glycols, polymeric aqueous solutions, wood conservation, wood preservation, wooden monuments conservation.

[1]
Cuello GJ, Cristiglio V, Hennet LP-OI. Neutron scattering at high temperature and levitation techniques.In: J Phys Conf Ser 2014; 549: 012002.
[2]
Ashkin A, Dziedzic JM, Bjorkholm JE, Chu S. Observation of a single-beam gradient force optical trap for dielectric particles. Opt Lett 1986; 11(5): 288.
[3]
Neuman KC, Block SM. Optical trapping. Rev Sci Instrum 2004; 75(9): 2787-809.
[4]
Muck O. Electromagnetic levitation. 1923: 42204.
[5]
Jacobs G, Egry I, Maier K, Platzek D, Reske J, Frahm R. Extended x-ray-absorption fine structure studies of levitated undercooled metallic melts. Rev Sci Instrum 1996; 67(10): 3683.
[6]
Egry I, Diefenbach A, Dreier W, Piller J. Containerless processing in space-thermophysical property measurements using electromagnetic levitation. Int J Thermophys 2001; 22: 569-78.
[7]
Holland-Moritz D, Schenk T, Convert P, Hansen T, Herlach DM. Electromagnetic levitation apparatus for diffraction investigations on the short-range order of undercooled metallic melts. Meas Sci Technol 2005; 16: 372-80.
[8]
Rhim WK, Chung SK, Barber D, et al. An electrostatic levitator for high-temperature containerless materials processing in 1-g. Rev Sci Instrum 1993; 64(10): 2961-70.
[9]
Paradis PF, Ishikawa T, Yu J, Yoda S. Hybrid electrostatic-aerodynamic levitation furnace for the hightemperature processing of oxide materials on the ground. Rev Sci Instrum 2001; 72(6): 2811-5.
[10]
Gangopadhyay AK, Lee GW, Kelton KF, et al. Beamline electrostatic levitator for in situ high energy x-ray diffraction studies of levitated solids and liquids. Rev Sci Instrum 2005; 76(7): 073901.
[11]
Granier J, Potard C. Elaboration et moulage sans conteneur par la methode Dp.S Films de gaz demonstration et modelisation preliminaires. In: 6th European symposium microgravity. Bordeaux, France. ESA SP 256.; 1987:421-25
[12]
Parayre C, Daniel M, Papoular M, Kernevez N. High temperature containerless viscosity. Int J Thermophys 1999; 20(4): 1071-83.
[13]
Nordine PC, Atkins RM. Aerodynamic levitation of laser‐heated solids in gas jets. Rev Sci Instrum 1982; 53: 1456.
[14]
Drewitt JWE, Hennet L, Zeidler A, et al. Structural transformations on vitrification in the fragile glassforming system CaAl2O4. Phys Rev Lett 2012; 109(23): 235501.
[15]
Kozaily J, Hennet L, Fischer HE, et al. Time-of-flight neutron spectroscopy: A new application of aerodynamic sample levitation. Phys Status Solidi Curr Top 2011; 8: 3155-8.
[16]
Hennet L, Cristiglio V, Kozaily J, et al. Aerodynamic levitation and laser heating: Applications at synchrotron and neutron sources. Eur Phys J Spec Top 2011; 196(1): 151.
[17]
Hennet L, Pozdnyakova I, Bytchkov A, et al. Fast X- ray scattering measurements on high temperature levitated liquids. J Non-Cryst Solids 2008; 354(47-51): 5104-7.
[18]
Hennet L, Pozdnyakova I, Cristiglio V, et al. Shortand intermediate-range order in levitated liquid aluminates. J Phys Condens Matter 2007; 19(45): 455210.
[19]
Hennet L, Krishnan S, Pozdnyakova I, et al. Structure and dynamics of levitated liquid materials. Pure Appl Chem 2007; 79: 1643-52.
[20]
Cristiglio V, Hennet L, Cuello GJ, et al. Structural study of levitated liquid Y2O3 using neutron scattering. J Non-Cryst Solids 2007; 353(8-10): 993-5.
[21]
Hennet L, Pozdnyakova I, Cristiglio V, et al. Structure and dynamics of levitated liquid aluminates. J Non-Cryst Solids 2007; 353(18-21): 1705-12.
[22]
Mathiak G, Brillo J, Egry I, et al. Versatile levitation facility for structural investigations of liquid metals. Microgravity Sci Technol 2006; 18(3-4): 67-72.
[23]
Hennet L, Pozdnyakova I, Bytchkov A, et al. Levitation apparatus for neutron diffraction investigations on high temperature liquids. Rev Sci Instrum 2006; 77(5): 053903.
[24]
Mathiak G, Egry I, Hennet L, Thiaudière D, Pozdnyakova I, Price D. Aerodynamic levitation and inductive heating - A new concept for structural investigations of undercooled melts. In: Int J Thermophysics Vol 26; 2005: 1151-66.
[25]
Krishnan S, Nordine PC, Weber JKR, Schiffman RA. Optical properties and melting point of pure boron. High Temp Sci 1991; 31: 45.
[26]
Winborne DA, Nordine PC, Rosner DE, Marley NF. Aerodynamic levitation technique for containerless high temperature studies on liquid and solid samples. Metall Trans B 1976; 7(4): 711-3.
[27]
Weber JJK, Krishnan S, Ansell S, Hixson AA, Nordine PPC. Structure of liquid Y3Al5O12 (YAG). Phys Rev Lett 2000; 84(16): 3622-5.
[28]
Wang TG, Anilkumar AV. LCP. Oscillations of liquid drops: Results from USML-1 experiments in space. J Fluid Mech 1996; 308: 1-14.
[29]
Cristiglio V, Grillo I, Fomina M, et al. Combination of acoustic levitation with small angle scattering techniques and synchrotron radiation circular dichroism. Application to the study of protein solutions. Biochim Biophys Acta, Gen Subj 2017; 1861(1): 3693-9.
[30]
Weber JKR, Krishnan S, Schiffman RA. NPC. Containerless processing of amorphous ceramics. In: Containerless experimentation in microgravity workshop. JPL, Pasadena, CA.; 1990: 385-90.
[31]
Weber JKR, Krishnan S. NPC. The use of containerless processing in researching reactive materials. J Miner Met Mater Soc 1991; 43: 8-14.
[32]
DeVos JK, Hampton DS, Merkley DR, Rey CA, Weber JKR. Containerless Processing Using Various Levitation Techniques. Int J Microgravity Sci Appl 1992; 9: 146-61.
[33]
Weber JKR, Hampton DS, Merkley DR, Rey CA, Zatarski MM, Nordine PC. Aero-acoustic levitation: A method for containerless liquid-phase processing at high temperatures. Rev Sci Instrum 1994; 65(2): 456-65.
[34]
Biswas A, Weber JKR, Nordine PC. Removal of residual chromium from aluminum oxide by containerless liquid-phase processing. J Mater Res 1995; 10: 1823-7.
[35]
Weber JKR. NPC. Containerless liquid-phase processing at high temperatures. Microgravity Sci Technol 1995; 7: 279-82.
[36]
Biswas AB, Weber JKR, Nordine PC. Cr3+ fluorescence in containerless melt-purified aluminum oxide. J Mater Res 1995; 10: 1823-7.
[37]
Weber JKR. Containerless property measurements on molten aluminum oxide and alumino-silicate binary mixtures. In: 4th asian thermophysical properties conference, Tokyo, Ed. A. Nagashima.; 1995: 873- 6.
[38]
Weber JKR, Felten JJ, Cho B. NPC. Design and performance of the aero-acoustic levitator. Int J Microgravity Sci Appl 1996; 13: 27-35.
[39]
Weber JKR. The status of containerless processing for materials research and development. In: space ’96, Tokyo, Japan; 1996: 91-118.
[40]
Weber JKR. Behavior of molten oxides under containerless conditions. Eur J Solid State Inorg Chem 1997; 34: 847-59.
[41]
Nordine PC, Weber JKR, Abadie JG. Properties of high-temperature melts using levitation. Pure Appl Chem 2000; 72(11): 2127-36.
[42]
Weber JKR, Rix JE, Benmore CJ, et al. Combined levitation and neutron diffraction to investigate liquids and solids at high temperatures. In: ICANSXVII, Santa Fe, New Mexico, III; 2006: 1102-9.
[43]
Weber JKR, Rey CA, Neuefeind J, Benmore CJ. Acoustic levitator for structure measurements on low temperature liquid droplets. Rev Sci Instrum 2009; 80(8): 083904.
[44]
Weber JKR. The containerless synthesis of glass. Int J Appl Glass Sci 2010; 1: 248-56.
[45]
Benmore CJ. WJKR. Amorphization of molecular liquids of pharmaceutical drugs by acoustic levitation. Phys Rev X 2011; 1(1): 011004.
[46]
Weber RJK, Benmore CJ, Tumber SK, et al. Acoustic levitation: Recent developments and emerging opportunities in biomaterials research. Eur Biophys J 2012; 41(4): 397-403.
[47]
Benmore CJ, Weber JKR, Tailor AN, et al. Structural characterization and aging of glassy pharmaceuticals made using acoustic levitation. J Pharm Sci 2013; 102(4): 1290-300.
[48]
Weber JKR, Benmore CJ, Tailor AN, et al. A neutron-X-ray, NMR and calorimetric study of glassy Probucol synthesized using containerless techniques. Chem Phys 2013; 424: 89-92.
[49]
Weber JKR, Benmore CJ, Suthar KJ, et al. Using containerless methods to develop amorphous pharmaceuticals. Biochim Biophys Acta, Gen Subj 2017; 1861(1): 3686-92.
[50]
Caccamo MT, Cannuli A, Calabrò E, Magazù S. Acoustic levitator power device: Study of ethyleneglycol water mixtures. IOP Conf Ser Mater Sci Eng. 2017; 199: 12119
[51]
Lokotosh TV, Magazù S, Maisano G, Malomuzh NP. Nature of self-diffusion and viscosity in supercooled liquid water. Phys Rev E - Stat Physics, Plasmas, Fluids. Relat Interdiscip Top 2000; 62(3A): 3572-80.
[52]
Magazù S. IQENS - Dynamic light scattering complementarity on hydrogenous systems. Phys B 1996; 226: 92-106.
[53]
Magazù S, Maisano G, Mallamace F, Micali N. Growth of fractal aggregates in water solutions of macromolecules by light-scattering. Phys Rev A 1989; 39: 4195-200.
[54]
Jannelli MP, Magazù S, Migliardo P, Aliotta F, Tettamanti E. Transport properties of liquid alcohols investigated by IQENS, NMR and DLS studies. J Phys Condens Matter 1996; 8(43): 8157-71.
[55]
Magazù S, Migliardo F, Telling MTF. Structural and dynamical properties of water in sugar mixtures. Food Chem 2008; 106(4): 1460-6.
[56]
Magazù S, Calabrò E, Caccamo MT, Cannuli A. The shielding action of disaccharides for typical proteins in aqueous solution against static, 50 Hz and 1800 MHz frequencies electromagnetic fields. Curr Chem Biol 2016; 10(1): 57-64.
[57]
Branca C, Magazù S, Maisano G, Migliardo P, Villari V, Sokolov AP. The fragile character and structurebreaker role of alpha, alpha-trehalose: Viscosity and raman scattering findings. J Phys Condens Matter 1999; 11(19): 3823-32.
[58]
Magazù S, Maisano G, Migliardo P, Middendorf HD, Villari V. Hydration and transport properties of aqueous solutions of α-α-trehalose. J Chem Phys 1998; 109(3): 1170-4.
[59]
Ballone P, Marchi MC, Branca A, Magazú S. Structural and vibrational properties of trehalose: A density functional study. J Phys Chem 2000; 104(26): 6313-7.
[60]
Magazu S, Maisano G, Migliardo P, Tettamanti E, Villari V. Transport phenomena and anomalous glassforming behaviour in alpha, alpha-trehalose aqueous solutions. Mol Phys 1999; 96(3): 381-7.
[61]
Magazu S, Maisano G, Middendorf HD, Migliardo P, Musolino AM, Villari V. Alpha, alpha-trehalosewater solutions. II. Influence of hydrogen bond connectivity on transport properties. J Phys Chem B 1998; 102(11): 2060-3.
[62]
Minutoli L, Altavilla D, Bitto A, et al. Trehalose: A biophysics approach to modulate the inflammatory response during endotoxic shock. Eur J Pharmacol 2008; 589(1-3): 272-80.
[63]
Pagnotta SE, Ricci MA, Bruni F, McLain S, Magazù S. Water structure around trehalose. Chem Phys 2008; 345(2): 159-63.
[64]
Magazù S, Migliardo F, Telling MTF. Study of the dynamical properties of water in disaccharide solutions. Eur Biophys J 2007; 36(2): 163-71.
[65]
Branca C, Magazù S, Maisano G, Migliardo P, Magazu S. Alpha,alpha-trehalose-water solutions. 3. Vibrational dynamics studies by inelastic light scattering. J Phys Chem B 1999; 103(8): 1347-53.
[66]
Magazù S, Maisano G, Migliardo P, Villari V. Experimental simulation of macromolecules in trehalose aqueous solutions: A photon correlation spectroscopy study. J Chem Phys 1999; 111(19): 9086-92.
[67]
Minutoli L, Altavilla D, Bitto A, et al. The disaccharide trehalose inhibits proinflammatory phenotype activation in macrophages and prevents mortality in experimental septic shock. Shock 2007; 27(1): 91-6.
[68]
Magazù S, Calabrò E, Campo S. FTIR spectroscopy studies on the bioprotective effectiveness of trehalose on human hemoglobin aqueous solutions under 50 Hz electromagnetic field exposure. J Phys Chem B 2010; 114(37): 12144-9.
[69]
Barreca D, Laganà G, Ficarra S, et al. Antiaggregation properties of trehalose on heat-induced secondary structure and conformation changes of bovine serum albumin. Biophys Chem 2010; 147(3): 146-52.
[70]
Magazù S, Migliardo F, Affouard F, Descamps M, Telling MTF. Study of the relaxational and vibrational dynamics of bioprotectant glass-forming mixtures by neutron scattering and molecular dynamics simulation. J Chem Phys 2010; 132(18): 184512.
[71]
Varga B, Migliardo F, Takacs E, Vertessy B, Magazù S, Mondelli C. Neutron scattering studies on dUTPase complex in the presence of bioprotectant systems. Chem Phys 2008; 345(2-3): 250-8.
[72]
Migliardo F, Caccamo MT, Magazù S. Thermal analysis on bioprotectant disaccharides by elastic incoherent neutron scattering. Food Biophys 2014; 9(2): 99-104.
[73]
Magazù S, Migliardo F, Vertessy BG, Caccamo MT. Investigations of homologous disaccharides by elastic incoherent neutron scattering and wavelet multiresolution analysis. Chem Phys 2013; 424: 56-61.
[74]
Migliardo F, Caccamo MT, Magazù S. Elastic incoherent neutron scatterings wavevector and thermal analysis on glass-forming homologous disaccharides. J Non-Cryst Solids 2013; 378: 144-51.
[75]
Magazù S, Migliardo F, Vertessy BG, Caccamo MT. Investigations of homologous disaccharides by elastic incoherent neutron scattering and wavelet multiresolution analysis. Chem Phys 2013; 424: 56-61.
[76]
Branca C, Magazù S, Maisano GSM. Bennington A, Fåk B. Vibrational studies on disaccharide/H2O systems by inelastic neutron scattering, Raman, and IR spectroscopy. 2003: 107(6); 1444–51
[77]
Magazù S, Migliardo F, Benedetto A. Mean square displacements from elastic incoherent neutron scattering evaluated by spectrometers working with different energy resolution on dry and hydrated (H2O and D2O) lysozyme. J Phys Chem B 2010; 114: 9268-74.
[78]
Fenimore PW, Frauenfelder H, Magazù S, et al. Concepts and problems in protein dynamics. Chem Phys 2013; 424: 2-6.
[79]
Barreca D, Lagana G, Bruno G, Magazù S, Bellocco E. Diosmin binding to human serum albumin and its preventive action against degradation due to oxidative injuries. Biochimie 2013; 95(11): 2042-9.
[80]
Magazù S, Migliardo F, Benedetto A, Mondelli C, Gonzalez MA. Thermal behaviour of hydrated lysozyme in the presence of sucrose and trehalose by EINS. J Non-Cryst Solids 2011; 357(2): 664-70.
[81]
Magazù S. NMR, static and dynamic light and neutron scattering investigations on polymeric aqueous solutions. J Mol Struct 2000; 523(1-3): 47-59.
[82]
Faraone A, Magazù S, Maisano G, Ponterio R, Villari V. Experimental evidence of slow dynamics in semidilute polymer solutions. Macromolecules 1999; 32(4): 1128-33.
[83]
Faraone A, Magazù S, Maisano G, Migliardo P, Tettamanti E, Villari V. The puzzle of poly(ethylene oxide) aggregation in water: Experimental findings. J Chem Phys 1999; 110(3): 1801-6.
[84]
Branca C, Faraone A, Magazù S, Maisano G, Migliardo P, Villari V. Polyethylene oxide: A review of experimental findings by spectroscopic techniques. J Mol Liq 2000; 87(1): 21-68.
[85]
Branca C, Faraone A, Maisano G, et al. Can the isotopic H<->D substitution affect the conformational properties of polymeric aqueous solutions? The poly (ethylene oxide)-water case. J Phys Condens Matter 1999; 11(32): 6079-98.
[86]
Branca C, Magazù S, Maisano G, Migliardo P, Migliardo F, Romeo G. Hydration parameters of aqueous solutions of poly(ethylene glycol)s by viscosity data. Phys Scr 2002; 66(2): 175.
[87]
Branca C, Magazù S, Maisano G, Migliardo F, Migliardo P, Romeo G. Study of conformational properties of poly (ethylene oxide) by SANS and PCS techniques. Phys Scr 2003; 67: 551-4.
[88]
Branca C, Faraone A, Magazù S, et al. Anomalous conformational properties of PEO in H2O and D2O by SANS, PCS and Raman scattering. J Appl Cryst 2000; 33(3): 709-13.
[89]
Magazù S, Maisano G. New experimental results in physics of liquids. J Mol Liq 2001; 93(1-3): 7-27.
[90]
Branca C, Magazù S, Maisano G, et al. Synthesis of polyethylene oxide hydrogels by electron radiation. J Appl Polym Sci 2006; 102: 820-4.
[91]
Branca C, Magazù S, Maisano G, Migliardo P, Tettamanti E. Criticism to light-heavy water substitution in structural studies of macromolecular aqueous solutions. Phys B Condens Matter 1999; 270(3-4): 350-9.
[92]
Branca C, Faraone A, Lokotosh T, et al. Diffusive dynamics: Self vs. collective behaviour. J Mol Liq 2001; 93: 139-49.
[93]
Faraone A, Branca C, Magazù S, et al. QENS and PCS study of aqueous BSA-PEO ‘crowded’ solutions. Phys B Condens Matter 2000; 276-278: 524-5.
[94]
Triolo R, Arrighi V, Triolo A, et al. QENS from polymer aggregates in supercritical CO2. Phys B Condens Matter 2000; 276-278: 386-7.
[95]
Branca C, Faraone A, Magazù S, Maisano G, Migliardo P, Villari V. Swelling processes in aqueous polymer solutions by PCS and raman scattering. J Mol Struct 1999; 482-483: 503-7.
[96]
Magazù S, Villari V, Faraone A, Maisano G, Janssen S. Effect of the monomer structure on the dynamics of semidilute polyalkylmethacrylate solutions: A quasielastic light and neutron scattering investigation. J Chem Phys 2002; 116(1): 427-35.
[97]
Faraone A, Magazù S, Maisano G, Villari V, Maschio G. Possibilities and limits of photon correlation spectroscopy in determining polymer molecular weight distributions. Macromol Chem Phys 1999; 200(5): 1134-42.
[98]
Branca C, Magazù S, Maisano G, et al. Conformational studies of poly(ethylene oxide) in crystalline, molten, and solution phase. Mol Cryst Liq Cryst Sci Technol Sect A Mol Cryst Liq Cryst 2001; 372: 17-23.
[99]
Magazù S, Migliardo F, Barreca D, Bellocco E, Laganà G. Neutron scattering study on the interaction between polyethylene glycol and lysozyme. Phys B Condens Matter 2008; 403(13-16): 2408-12.
[100]
Villari V, Faraone A, Magazù S, Maisano G, Ponterio R. Dynamical properties of highly entangled polyalkylmethacrylate solutions: A comparative study. J Phys IV JP 2000; 10(7): 321-4.
[101]
Branca C, Faraone A, Magazù S, et al. Effects of isotopic substitution on the conformational properties of polymeric aqueous solutions. Phys B Condens Matter 2000; 276-8: 332-3.
[102]
Faraone A, Branca C, Magazù S, Maisano G, Migliardo P, Villari V. Slow dynamics features in aqueous solutions of high molecular weight poly (ethylene oxide). AIP Conf Proc 2000; 513(1): 118-21.
[103]
Magazù S, Branca C, Faraone A, Maisano G, Migliardo P, Villari V. On the aggregation of poly (ethylene oxide) in water. AIP Conf Proc 2000; 513: 146-9.
[104]
Triolo R, Arrighi V, Triolo A, et al. QENS from polymeric micelles in supercritical CO2. AIP Conf Proc 2000; 513: 234.
[105]
Faraone A, Magazù S, Maisano G, et al. PCS and SANS studies on PEO-H2O systems. Nuovo Cim della Soc Ital di Fis D - Condens Matter At Mol Chem Phys Biophys 1999; 20: 2531-40.
[106]
Magazù S, Maisano G, Migliardo R, Tettamanti E. Diffusive dynamics of polymeric aqueous solutions by NMR and DLS. Nuovo Cim della Soc Ital di Fis D - Condens Matter At Mol Chem Phys Biophys 1999; 20: 2521-30.
[107]
Aliotta F, Fontanella ME, Magazù S, Wanderlingh U. Hypersonic properties in macromolecular aqueous solutions. Prog Colloid Polym Sci 1991; (84): 483-6.
[108]
Branca C, Magazù S, Maisano G, Migliardo P, Villari V. Conformational distribution of poly(ethylene oxide) in molten phase and in aqueous solution by quasi-elastic and inelastic light scattering. J Phys Condens Matter 1998; 10(45): 10141-57.
[109]
Migliardo F, Magazù S, Caccamo MT. Infrared, raman and INS studies of poly-ethylene oxide oligomers. J Mol Struct 2013; 1048: 261-6.
[110]
Caccamo MT, Magazù S. Tagging the oligomer-topolymer crossover on EG and PEGs by infrared and Raman spectroscopies and by wavelet crosscorrelation spectral analysis. Vib Spectrosc 2016; (85): 222-7.
[111]
Caccamo MT, Magazù S. Ethylene glycol - polyethylene glycol (EG-PEG) mixtures: Infrared spectra wavelet cross-correlation analysis. Appl Spectrosc 2017; 71(3): 401-9.
[112]
Caccamo MT, Magazù S. Multiscaling wavelet analysis of infrared and raman data on polyethylene glycol 1000 aqueous solutions. Spectrosc Lett 2017; 50(3): 130-6.
[113]
Caccamo MT, Magazù S. Thermal restraint on PEGEG mixtures by FTIR investigations and wavelet cross-correlation analysis. Polym Test 2017; 62: 311-8.
[114]
Apicella A, Cappello B, Del Nobile MA, La Rotonda MI, Mensitieri G, Nicolais L. Poly(Ethylene oxide) (PEO) and different molecular weight PEO blends monolithic devices for drug release. Biomaterials 1993; 14(2): 83-90.
[115]
Branca C, Magazù S, Maisano G, Migliardo F, Migliardo P, Romeo G. Hydration study of PEG/water mixtures by quasi elastic light scattering, acoustic and rheological measurements. J Phys Chem B 2002; 106(39): 10272-6.
[116]
Chen J, Spear SK, Huddleston JG, Rogers RD. Polyethylene glycol and solutions of polyethylene glycol as green reaction media. Green Chem 2005; 7(2): 64.
[117]
Gonzalez-Tello P, Camacho F, Blazquez G. Density and viscosity of concentrated aqueous solutions of polyethylene glycol. J Chem Eng Data 1994; 39(3): 611-4.
[118]
Acharya SA, Acharya VN, Kanika ND, Tsai AGM, Intaglietta B, Manjula N. Nonhypertensive tetrapegylated canine haemoglobin: Correlation between PEGylation, O2 affinity and tissue oxygenation. Biochem J 2007; 405(3): 503-11.
[119]
Hu T, Manjula BN, Li DX, Brenowitz M, Acharya SA. Influence of intramolecular cross-links on the molecular, structural and functional properties of PEGylated haemoglobin. Biochem J 2007; 402: 143-51.
[120]
Arumugam V, Akalya A, Rajasekaran JF, Balakrishnan B. Ultrasonic studies on PEG in benzene. J Polym Mater 2000; 17: 371-6.
[121]
Smith GD, Bedrov D, Borodin O. Conformations and chain dimensions of poly (ethylene oxide) in aqueous solution: A molecular dynamics simulation study. J Am Chem Soc 2000; 122: 9548-9.
[122]
Rostovtseva TK, Nestorovich EM, Bezrukov SM. Partitioning of differently sized poly (ethylene glycol)s into OmpF porin. Biophys J 2002; 82(1 Pt 1): 160-9.
[123]
Venkatramanan K. A study on the molecular interaction of PEG 1000 and its blend in toluene using ultrasonic technique. Int Rev Chem Eng 2011; 3: 308-11.
[124]
Cerveny S, Alegría Á, Colmenero J. Universal features of water dynamics in solutions of hydrophilic polymers, biopolymers, and small glass-forming materials. Phys Rev E - Stat Nonlinear Soft Matter Phys 2008; 77(3): 031803
[125]
Jonsson B, Lindman B, Holmberg K. Surfactants and polymers in aqueous solutions. IEEE Elec Insul Mag 1998; 14(5): 42-3.
[126]
Flory PJ. Principles of polymer chemistry Cornell Univ Press Ithaca, New York 1953: 399.
[127]
Li W, Kim Y, Lia J, Lee M. Dynamic self- assembly of coordination polymers in aqueous solution. Soft Matter 2014; 10: 5231-42.
[128]
Cappello B, Del Nobile MA, La Rotonda MI, Mensitieri G, Miro A, Nicolais L. Water soluble drug delivery systems based on a non-biological bioadhesive polymeric system. Farmaco 1994; 49(12): 809-18.
[129]
Braun A, Stenger PC, Warriner HE, Zasadzinski JA, Lu KW, Taeusch HW. A freeze-fracture transmission electron microscopy and small angle x-ray diffraction study of the effects of albumin, serum, and polymers on clinical lung surfactant microstructure. Biophys J 2007; 93(1): 123-39.
[130]
Zimmerberg J, Parsegian VA. Polymer inaccessible volume changes during opening and closing of a voltage-dependent ionic channel. Nature 1986; 323(6083): 36-9.
[131]
Magazù S, Migliardo F, Malomuzh NP, Blazhnov IV. Theoretical and experimental models on viscosity: I. Glycerol. J Phys Chem B 2007; 111(32): 9563-70.
[132]
Chelli R, Procacci P, Cardini G, Califano S. Glycerol condensed phases Part II. A molecular dynamics study of the conformational structure and hydrogen bonding. Phys Chem Chem Phys 1999; 1(5): 879-85.
[133]
Zondervan R, Kulzer F, Berkhout GCG, Orrit M. Local viscosity of supercooled glycerol near Tg probed by rotational diffusion of ensembles and single dye molecules. Proc Natl Acad Sci USA 2007; 104(31): 12628-33.
[134]
Bradbury SL, Jakoby WB. Glycerol as an enzymestabilizing agent: Effects on aldehyde dehydrogenase. Proc Natl Acad Sci USA 1972; 69(9): 2373-6.
[135]
Grandori R, Matecko I, Mayr P, Muller N. Probing protein stabilization by glycerol using electrospray mass spectrometry. J Mass Spectrom 2001; 36(8): 918-22.
[136]
Towey JJ, Soper AK, Dougan L. Preference for isolated water molecules in a concentrated glycerolwater mixture. J Phys Chem B 2011; 115(24): 7799-807.
[137]
Towey JJ, Soper AK, Dougan L. The structure of glycerol in the liquid state: A neutron diffraction study. Phys Chem Chem Phys 2011; 13(20): 9397-406.
[138]
Magazù S, Migliardo F, Caccamo MT. Upgrading of resolution elastic neutron scattering (RENS). Adv Mater Sci Eng 2013; 2013: 695405.
[139]
Magazù S, Maisano G. Migliardo, et al Characterization of molecular motions in biomolecular systems by elastic incoherent neutron scattering. J Chem Phys 2008; 129(15): 155103.
[140]
Magazù S, Migliardo F, Benedetto A. Elastic incoherent neutron scattering operating by varying instrumental energy resolution: Principle, simulations, and experiments of the resolution elastic neutron scattering (RENS). Rev Sci Instrum 2011; 82(10): 105115.
[141]
Magazù S, Maisano G, Migliardo F, Benedetto A. Elastic incoherent neutron scattering on systems of biophysical interest: Mean square displacement evaluation from self-distribution function. J Phys Chem B 2008; 112: 8936-42.
[142]
Magazù S, Magazù S, Maisano G, et al. Biomolecular motion characterization by a self-distribution-function procedure in elastic incoherent neutron scattering. Phys Rev E 2009; 79: 41915.
[143]
Magazù S, Maisano G, Migliardo F, Benedetto A. Mean square displacement evaluation by elastic neutron scattering self-distribution function. Phys Rev E 2008; 77(6): 61802.
[144]
Caccamo E, Calabrò A. Cannuli, Magazù S. Wavelet study of meteorological data collected by arduino-weather station: Impact on solar energy collection technology. MATEC Web Conf. 2016; 55: 02004.
[145]
Marchese N, Cannuli A, Caccamo MT, Pace C. New generation non-stationary portable neutron generators for biophysical applications of neutron activation analysis. Biochim Biophys Acta, Gen Subj 2017; 1861(1 Part B): 3661-70.
[146]
Magazù S, Migliardo F, Caccamo MT. Innovative wavelet protocols in analyzing elastic incoherent neutron scattering. J Phys Chem B 2012; 116: 9417-23.
[147]
Grinsted A, Moore J, Jevrejeva S. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process Geophys 2004; 11: 561-6.
[148]
Li H, Nozaki T. Wavelet analysis for the plane turbulent jet (analysis of large Eddy structure). Int J Series B Fluid Therm Eng 1997; 40: 58-66.
[149]
Daubechies. The wavelet transform, time-frequency localization and signal analysis. IEEE Trans Inf Theory 1990; 36: 961-1005.
[150]
Chen XJ, Wu D, He Y, Liu YS. Detecting the quality of glycerol monolaurate: A method for using fourier transform infrared spectroscopy with wavelet transform and modifued uninformative variable elimination. Anal Chim Acta 2009; 638: 16-22.
[151]
Branca C, Magazù S, Maisano G, Bennington SM, Fåk B. Vibrational studies on disaccharide/H2O systems by inelastic neutron scattering, raman, and IR spectroscopy. J Phys Chem B 2003; 107(6): 1444-51.
[152]
Barreca D, Laganà G, Ficarra S, et al. Antiaggregation properties of trehalose on heat-induced secondary structure and conformation changes of bovine serum albumin. Biophys Chem 2010; 147(3): 146-52.
[153]
Branca C, Maccarrone S, Magazu S, Maisano G, Bennington SM, Taylor J. Tetrahedral order in homologous disaccharide-water mixtures. J Chem Phys 2005; 122: 174513.
[154]
Branca C, Magazù S, Migliardo F, Migliardo P. Destructuring effect of trehalose on the tetrahedral network of water: A Raman and neutron diffraction comparison. Physica A 2002; 304(1-2): 314-8.
[155]
Condello S, Calabrò E, Caccamo D, et al. Protective effects of agmatine in rotenone-induced damage of human SH-SY5Y neuroblastoma cells: Fourier transform infrared spectroscopy analysis in a model of Parkinson’s disease. Amino Acids 2012; 42(2-3): 775-81.
[156]
Branca C, Magazù S, Maisano G, Migliardo P, Villari V, Sokolov AP. The fragile character and structurebreaker role of α, α-trehalose: Viscosity and raman scattering findings. J Phys Condens Matter 1999; 11(19): 3823-32.
[157]
Caccamo MT, Magazù S. Variable mass pendulum behavior processed by wavelet analysis. Eur J Phys 2017; 38(1): 15804.
[158]
Magazù S, Migliardo F, Benedetto A, Calabrò E, La Torre R, Caccamo MT. Bioprotective effects of sucrose and trehalose on proteins.In: Magazù S, Ed.Sucrose: Properties, biosynthesis and health implications. Nova Publishers 2013; pp. 35-46.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 13
ISSUE: 1
Year: 2019
Page: [60 - 72]
Pages: 13
DOI: 10.2174/2212796812666180511115839
Price: $58

Article Metrics

PDF: 56
HTML: 2