Voltammetric Techniques for the Analysis of Drugs using Nanomaterials based Chemically Modified Electrodes

Author(s): Ashwini K. Srivastava* , Sharad S. Upadhyay , Chaitali R. Rawool , Ninad S. Punde , Anuja S. Rajpurohit .

Journal Name: Current Analytical Chemistry

Volume 15 , Issue 3 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Electroanalytical techniques play a very important role in the areas of medicinal, clinical as well as pharmaceutical research. Amongst these techniques, the voltammetric methods for the determination of drugs using nanomaterials based chemically modified electrodes (CMEs) have received enormous attention in recent years. This is due to the sensitivity and selectivity they provide on qualitative as well as quantitative aspects of the electroactive analyte under study. The aim of the present review was to discuss the work on nanomaterials based CMEs for the analysis of drugs covering the period from 2000 to present employing various voltammetric techniques for different classes of the drugs.

Methods: The present review deals with the determination of different classes of drugs including analgesics, anthelmentic, anti-TB, cardiovascular, antipsychotics and anti-allergic, antibiotic and gastrointestinal drugs. Also, a special section is devoted for enantioanalysis of certain chiral drugs using voltammetry. The detailed information of the voltammetric determination for the drugs from each class employing various techniques such as differential pulse voltammetry, cyclic voltammetry, linear sweep voltammetry, square wave voltammetry, stripping voltammetry, etc. are presented in tabular form below the description of each class in the review.

Results: Various nanomaterials including carbon nanotubes, graphene, carbon nanofibers, quantum dots, metal/metal oxide nanoparticles, polymer based nanocomposites have been used by researchers for the development of CMEs over a period of time. The large surface area to volume ratio, high conductivity, electrocatalytic activity and biocompatibility make them ideal modifiers where they produce synergistic effect which helps in trace level determination of pharmaceutical, biomedical and medicinal compounds. In addition, macrocyclic compounds as chiral selectors have been used for the determination of enantiomeric drugs where one of the isomers captured in the cavities of chiral selector shows stronger binding interaction for one of the enantiomorphs.

Conclusion: Various kinds of functional nanocomposites have led to the manipulation of peak potential due to drug - nanoparticles interaction at the modified electrode surface. This has facilitated the simultaneous determination of drugs with almost similar peak potentials. Also, it leads to the enhancement in voltammetric response of the analytes. It is expected that such modified electrodes can be easily miniaturized and used as portable, wearable and user friendly devices. This will pave a way for in-vivo onsite real monitoring of single as well as multi component pharmaceutical compounds.

Keywords: Chemically modified electrodes, chiral drugs, enantiomers, nanomaterials, pharmaceutical compounds, voltammetric techniques, nano composites, nanomaterials analysis.

[1]
Ozkan, S.A.; Kauffmann, J.M.; Zuman, P. Electroanalytical method validation in pharmaceutical analysis and their applications; HNB publishing: New York, 2015.
[2]
Kim, E.; Leverage, W.; Liu, T.Y.; White, I.M.; Bentley, W.E.; Payne, G.F. Redox-capacitor to connect electrochemistry to redox-biology. Analyst , 2014, 139, 32-43.
[3]
Heyrovsky, J. Chem. Listy, 1922, 16, 256-264.
[4]
Ozkan, S.A.; Uslu, B.; Aboul-Enein, H.Y. Analysis of pharmaceuticals and biological fluids using modern electroanalytical techniques. Crit. Rev. Anal. Chem., 2003, 33, 155-181.
[5]
Uslu, B.; Ozkan, S.A. Electroanalytical methods for the determination of pharmaceuticals: A review of recent trends and developments. Anal. Lett., 2011, 44, 2644-2702.
[6]
Gupta, V.K.; Jain, R.; Radhapyari, K.; Jadon, N.; Agarwal, S. Voltammetric techniques for the assay of pharmaceuticals- A review. Anal. Biochem., 2011, 408, 179-196.
[7]
Trojanowicz, M. Enantioselective electrochemical sensors and biosensors: A mini-review. Electrochem. Commun., 2014, 38, 47-52.
[8]
Li, Z.; Mo, Z.; Meng, S.; Gao, H.; Niu, X.; Guo, R. The construction and application of chiral electrochemical sensors. Anal. Methods, 2016, 8, 8134-8140.
[9]
Murray, R.W. Chemically modified electrodes. Acc. Chem. Res., 1980, 13, 135-141.
[10]
Elliott, C.M.; Murray, R.W. Chemically modified carbon electrodes. Anal. Chem., 1976, 48, 1247-1254.
[11]
Murray, R.W.; Ewing, A.G.; Durst, R.A. Chemically modified electrodes molecular design for electroanalysis. Anal. Chem., 1987, 59, 379-390.
[12]
Labuda, J.; Vanickova, M.; Buckova, M.; Korgova, E. Development in voltammetric analysis with chemically modified electrodes and biosensors. Chem. Papers., 2000, 54, 95-103.
[13]
Guadalupe, A.R.; Abrun, H.D. Electroanalysis with chemically modified electrodes. Anal. Chem., 1985, 57, 142-149.
[14]
Murray, R.W. In: Electroanalytical Chemistry; Bard, A.J., Ed.; Marcel Dekker: New York, 1983; Vol. 13, pp. 191-368.
[15]
Snell, K.D.; Keenan, A.G. Surface modified electrodes. Chem. Soc. Rev., 1979, 8, 259-282.
[16]
Durst, R.A.; Baumner, A.J.; Murray, R.W.; Buck, R.P.; Andrieux, C.P. Chemically modified electrodes: recommended terminology and definitions. Pure Appl. Chem., 1997, 69, 1317-1323.
[17]
Zen, J.M.; Kumar, A.S.; Tsai, D.M. Recent updates of chemically modified electrodes in analytical chemistry. Electroanalysis, 2003, 15, 1073-1087.
[18]
Sanghavi, B.J.; Wolfbeis, O.S.; Hirsch, T.; Swami, N.S. Nanomaterial-based electrochemical sensing of neurological drugs and neurotransmitters. Mikrochim. Acta, 2015, 182, 1-41.
[19]
Shao, Y.; Wang, J.; Wu, H.; Liu, J.; Aksay, I.A.; Lin, Y. Graphene based electrochemical sensors and biosensors: A review. Electroanalysis, 2010, 22, 1027-1036.
[20]
Sharp, D.; Burkitt, R. Carbon materials for analytical electrochemistry: Printed carbon materials and composites. Mater. Technol., 2015, 30, 155-162.
[21]
Yu, Y.; Gao, Y.; Hu, K. Electrochemistry and electrocatalysis at single gold nanoparticles attached to carbon nanoelectrodes. ChemElectroChem, 2015, 2, 58-63.
[22]
Kochmann, S.; Hirsch, T.; Wolfbeis, O.S. Graphenes in chemical sensors and biosensors. Trends Anal. Chem., 2012, 39, 87-113.
[23]
Li, C.M.; Hu, W. Electroanalysis in micro-and nanoscales. J. Electroanal. Chem., 2012, 688, 20-31.
[24]
Goyal, R.; Gupta, V.; Oyama, M.; Bachheti, N. Differential pulse voltammetric determination of paracetamol at nanogold modified indium tin oxide. Electrochem. Commun., 2005, 7, 803-807.
[25]
Khaskheli, A.; Fischer, J.; Barek, J.; Vyskocil, V. Sirajuddin; Bhanger, M. Differential pulse voltammetric determination of paracetamol in tablet and urine samples at a micro-crystalline natural graphite-polystyrene composite film modified electrode. Electrochim. Acta, 2013, 101, 238-242.
[26]
Kachoosangi, R.; Wildgoose, G.; Compton, R. Sensitive adsorptive stripping voltammetric determination of paracetamol at multiwalled carbon nanotube modified basal plane pyrolytic graphite electrode. Anal. Chim. Acta, 2008, 618, 54-60.
[27]
Ghadimi, H.; Tehrani, R.; Ali, A.; Mohamed, N.; Ghani, S. Sensitive voltammetric determination of paracetamol by poly (4-vinylpyridine)/multiwalled carbon nanotubes modified glassy carbon electrode. Anal. Chim. Acta, 2013, 765, 70-76.
[28]
Dai, Y.; Li, X.; Lu, X.; Kan, X. Voltammetric determination of paracetamol using a glassy carbon electrode modified with prussian blue and a molecularly imprinted polymer, and ratiometric read-out of two signals. Microchim. Acta, 2016, 183, 2771-2778.
[29]
Kalambate, P.; Sanghavi, B.; Karna, S.; Srivastava, A. Simultaneous voltammetric determination of paracetamol and domperidone based on a graphene/platinum nanoparticles/nafion composite modified glassy carbon electrode. Sens. Actuators B., 2015, 213, 285-294.
[30]
Sanghavi, B.; Srivastava, A. Simultaneous voltammetric determination of acetaminophen, aspirin and caffeine using an in situ surfactant-modified multiwalled carbon nanotube paste electrode. Electrochim. Acta, 2010, 55, 8638-8648.
[31]
Silva, T.; Zanin, H.; Corat, E.; Filho, O. Simultaneous voltammetric determination of paracetamol, codeine and caffeine on diamond-like carbon porous electrodes. Electroanalysis, 2016, 28, 1-11.
[32]
Kalambate, P.; Srivastava, A. Simultaneous voltammetric determination of paracetamol, cetirizine and phenylephrine using a multiwalled carbon nanotube-platinum nanoparticles nanocomposite modified carbon paste electrode. Sens. Actuators B., 2016, 233, 237-248.
[33]
Iacob, A.; Manea, F.; Vaszilcsin, N.; Picken, S.; Schoonman, J. Anodic determination of acetylsalicylic acid at multiwall carbon nanotubes-epoxy composite electrode. Int. J. Electrochem. Sci., 2015, 10, 5661-5672.
[34]
Lu, T.; Tsai, Y. Electrocatalytic oxidation of acetylsalicylic acid at multiwalled carbon nanotube-alumina-coated silica nanocomposite modified glassy carbon electrodes. Sens. Actuators B., 2010, 148, 590-594.
[35]
Zhu, H. Electrochemical determination of acetylsalicylic acid in human urine samples based on poly (diallyldimethylammonium chloride) functionalized reduced graphene oxide sheets. Int. J. Electrochem. Sci., 2016, 11, 4007-4017.
[36]
Patil, S.; Sataraddi, S.; Bagoji, A.; Pathan, R.; Nandibewoor, S. Electrochemical behavior of graphene-based sensors on the redox mechanism of aspirin. Electroanalysis, 2014, 26, 831-839.
[37]
Kruanetr, S.; Pollard, P.; Fernandez, C.; Prabhu, R. Electrochemical oxidation of acetyl salicylic acid and its voltammetric sensing in real samples at a sensitive edge plane pyrolytic graphite electrode modified with graphene. Int. J. Electrochem. Sci., 2014, 9, 5699-5711.
[38]
Faria, E.; Junior, A.; Souto, D.; Leite, F.; Damos, F.; Luz, R.; Santos, A.; Franco, D.; Santos, W. Simultaneous determination of caffeine and acetylsalicylic acid in pharmaceutical formulations using a boron-doped diamond film electrode by differential pulse voltammetry. Electroanalysis, 2012, 24, 1141-1146.
[39]
Puangjan, A.; Chaiyasith, S.; Wichitpanya, S.; Daengduang, S.; Puttota, S. Electrochemical sensor based on PANI/MnO2-Sb2O3 nanocomposite for selective simultaneous voltammetric determination of ascorbic acid and acetylsalicylic acid. J. Electroanal. Chem., 2016, 782, 192-201.
[40]
Ly, S.; Jung, Y.; Kim, M.; Han, I.; Jung, W.; Kim, H. Determination of caffeine using a simple graphite pencil electrode with square-wave anodic stripping voltammetry. Microchim. Acta, 2004, 146, 207-213.
[41]
Mahanthappa, M.; Yellappa, S.; Kottam, N.; Vusa, C. Sensitive determination of caffeine by copper sulphide nanoparticles modified carbon paste electrode. Sens. Actuators A., 2016, 248, 104-113.
[42]
Wang, Y.; Wei, X.; Wang, F.; Li, M. Sensitive voltammetric detection of caffeine in tea and other beverages based on a DNA functionalized single-walled carbon nanotube modified glassy carbon electrode. Anal. Methods, 2014, 6, 7525-7531.
[43]
Rezaei, B.; Boroujeni, M.; Ensafi, A. Caffeine electrochemical sensor using imprinted film as recognition element based on polypyrrole, sol-gel, and gold nanoparticles hybrid nanocomposite modified pencil graphite electrode. Biosens.Bioelectron, 2014, 60, 77-83.
[44]
Kan, X.; Liu, T.; Li, C.; Zhou, H.; Xing, Z.; Zhu, A. A novel electrochemical sensor based on molecularly imprinted polymers for caffeine recognition and detection. J. Solid State Electrochem., 2012, 16, 3207-3213.
[45]
Habibi, B.; Abazari, M.; Azar, M. Simultaneous determination of codeine and caffeine using single-walled carbon nanotubes modified carbon-ceramic electrode. Colloids Surf. B, 2014, 114, 89-95.
[46]
Wang, Y.; Wu, T.; Chun-yan, B. Simultaneous determination of acetaminophen, theophylline and caffeine using a glassy carbon disk electrode modified with a composite consisting of poly (Alizarin Violet 3B) multiwalled carbon nanotubes and graphene. Microchim. Acta, 2016, 183, 731-739.
[47]
Fernandes, D.; Silva, N.; Pereira, C.; Moura, C.; Magalhães, J.; Baeza, B.; Ramos, I.; Ruiz, A.; Matos, C.; Freir, C. MnFe2O4@CNT-N as novel electrochemical nanosensor for determination of caffeine, acetaminophen and ascorbic acid. Sens. Actuators B., 2015, 218, 128-136.
[48]
Garrido, E.; Garrido, J.; Borges, F.; Matos, C. Development of electrochemical methods for determination of tramadol/analytical application to pharmaceutical dosage forms. J. Pharm. Biomed. Anal., 2003, 32, 975-981.
[49]
Fathirad, F.; Mostafavi, A.; Afzali, D. Electrospun Pd nanoparticles loaded on Vulcan carbon/ conductive polymeric ionic liquid nanofibers for selective and sensitive determination of tramadol. Anal. Chim. Acta, 2016, 940, 65-72.
[50]
Afkhami, A.; Ghaedi, H.; Madrakian, T.; Ahmadi, M.; Kashani, H. Fabrication of a new electrochemical sensor based on a new nano-molecularly imprinted polymer for highly selective and sensitive determination of tramadol in human urine samples. Biosens. Bioelectron., 2013, 44, 34-40.
[51]
Mohamed, M.; Atty, S.; Salama, N.; Banks, C. Highly selective sensing platform utilizing graphene oxide and multiwalled carbon nanotubes for the sensitive determination of tramadol in the presence of co-formulated drugs. Electroanalysis, 2017, 29, 1-12.
[52]
Deiminiat, B.; Rounaghi, G.; Zavar, M. Development of a new electrochemical imprinted sensor based on poly-pyrrole, sol-gel and multiwall carbon nanotubes for determination of tramadol. Sens. Actuators B., 2017, 238, 651-659.
[53]
Sanghavi, B.; Srivastava, A. Simultaneous voltammetric determination of acetaminophen and tramadol using Dowex50wx2 and gold nanoparticles modified glassy carbon paste electrode. Anal. Chim. Acta, 2011, 706, 246-254.
[54]
Chitravathi, S.; Munichandraiah, N. Voltammetric determination of paracetamol, tramadol and caffeine using poly (Nile blue) modified glassy carbon electrode. J. Electroanal. Chem., 2016, 764, 93-103.
[55]
Garrido, J.; Matos, C.; Borges, F.; Macedo, T.; Brett, A. Electroanalytical determination of codeine in pharmaceutical preparations. Anal. Lett., 2002, 35, 2487-2498.
[56]
Svorc, L.; Sochr, J.; Svitkova, J.; Rievaj, M.; Bustin, D. Rapid and sensitive electrochemical determination of codeine in pharmaceutical formulations and human urine using a boron-doped diamond film electrode. Electrochim. Acta, 2013, 87, 503-510.
[57]
Mashadizadeh, M.; Abdollahi, G.; Yousefi, T. SmHCF/multiwalled carbon nanotube modified glassy carbon electrode for the determination of codeine. J. Electroanal. Chem., 2016, 780, 68-74.
[58]
Shih, Y.; Zen, J.; Yang, H. Determination of codeine in urine and drug formulations using a clay-modified screen-printed carbon electrode. J. Pharm. Biomed. Anal., 2002, 29, 827-833.
[59]
Niu, X.; Huang, L.; Zhao, J.; Yin, M.; Luo, D.; Yang, Y. An ultrasensitive aptamer biosensor for the detection of codeine based on a Au nanoparticle/ polyamidoamine dendrimer-modified screen printed carbon electrode. Anal. Methods, 2016, 8, 1091-1095.
[http://dx.doi.org/10.1039/c5ay01747e]
[60]
Bagheri, H.; Khoshsafar, H.; Afkhami, A.; Amidi, S. Sensitive and simple simultaneous determination of morphine and codeine using a Zn2SnO4 nanoparticle/graphene composite modified electrochemical sensor. New J. Chem., 2016, 40, 7102-7112.
[61]
Azar, M.; Saadatirad, A. Simultaneous determination of paracetamol, ascorbic acid and codeine by differential pulse voltammetry on the aluminum electrode modified by thin layer of palladium. Electroanalysis, 2010, 22, 1592-1598.
[62]
Suresh, E.; Sundaram, K.; Kavitha, B.; Kumar, N. Square wave voltammetry sensing of ibuprofen on glassy carbon electrode. Int. J. Pharm. Tech. Res., 2016, 9, 182-188.
[63]
Lima, A.; Faria, E.; Montes, R.; Cunha, R.; Richter, E.; Munoz, R.; Santos, W. Electrochemical oxidation of ibuprofen and its voltammetric determination at a boron-doped diamond electrode. Electroanalysis, 2013, 25, 1585-1588.
[64]
Hernandez, S.; Romero, G.; Avendaño, S.; Hernández, M.; Vidal, C.; Romo, M. Voltammetric determination of ibuprofen using a carbon paste-multiwalled carbon nanotube composite electrode. Instrum. Sci. Technol., 2016, 44, 483-494.
[65]
Oliveira, M.; Stradiotto, N. Voltammetric assay of albendazole in pharmaceutical dosage forms. Anal. Lett., 2001, 34, 377-387.
[66]
Zuhri, A.; Hussein, A.; Musmar, M.; Yaish, S. Adsorptive stripping voltammetric determination of albendazole at a hanging mercury drop electrode. Anal. Lett., 1999, 32, 2965-2975.
[67]
Srivastava, J.; Singh, M. A biopolymeric nano-receptor for sensitive and selective recognition of albendazole. Anal. Methods, 2016, 8, 1026-1033.
[http://dx.doi.org/10.1039/c5ay03048j]
[68]
Lourencao, B.; Baccarin, M.; Medeiros, R.; Filho, R.; Filho, O. Differential pulse voltammetric determination of albendazole in pharmaceutical tablets using a cathodically pretreated boron-doped diamond electrode. J. Electroanal. Chem., 2013, 707, 15-19.
[69]
Conesa, A.; Pinilla, J.; Hernhdez, L. Determination of mebendazole in urine by cathodic stripping voltammetry. Anal. Chim. Acta, 1996, 331, 111-116.
[70]
Munusamy, S.; Suresh, R.; Giribabu, K.; Manigandan, R.; Kumar, S.; Muthamizh, S.; Bagavath, C.; Stephen, A.; Kumar, J.; Narayanan, V. Synthesis and characterization of GaN/PEDOT-PPY nanocomposites and its photocatalytic activity and electrochemical detection of mebendazole. Arab. J. Chem., 2015.
[http://dx.doi.org/10.1016/ j.arabjc.2015.10.012]
[71]
Ghalkhania, M.; Shahrokhian, S. Adsorptive stripping differential pulse voltammetric determination of mebendazole at a graphene nanosheets and carbon nanospheres/chitosan modified glassy carbon electrode. Sens. Actuators B., 2013, 185, 669-674.
[72]
Macedo, I.; Garcia, L.; Souza, A.; Silva, A.; Fernandez, C.; Santos, M.; Magalhaes, R.; Torres, I.; Gil, E. Differential pulse voltammetric determination of albendazole and mebendazole in pharmaceutical formulations based on modified sonogel carbon paste electrodes with perovskite-type LaFeO3 nanoparticles. J. Electrochem. Soc., 2016, 163, B428-B434.
[73]
Oliveira, M.; Stradiotto, N. Voltammetric determination of fenbendazole in veterinarian formulations. J. Pharm. Biomed. Anal., 2002, 30, 279-284.
[74]
Prada, A.; Loaiza, O.; Serra, B.; Morales, D.; Ruiz, P.; Reviejo, A.; Pingarrón, J. Molecularly imprinted polymer solid-phase extraction coupled to square wave voltammetry at carbon fibre microelectrodes for the determination of fenbendazole in beef liver. Anal. Bioanal., 2007, 388, 227-234.
[75]
Jain, R.; Yadav, R.; Rather, J. Voltammetric quantitation of nitazoxanide by glassy carbon electrode. J. Pharm. Anal., 2013, 3, 452-455.
[76]
Jain, R.; Tiwari, D.; Karolia, P. Electrocatalytic detection and quantification of nitazoxanide based on graphene-polyaniline (Grp-Pani) nanocomposite sensor. J. Electrochem. Soc., 2014, 161, H839-H844.
[77]
Jain, R.; Jadon, N.; Radhapyari, K. Determination of antihelminthic drug pyrantel pamoate in bulk and pharmaceutical formulations using electro-analytical methods. Talanta, 2006, 70, 383-386.
[78]
Gupta, V.; Jain, R.; Jadon, N.; Radhapyari, K. Adsorption of pyrantel pamoate on mercury from aqueous solutions: Studies by stripping voltammetry. J. Colloid Interf Sci., 2010, 350, 330-335.
[79]
Couto, R.; Lima, J.; Quinaz, M. Screen-printed electrode based electrochemical sensor for the detection of isoniazid in pharmaceutical formulations and biological fluids. Int. J. Electrochem. Sci., 2015, 10, 8738-8749.
[80]
Absalan, G.; Akhond, M.; Soleimani, M.; Ershadifar, H. Efficient electrocatalytic oxidation and determination of isoniazid on carbon ionic liquid electrode modified with electrodeposited palladium nanoparticles. J. Electroanal. Chem., 2016, 761, 1-7.
[81]
Zhu, X.; Xu, J.; Duan, X.; Lu, L.; Zhang, K.; Yub, Y.; Xing, H.; Gao, Y.; Donga, L.; Sun, H.; Yanga, T. Controlled synthesis of partially reduced graphene oxide: Enhance electrochemical determination of isoniazid with high sensitivity and stability. J. Electroanal. Chem., 2015, 757, 183-191.
[82]
Yang, G.; Wang, C.; Zhang, R.; Wang, C.; Qu, Q.; Hu, X. Poly (amidosulfonic acid) modified glassy carbon electrode for determination of isoniazid in pharmaceuticals. Bioelectrochemistry, 2008, 73, 37-42.
[83]
Rastogi, P.; Ganesan, V.; Azad, U. Electrochemical determination of nanomolar levels of isoniazid in pharmaceutical formulation using silver nanoparticles decorated copolymer. Electrochim. Acta, 2016, 188, 818-824.
[84]
Mahmoud, B.; Khairy, M.; Rashwan, F.; Banks, C. Simultaneous voltammetric determination of acetaminophen and isoniazid (hepatotoxicity-related drugs) utilizing bismuth oxide nanorod modified screen-printed electrochemical sensing platforms. Anal. Chem., 2017, 89, 2170-2178.
[85]
Yan, H.; Xiao, H.; Xie, Q.; Liu, J.; Sun, L.; Zhou, Y.; Zhang, Y.; Chao, L.; Chen, C.; Yao, S. Simultaneous electroanalysis of isoniazid and uric acid at poly (sulfosalicylic acid)/ electroreduced carboxylated graphene modified glassy carbon electrode. Sens. Actuators B., 2015, 207, 167-176.
[86]
Shahrokhiana, S.; Asadiana, E. Simultaneous voltammetric determination of ascorbic acid, acetaminophen and isoniazid using thionine immobilized multi-walled carbon nanotube modified carbon paste electrode. Electrochim. Acta, 2010, 55, 666-672.
[87]
Mani, S.; Cheemalapati, S.; Chen, S.; Devadas, B. Anti-tuberculosis drug pyrazinamide determination at multiwalled carbon nanotubes/graphene oxide hybrid composite fabricated electrode. Int. J. Electrochem. Sci., 2015, 10, 7049-7062.
[88]
Bergamini, M.; Santos, D.; Zanoni, M. Electrochemical behavior and voltammetric determination of pyrazinamide using a poly-histidine modified electrode. J. Electroanal. Chem., 2013, 690, 47-52.
[89]
Simioni, N.; Silva, T.; Oliveira, G.; Filho, O. A nanodiamond-based electrochemical sensor for the determination of pyrazinamide antibiotic. Sens. Actuators B Chem., 2017, 250, 315-323.
[90]
Cheemalapati, S.; Devadas, B.; Chen, S. Highly sensitive and selective determination of pyrazinamide at poly-L-methionine/reduced graphene oxide modified electrode by differential pulse voltammetry in human blood plasma and urine samples. J. Colloid Interf Sci., 2014, 418, 132-139.
[91]
Kalambate, P.; Rawool, C.; Srivastava, A. Voltammetric determination of pyrazinamide at graphene-zinc oxide nanocomposite modified carbon paste electrode employing differential pulse voltammetry. Sens. Actuators B., 2016, 237, 196-205.
[92]
Devadas, B.; Cheemalapati, S.; Chen, S.; Ali, M.; Hemaid, F. Highly sensing graphene oxide/poly-arginine-modified electrode for the simultaneous electrochemical determination of buspirone, isoniazid and pyrazinamide drugs. Ionics, 2015, 21, 547-555.
[93]
Ajayi, R.; Sidwaba, U.; Feleni, U.; Douman, S.; Tovide, O.; Botha, S.; Baker, P.; Fuku, X.; Hamid, S.; Waryo, T.; Vilakazi, S.; Tshihkudo, R.; Iwuoha, E. Chemically amplified cytochrome P450-2E1 drug metabolism nanobiosensor for rifampicin anti-tuberculosis drug. Electrochim. Acta, 2014, 128, 149-155.
[94]
Lomillo, M.; Renedo, O. MartÌnez, M. Optimization of the experimental parameters in the determination of rifampicin by adsorptive stripping voltammetry. Electroanalysis, 2002, 14, 634-637.
[95]
Rastgar, S.; Shahrokhian, S. Nickel hydroxide nanoparticles-reduced graphene oxide nanosheets film: Layer-by-layer electrochemical preparation, characterization and rifampicin sensory application. Talanta, 2014, 119, 156-163.
[96]
Tyszczuk, K.; Korolczuk, M. New protocol for determination of rifampicine by adsorptive stripping voltammetry. Electroanalysis, 2009, 21, 101-106.
[97]
Zeynali, K.; Mollarasouli, F. Novel electrochemical biosensor based on PVP capped CoFe2O4@CdSe core-shell nanoparticles modified electrode for ultra-trace level determination of rifampicin by square wave adsorptive stripping voltammetry. Biosens. Bioelectron., 2017, 92, 509-516.
[98]
Hammam, E.; Beltagi, A.; Ghoneim, M. Voltammetric assay of rifampicin and isoniazid drugs, separately and combined in bulk, pharmaceutical formulations and human serum at a carbon paste electrode. Microchem. J., 2004, 77, 53-62.
[99]
Han, S.; Li, B.; Song, Z.; Pan, S.; Zhang, Z.; Yao, H.; Zhu, S.; Xu, G. A kanamycin sensor based on an electrosynthesized molecularly imprinted poly-o-phenylenediamine film on a single-walled carbon nanohorn modified glassy carbon electrode. Analyst, 2017, 142, 218-223.
[100]
Wang, C.; Liu, C.; Luo, J.; Tian, Y.; Zhou, N. Direct electrochemical detection of kanamycin based on peroxidase-like activity of gold nanoparticles. Anal. Chim. Acta, 2016, 936, 75-82.
[101]
Long, F.; Zhang, Z.; Yang, Z.; Zeng, J.; Jiang, Y. Imprinted electrochemical sensor based on magnetic multi-walled carbon nanotube for sensitive determination of kanamycin. J. Electroanal. Chem., 2015, 755, 7-14.
[102]
Han, C.; Li, R.; Li, H.; Liu, S.; Xu, C.; Wang, J.; Wang, Y.; Huang, J. Ultrasensitive voltammetric determination of kanamycin using a target-triggered cascade enzymatic recycling couple along with DNAzyme amplification. Microchim. Acta, 2017, 184, 2941-2948.
[103]
Wen, Y.; Liao, X.; Deng, C.; Liu, G.; Yan, Q.; Li, L.; Wang, X. Imprinted voltammetric streptomycin sensor based on a glassy carbon electrode modified with electropolymerized poly(pyrrole-3-carboxy acid) and electrochemically reduced graphene oxide. Microchim. Acta, 2017, 184, 935-941.
[104]
Que, X.; Liu, B.; Fu, L.; Zhuang, J.; Chen, G.; Tang, D. Molecular imprint for electrochemical detection of streptomycin residues using enzyme signal amplification. Electroanalysis, 2013, 25, 531-537.
[105]
Yin, Y.; Qin, X.; Wanga, Q.; Yinc, Y. A novel electrochemical aptasensor for sensitive detection of streptomycin based on gold nanoparticle-functionalized magnetic multi-walled carbon nanotubes and nanoporous PtTi alloy. RSC Adv, 2016, 6, 39401-39408.
[106]
Kuo, L.C.; Polson, A.M.; Kang, T. Associations between periodontal diseases and systemic diseases: A review of the inter-relationships and interactions with diabetes, respiratory diseases, cardiovascular diseases and osteoporosis. Public Health, 2008, 122, 417-433.
[107]
Kelishadi, R.; Poursafa, P. A Review on the Genetic, Environmental, and Lifestyle Aspects of the Early-Life Origins of Cardiovascular Disease. Curr. Probl. Pediatr. Adolesc. Health Care, 2010, 44, 54-72.
[108]
El-Hefnawy, G.B.; El-Hallag, I.S.; Ghoneim, E.M.; Ghoneim, M.M. Electrochemical behavior and determination of amiloride drug in bulk form and pharmaceutical formulation at mercury electrodes. J. Pharm. Biomed. Anal., 2004, 34, 899-907.
[109]
Zayed, S.I.M.; Arida, H.A.M. Preparation of Carbon Paste Electrodes and Its Using in Voltammetric Determination of amiloride hydrochloride using in the treatment of high blood pressure. Int. J. Electrochem. Sci., 2013, 8, 1340-1348.
[110]
Mirmomtaz, E.; Ensafi, A.A.; Soleimanian-Zad, S. Determination of amiloride using a ds-DNA-modified pencil graphite electrode based on guanine and adenine signals. Electrochim. Acta, 2009, 54, 1141-1146.
[111]
Desai, P.B.; Srivastava, A.K. Determination of amiloride at Nafion-CNT-nano-composite film sensor employing adsorptive stripping differential pulse voltammetry. Sens. Actuators B., 2012, 169, 341-348.
[112]
Moraes, J.T.; Salamanca-Neto, C.A.R.; Švorc, L.; Sartori, E.R. Advanced sensing performance towards simultaneous determination of quaternary mixture of antihypertensives using boron-doped diamond electrode. Microchem. J., 2017, 134, 173-180.
[113]
Gazy, A.A.K. Determination of amlodipine besylate by adsorptive square-wave anodic stripping voltammetry on glassy carbon electrode in tablets and biological fluids. Talanta, 2004, 62, 575-582.
[114]
Švorc, L.; Cinková, K.; Sochr, J.; Vojs, M.; Michniak, P.; Marton, M. Sensitive electrochemical determination of amlodipine in pharmaceutical tablets and human urine using a boron-doped diamond electrode. J. Electroanal. Chem., 2014, 728, 86-93.
[115]
Goyal, R.N.; Bishnoi, S. Voltammetric determination of amlodipine besylate in human urine and pharmaceuticals. Bioelectrochemistry, 2010, 79, 234-240.
[116]
Stoiljković, Z.Ž.; Avramov Ivić, M.L.; Petrović, S.D.; Mijin, D.Ž.; Stevanović, S.I.; Lačnjevac, U.Č.; Marinković, A.D. Voltammetric and square-wave anodic stripping determination of amlodipine besylate on gold electrode. Int. J. Electrochem. Sci., 2012, 7, 2288-2303.
[117]
Mansano, G.R.; Eisele, A.P.P.; Dall’Antonia, L.H.; Afonso, S.; Sartori, E.R. Electroanalytical application of a boron-doped diamond electrode: Improving the simultaneous voltammetric determination of amlodipine and valsartan in urine and combined dosage forms. J. Electroanal. Chem., 2015, 738, 188-194.
[118]
Patil, R.H.; Hegde, R.N.; Nandibewoor, S.T. Voltammetric oxidation and determination of atenolol using a carbon paste electrode. Ind. Eng. Chem. Res., 2009, 48, 10206-10210.
[119]
Goyal, R.N.; Singh, S.P. Voltammetric determination of atenolol at C60-modified glassy carbon electrodes. Talanta, 2006, 69, 932-937.
[120]
Goyal, R.N.; Gupta, V.K.; Oyama, M.; Bachheti, N. Differential pulse voltammetric determination of atenolol in pharmaceutical formulations and urine using nanogold modified indium tin oxide electrode. Electrochem. Commun., 2006, 8, 65-70.
[121]
Amiri, M.; Amali, E.; Nematollahzadeh, A. Poly-dopamine thin film for voltammetric sensing of atenolol. Sens. Actuators B., 2015, 216, 551-557.
[122]
Arvand, M.; Vaziri, M.; Vejdani, M. Electrochemical study of atenolol at a carbon paste electrode modified with mordenite type Zeolite. Mater. Sci. Eng. C, 2010, 30, 709-714.
[123]
Khoobi, A.; Ghoreishi, S.M.; Masoum, S.; Behpour, M. Multivariate curve resolution-alternating least squares assisted by voltammetry for simultaneous determination of betaxolol and atenolol using carbon nanotube paste electrode. Bioelectrochemistry, 2013, 94, 100-107.
[124]
Desai, P.B.; Srivastava, A.K. Adsorptive stripping differential pulse voltammetric determination of metoprolol at Nafion-CNT-nano-composite film sensor. Sens. Actuators B., 2013, 176, 632-638.
[125]
Nezhadali, A.; Mojarrab, M. Computational design and multivariate optimization of an electrochemical metoprolol sensor based on molecular imprinting in combination with carbon nanotubes. Anal. Chim. Acta, 2016, 924, 86-98.
[126]
Er, E.; Celikkan, H.; Erk, N. A novel electrochemical nano-platform based on graphene/platinum nanoparticles/nafion composites for the electrochemical sensing of metoprolol. Sens. Actuators B., 2017, 238, 779-787.
[127]
Salamanca-Neto, C.A.R.; Eisele, A.P.P.; Resta, V.G.; Scremin, J.; Sartori, E.R. Differential pulse voltammetric method for the individual and simultaneous determination of antihypertensive drug metoprolol and its association with hydrochlorothiazide in pharmaceutical dosage forms. Sens. Actuators B., 2016, 230, 630-638.
[128]
Ozaltin, N.; Yardimci, C.; Suslu, I. Determination of nifedipine in human plasma by square wave adsorptive stripping voltammetry. J. Pharm. Biomed. Anal., 2002, 30, 573-582.
[129]
Gaichore, R.R.; Srivastava, A.K. Voltammetric determination of nifedipine using a β-cyclodextrin modified multi-walled carbon nanotube paste electrode. Sens. Actuators B., 2013, 188, 1328-1337.
[130]
Baghayeri, M.; Namadchian, M.; Karimi-Maleh, H.; Beitollahi, H. Determination of nifedipine using nanostructured electrochemical sensor based on simple synthesis of Ag nanoparticles at the surface of glassy carbon electrode: Application to the analysis of some real samples. J. Electroanal. Chem., 2013, 697, 53-59.
[131]
Shang, L.; Zhao, F.; Zeng, B. Highly dispersive hollow Pd-Ag alloy nanoparticles modified ionic liquid functionalized graphene nanoribbons for electrochemical sensing of nifedipine. Electrochim. Acta, 2015, 168, 330-336.
[132]
El-Ries, M.A.; Abou-Sekkina, M.M.; Wassel, A.A. Polarographic determination of propranolol in pharmaceutical formulation. J. Pharm. Biomed. Anal., 2002, 30, 837-842.
[133]
Gupta, P.; Yadav, S.K.; Agrawal, B.; Goyal, R.N. A novel graphene and conductive polymer modified pyrolytic graphite sensor for determination of propranolol in biological fluids. Sens. Actuators B., 2014, 204, 791-798.
[134]
Kun, Z.; Yi, H.; Chengyun, Z.; Yue, Y.; Shuliang, Z.; Yuyang, Z. Electrochemical behavior of propranolol hydrochloride in neutral solution on platinum nanoparticles doped multi-walled carbon nanotubes modified glassy carbon electrode. Electrochim. Acta, 2012, 80, 405-412.
[135]
Lourencao, B.C.; Silva, T.A.; Fatibello-Filho, O.; Swain, G.M. Voltammetric studies of propranolol and hydrochlorothiazide oxidation in standard and synthetic biological fluids using a nitrogen-containing tetrahedral amorphous carbon (ta-C:N) Electrode. Electrochim. Acta, 2014, 143, 398-406.
[136]
As-angil, D.; Tas-demirb, I.H. Adsorptive stripping voltammetric methods for determination of aripiprazole. J. Pharm. Anal., 2012, 2, 193-199.
[137]
Merli, D.; Dondi, D.; Ravelli, D.; Tacchini, D.; Profumo, A. Electrochemistry and analytical determination of aripiprazole and octoclothepin at glassy carbon electrode. J. Electroanal. Chem., 2013, 711, 1-7.
[138]
Shrivastava, R.; Saxena, S.; Satsangee, S.P.; Jain, R. Graphene/TiO2/polyaniline nanocomposite based sensor for the electrochemical investigation of aripiprazole in pharmaceutical formulation. Ionics, 2015, 21, 2039-2049.
[139]
Dar, R.A.; Naikoo, G.A.; Pitre, K.S. Electrocatalytic oxidative determination of reserpine at electrochemically functionalized single walled carbon nanotube with polyaniline. Electrochim. Acta, 2013, 111, 526-534.
[140]
Zhang, H.; Wu, K. Sensitive adsorption stripping voltammetric determination of reserpine by a glassy carbon electrode modified with multi-wall carbon nanotubes. Microchim. Acta, 2005, 149, 73-78.
[141]
Khudaish, E.A.; Hinaai, M.A.; Harthy, S.A.; Laxman, K. Electrochemical oxidation of chlorpheniramine at polytyramine film doped with ruthenium (II) complex: Measurement, kinetic and thermodynamic studies. Electrochim. Acta, 2014, 135, 319-326.
[142]
Lamani, S.D.; Hegde, R.N.; Savanur, A.P.; Nandibewoor, S.T. Voltammetric determination of chlorpheniramine maleate based on the enhancement effect of sodium-dodecyl sulfate at carbon paste electrode. Electroanalysis, 2011, 23, 347-354.
[143]
Amiri, M.; Alimoradi, M.; Nekoueian, K.; Bezaatpour, A. Cobalt flower-like nanostructure as modifier for electrocatalytic determination of chloropheniramine. Ind. Eng. Chem. Res., 2012, 51, 14384-14389.
[144]
Maybodi, A.S.; Darzi, S.K.H.N.; Ilkhani, H. A new sensor for determination of paracetamol, phenylephrine hydrochloride and chlorpheniramine maleate in pharmaceutical samples using nickel phosphate nanoparticles modified carbon paste electrode. Anal. Bioanal. Chem., 2011, 3, 134-145.
[145]
Cheraghi, S.; Taher, M.A. Fabrication of CdO/single wall carbon nanotubes modified ionic liquids carbon paste electrode as a high-performance sensor in diphenhydramine analysis. J. Mol. Liq., 2016, 219, 1023-1029.
[146]
Daneshgar, P.; Norouzi, P.; Ganjali, M.R.; Dousty, F. A dysprosium nanowire modified carbon paste electrode for determination of nanomolar level of diphenhydramine by continuous square wave voltammetry in flow injection system. Int. J. Electrochem. Sci., 2009, 4, 444-457.
[147]
Thapliyal, N.; Patel, H.; Karpoormath, R.; Goyal, R.N.; Patel, R. A categorical review on electroanalytical determination of non-narcotic over-the-counter abused anti tussive drugs. Talanta, 2005, 142, 157-163.
[148]
Golcu, A. Anodic voltammetric behavior and determination of antihistaminic agent: Fexofenadine HCl. Anal. Lett., 2005, 38, 1913-1931.
[149]
Güngör, S.D. Electrooxidation of cetirizine dihydrochloride with a glassy carbon electrode. Pharmazie, 2004, 59, 929-933.
[150]
Patil, R.H.; Hegde, R.N.; Nandibewoor, S.T. Electro-oxidation and determination of antihistamine drug, cetirizine dihydrochloride at glassy carbon electrode modified with multi-walled carbon nanotubes. Colloids Surf. B, 2011, 83, 133-138.
[151]
Alsarra, I.; Omar, M.A.; Gadkariem, E.A.; Belal, F. Voltammetric determination of montelukast sodium in dosage forms and human plasma. Farmaco, 2005, 60, 563-567.
[152]
Yıldız, G.; Aydogmus¸, Z.; Kauffmann, J.M. Differential pulse voltammetric determination of montelukast in tablets and human plasma by using chitosan modified carbon paste electrode. Electroanalysis, 2013, 25, 1-7.
[153]
Ghoneim, M.M.; Mabrouk, M.M.; Hassanein, A.M.; Tawfik, A. Polarographic behaviour of loratadine and its direct determination in pharmaceutical formulation and human plasma by cathodic adsorptive stripping voltammetry. J. Pharm. Biomed. Anal., 2001, 25, 933-939.
[154]
Eisele, A.P.P.; Sartori, E.R. Simple and rapid determination of loratadine in pharmaceuticals using square-wave voltammetry and a cathodically pretreated boron-doped diamond electrode. Anal. Methods, 2015, 7, 8697-8703.
[155]
Norouzi, P.; Ganjali, M.R. A New Method for the determination of loratadine at an Au microelectrode in flowing systems with the use of fast continuous cyclic voltammetry. J. Anal. Chem., 2008, 63, 566-573.
[156]
Roushani, M.; Nezhadali, A.; Jalilian, Z.; Azadbakht, A. Development of novel electrochemical sensor on the base of molecular imprinted polymer decorated on SiC nanoparticles modified glassy carbon electrode for selective determination of loratadine. Mater. Sci. Eng. C, 2017, 71, 1106-1114.
[157]
Svorc, L.; Sochr, J.; Rievaj, M.; Tomcik, P.; Bustin, D. Voltammetric determination of penicillin V in pharmaceutical formulations and human urine using a boron-doped diamond electrode. Bioelectrochemistry, 2012, 88, 36-41.
[158]
Norouzi, P.; Ganjali, M.R.; Alizadeh, T.; Daneshgar, P. Fast fourier continuous cyclic voltammetry at gold ultramicroelectrode in flowing solution for determination of ultra trace amounts of penicillin G. Electroanalysis, 2006, 18, 947-954.
[159]
Zhao, J.; Guo, W.; Pei, M.; Ding, F. GR-Fe3O4NPs and PEDOT-AuNPs composite based electrochemical aptasensor for the sensitive detection of penicillin. Analytical. Methods, 2016, 8, 4391-4396.
[160]
Li, H.; Xu, B.; Wang, D.; Zhou, Y.; Zhang, H.; Xia, W.; Xu, S.; Li, Y. Immunosensor for trace penicillin G detection in milk based on supported bilayer lipid membrane modified with gold nanoparticles. J. Biotechnol., 2015, 203, 97-103.
[161]
Prado, T.M.; Foguela, M.V.; Goncalves, L.M.; Sotomayora, M.P.T. β-Lactamase-based biosensor for the electrochemical determination of benzyl penicillin in milk. Sens. Actuators B., 2015, 210, 254-258.
[162]
Nosuhi, M.; Ejhieh, A.N. Comprehensive study on the electrocatalytic effect of copper - doped nano-clinoptilolite towards amoxicillin at the modified carbon paste electrode - solution interface. J. Colloid Interface Sci., 2017, 497, 66-72.
[163]
Brahman, P.K.; Dar, R.A.; Pitre, K.S. Conducting polymer film based electrochemical sensor for the determination of amoxicillin in micellar media. Sens. Actuators B., 2013, 176, 307-314.
[164]
Agın, F. Electrochemical determination of amoxicillin on a poly (acridine orange) modified glassy carbon electrode. Anal. Lett., 2016, 49, 1366-1378.
[165]
Santos, D.P.; Bergamini, M.F.; Zanoni, M.V.B. Voltammetric sensor for amoxicillin determination in human urine using polyglutamic acid/glutaraldehyde film. Sens. Actuators B., 2008, 133, 398-403.
[166]
Hatamie, A.; Echresh, A.; Zargar, B.; Nur, O.; Willander, M. Fabrication and characterization of highly-ordered zinc oxide nanorods on gold/glass electrode, and its application as a voltammetric sensor. Electrochim. Acta, 2015, 174, 1261-1267.
[167]
Chowdhury, T.R.; Shaikh, A.A.; Akter, H.; Neaz, M.M.; Bakshi, P.K.; Ahammad, A.J.S. Highly sensitive detection of amoxicillin based on gold nanoparticle-modified ITO electrode. Electrochem. Solid-State Lett., 2014, 3, 14-16.
[168]
Kumar, N. Rosy, Goyal, R.N. Gold-palladium nanoparticles aided electrochemically reduced graphene oxide sensor for the simultaneous estimation of lomefloxacin and amoxicillin. Sens. Actuators B., 2017, 243, 658-668.
[169]
Vajdle, O.; Guzsvany, V.; Skoric, D.; Anojcic, J.; Jovanov, P.; Ivic, M.A.; Janos Csanadi, J.; Konyad, Z.; Petrovic, S.; Bobrowski, A. Voltammetric behavior of erythromycin ethyl succinate at a renewable silver-amalgam film electrode and its determination in urine and in a pharmaceutical preparation. Electrochim. Acta, 2016, 191, 44-54.
[170]
Radicova, M.; Behul, M.; Vojs, M.; Bodor, R.; Stanova, A.V. Voltammetric determination of erythromycin in water samples using a boron-doped diamond electrode. Phys. Status Solidi, B, 2015, 252, 2608-2613.
[171]
Norouzi, P.; Daneshgar, P.; Ganjali, M.R. Electrochemical evaluation of non-electroactive drug erythromycin in trace amount at biological samples by continuous cyclic voltammetry. Mater. Sci. Eng. C, 2009, 29, 1281-1287.
[172]
Wang, H.; Zhang, A.; Cui, H.; Liu, D.; Liu, R. Adsorptive stripping voltammetric determination of erythromycin at a pretreated glassy carbon electrode. Microchem. J., 2000, 64, 67-71.
[173]
Ammida, H.S.N.; Volpe, G.R.; Draisci, R.; Quadri, F.; Palleschi, L.; Palleschi, G. Analysis of erythromycin and tylosin in bovine muscle using disposable screen printed electrodes. Analyst, 2004, 129, 15-19.
[174]
Rkik, M.; Brahim, M.B.; Samet, Y. Electrochemical determination of levofloxacin antibiotic in biological samples using boron doped diamond electrode. J. Electroanal. Chem, 2017, 794, 175-181.
[175]
Huang, J.Y.; Bao, T.; Hu, T.X.; Wen, W.; Zhang, X.W.; Wang, S.F. Voltammetric determination of levofloxacin using a glassy carbon electrode modified with poly (o-aminophenol) and graphene quantum dots. Microchim. Acta, 2017, 184, 127-135.
[176]
Tang, L.; Tong, Y.; Zheng, R.; Liu, W.; Gu, Y.; Li, C.; Chen, R.; Zhang, Z. Ag nanoparticles and electrospun CeO2-Au composite nanofibers modified glassy carbon electrode for determination of levofloxacin. Sens. Actuators B., 2014, 203, 95-101.
[177]
Wen, W.; Zhao, D.M.; Zhang, X.H.; Xiong, H.Y.; Wang, S.F.; Chen, W.; Zhao, Y.D. One-step fabrication of poly (o-aminophenol)/multi-walled carbon nanotubes composite film modified electrode and its application for levofloxacin determination in pharmaceuticals. Sens. Actuators B., 2012, 174, 202-209.
[178]
Jiang, Z.; Liu, Q.; Tang, Y.; Zhang, M. Electrochemical sensor based on a novel Pt@Au bimetallic nanoclusters decorated on reduced graphene oxide for sensitive detection of ofloxacin. Electroanalysis, 2017, 29, 602-608.
[179]
Zang, S.; Liu, Y.; Lin, M.; Kang, J.; Sun, Y.; Lei, H. A dual amplified electrochemical immunosensor for ofloxacin: Polypyrrole film-Au nanocluster as the matrix and multi-enzyme-antibody functionalized gold nanorod as the label. Electrochim. Acta, 2013, 90, 246-253.
[180]
K.J. Liu, X.; Xie, W.Z.; Yuan, H.X. Voltammetric behavior of ofloxacin and its determination using a multi-walled carbon nanotubes-Nafion film coated electrode. Mikrochim. Acta, 2008, 162, 227-233.
[181]
Wong, A.; Silva, T.A.; Vicentini, F.C.; Filho, O.F. Electrochemical sensor based on graphene oxide and ionic liquid for ofloxacin determination at nanomolar levels. Talanta, 2016, 161, 333-341.
[182]
Ribeiro, F.W.P.; Soares, T.R.V.; Oliveira, S.N.; Melo, L.C.; Soares, J.E.; Becker, H.; Souza, D.D.; Neto, P.L.; Correia, A.N. Analytical determination of nimesulide and ofloxacin in pharmaceutical preparations using square wave voltammetry. J. Anal. Chem., 2014, 69, 62-71.
[183]
Zhang, F.; Gu, S.; Ding, Y.; Li, L.; Liu, X. Simultaneous determination of ofloxacin and gatifloxacin on cysteic acid modified electrode in the presence of sodium dodecyl benzene sulfonate. Bioelectrochemistry, 2013, 89, 42-49.
[184]
Vajdle, O.; Guzsvany, V.; Skorica, D.; Csanadi, J.; Petkovic, M.; Ivic, M.A.; Konyad, Z.; Petrovic, S.; Bobrowski, A. Voltammetric behavior and determination of the macrolide antibiotics azithromycin, clarithromycin and roxithromycin at a renewable silver-amalgam film electrode. Electrochim. Acta, 2017, 229, 334-344.
[185]
Yardimci, C.; Ozaltin, N. Electrochemical studies and differential pulse polarographic analysis of lansoprazole in pharmaceuticals. Analyst, 2001, 126, 361-366.
[186]
Radi, A. Determination of lansoprazole in human serum by square wave adsorptive stripping voltammetry. Anal. Lett., 2002, 35, 2449-2458.
[187]
Liu, L.H.; You, W.; Zhan, X.M.; Gao, Z.N. Electrochemical behavior of lansoprazole at a multiwalled carbon nanotubes-ionic liquid modified glassy carbon electrode and its electrochemical determination. J. Serb. Chem. Soc., 2014, 79, 39-52.
[188]
Enany, N.E.; Belal, F.; Rizk, M. The alternating current polarographic behavior and determination of lansoprazole and omeprazole in dosage forms and biological fluids. J. Biochem. Biophys. Methods, 2008, 70, 889-896.
[189]
Radi, A. Anodic voltammetric assay of lansoprazole and omeprazole on a carbon paste electrode. J. Pharm. Biomed. Anal., 2003, 31, 1007-1012.
[190]
Ammar, H.B.; Brahim, M.B.; Abdelhedi, R.; Samet, Y. Boron doped diamond sensor for sensitive determination of metronidazole: mechanistic and analytical study by cyclic voltammetry and square wave voltammetry. Mater. Sci. Eng. C, 2016, 59, 604-610.
[191]
Shahrezaie, E.S.; Ejhieh, A.N. A zeolite modified carbon paste electrode based on copper exchanged clinoptilolite nanoparticles for voltammetric determination of metronidazole. RSC Adv, 2017, 7, 14247-14253.
[192]
Nejati, K.; Zeynali, K.A. Electrochemical synthesis of nickel-iron layered double hydroxide: application as a novel modified electrode in electrocatalytic reduction of metronidazole. Mater. Sci. Eng. C, 2014, 35, 179-184.
[193]
Gu, Y.; Yan, X.; Li, C.; Zheng, B.; Li, Y.; Liu, W.; Zhang, Z.; Yang, M. Biomimetic sensor based on molecularly imprinted polymer with nitroreductase-like activity for metronidazole detection. Biosens. Bioelectron., 2016, 77, 393-399.
[194]
Li, Y.; Liu, Y.; Yang, Y.; Yu, F.; Liu, J.; Song, H.; Liu, J.; Tang, H.; Ye, B.C.; Sun, Z. Novel electrochemical sensing platform based on a molecularly imprinted polymer decorated 3D nanoporous nickel skeleton for ultrasensitive and selective determination of metronidazole. ACS Appl. Mater. Interfaces, 2015, 7, 15474-15480.
[195]
Roy, E.; Maity, S.K.; Patra, S.; Madhuri, R.; Sharma, P.K. A metronidazole-probe sensor based on imprinted biocompatible nanofilm for rapid and sensitive detection of anaerobic protozoan. RSC Adv, 2014, 4, 32881-32893.
[196]
Li, X.; Xu, G. Simultaneous determination of ranitidine and metronidazole in pharmaceutical formulations at poly (chromotrope 2B) modified activated glassy carbon electrodes. J. Food Drug Anal., 2014, 22, 345-349.
[197]
H.; Liang, Z.; Chen, Z.; Wang, H.; Liu, Z.; Su, Z.; Zhou, Q. Simultaneous detection of metronidazole and chloramphenicol by differential pulse stripping voltammetry using a silver nanoparticles/ sulfonate functionalized graphene modified glassy carbon electrode. Electrochim. Acta, 2015, 171, 105-113.
[198]
Jorge, S.M.A.; Pontinha, A.D.R.; Oliveira-Bretta, M.A. Electrochemical redox behavior of omeprazole using a glassy carbon electrode. Electroanalysis, 2010, 22, 625-631.
[199]
Chomistekova, Z.; Culkova, E.; Bellova, R.; Melichercikova, D.; Durdiak, J.; Timko, J.; Rievaj, M.; Tomcík, P. Oxidation and reduction of omeprazole on boron-doped diamond electrode: mechanistic, kinetic and sensing performance studies. Sens. Actuators B., 2017, 241, 1194-1202.
[200]
Mohamed, M.A.; Yehia, A.M.; Banks, C.E.; Allam, N.K. Novel MWCNTs/graphene oxide/pyrogallol composite with enhanced sensitivity for biosensing applications. Biosens. Bioelectron., 2017, 89, 1034-1041.
[201]
Bojdi, M.K.; Behbahani, M.; Mashhadizadeh, M.H.; Bagheri, A.; Davarani, S.S.H.; Farahani, A. Mercapto-ordered carbohydrate-derived porous carbon electrode as a novel electrochemical sensor for simple and sensitive ultra-trace detection of omeprazole in biological samples. Mater. Sci. Eng. C, 2015, 48, 213-219.
[202]
Karolia, P.; Tiwari, D.C.; Jain, R. Electrocatalytic sensing of omeprazole. Ionics, 2015, 21, 2355-2362.
[203]
Altınoz, S.; Suslu, I. Determination of pantoprazole in pharmaceutical formulations and human plasma by square‐wave voltammetry. Anal. Lett., 2005, 38, 1389-1404.
[204]
Radi, A. Square-wave adsorptive cathodic stripping voltammetry of pantoprazole. J. Pharm. Biomed. Anal., 2003, 33, 687-692.
[205]
Khashaba, P.Y.; Ali, R.H.; Wekil, M.M. Complexation based voltammetric determination of pantoprazole sodium in pharmaceutical formulations and rabbit plasma. Electroanalysis, 2017, 29, 890-897.
[206]
Nezhadalia, A.; Shadmehria, R. Neuro-genetic multi-objective optimization and computer-aided design of pantoprazole molecularly imprinted polypyrrole sensor. Sens. Actuators B., 2014, 202, 240-251.
[207]
Nigovic, B.; Hocevar, S.B. Square-wave voltammetric determination of pantoprazole using ex situ plated antimony-film electrode. Electrochim. Acta, 2013, 109, 818-822.
[208]
Khashaba, P.Y.; Ali, H.R.H.; Wekil, M.M. Simultaneous voltammetric analysis of anti-ulcer and D2-antagonist agents in binary mixture using redox sensor and their determination in human serum. Mater. Sci. Eng. C, 2017, 75, 733-741.
[209]
Skrzypek, S.; Ciesielski, W.; Sokołowski, A.; Yilmaz, S.; Kazmierczak, D. Square wave adsorptive stripping voltammetric determination of famotidine in urine. Talanta, 2005, 66, 1146-1151.
[210]
Silva, L.P.; Vicentini, F.C.; Lourencao, B.C.; Oliveira, G.G.; Lanza, M.R.V.; Filho, O.F. A new sensor architecture based on carbon Printex 6L to the electrochemical determination of ranitidine. J. Solid State Electrochem., 2016, 20, 2395-2402.
[211]
Rezaei, B.; Forushani, H.L.; Ensafi, A.A. Modified Au nanoparticles-imprinted sol-gel, multiwall carbon nanotubes pencil graphite electrode used as a sensor for ranitidine determination. Mater. Sci. Eng. C, 2014, 37, 113-119.
[212]
Norouzi, P.; Ganjali, M.R.; Daneshgar, P. A novel method for fast determination of Ranitidine in its pharmaceutical formulations by fast continuous cyclic voltammetry. J. Pharmacol. Toxicol. Methods, 2007, 55, 289-296.
[213]
Salimi, A.; Izadi, M.; Hallaj, R.; Rashidi, M. Simultaneous determination of ranitidine and metronidazole at glassy carbon electrode modified with single wall carbon nanotubes. Electroanalysis, 2007, 19, 1668-1676.
[214]
Ates, S.; Zor, E.; Akin, I.; Bingol, H.; Alpaydin, S.; Akgemci, E.G. Discriminative sensing of DOPA enantiomers by cyclodextrin anchored graphene nanohybrids. Anal. Chim. Acta, 2017, 970, 30-37.
[215]
Zhu, H.; Chang, F.; Zhu, Z. The fabrication of carbon nanotubes array-based electrochemical chiral sensor by electrosynthesis. Talanta, 2017, 166, 70-74.
[216]
Chen, L.; Chang, F.; Meng, L.; Li, M.; Zhu, Z. A novel electrochemical chiral sensor for 3,4-dihydroxyphenylalanine based on the combination of single-walled carbon nanotubes, sulfuric acid and square wave voltammetry. Analyst, 2014, 139, 2243-2248.
[217]
Pandey, I.; Kant, R. Electrochemical impedance based chiral analysis of anti-ascorbutic drug: L-Ascorbic acid and D-ascorbic acid using C-dots decorated conductive polymer nano-composite electrode. Biosens. Bioelectron., 2016, 77, 715-724.
[218]
Chen, L.; Li, K.; Zhu, H.; Meng, L.; Chen, J.; Li, M.; Zhu, Z. A chiral electrochemical sensor for propranolol based on multi-walled carbon nanotubes/ionic liquids nanocomposite. Talanta, 2013, 105, 250-254.
[219]
Zhang, Q.; Guo, L.; Huang, Y.; Chen, Y.; Guo, D.; Chen, C.; Fu, Y. An electrochemical chiral sensing platform for propranolol enantiomers based on size-controlled gold nanocomposite. Sens. Actuators B Chem., 2014, 199, 239-246.
[220]
He, Z.; Zang, S.; Liu, Y.; He, Y.; Lei, H. A multi-walled carbon nanotubes-poly(L-lysine) modified enantioselective immunosensor for ofloxacin by using multi-enzyme-labeled gold nanoflower as signal enhancer. Biosens. Bioelectron., 2015, 73, 85-92.
[221]
Upadhyay, S.S.; Kalambate, P.K.; Srivastava, A.K. Enantioselective analysis of moxifloxacin hydrochloride enantiomers with graphene-β-Cyclodextrin-nanocomposite modified carbon paste electrode using adsorptive stripping differential pulse Voltammetry. Electrochim. Acta, 2017, 248, 258-269.
[222]
Guo, L.; Huang, Y.; Zhang, Q.; Chen, C.; Guo, D.; Chen, Y.; Fu, Y. Electrochemical sensing for using naproxen enantiomers biofunctionalized reduced graphene oxide nanosheets. J. Electrochem. Soc., 2014, 161, 70-74.
[223]
Afkhami, A.; Kafrashi, F.; Ahmadi, M.; Madrakian, T. A new chiral electrochemical sensor for the enantioselective recognition of naproxen enantiomers using L-cysteine self-assembled over gold nanoparticles on a gold electrode. RSC Adv, 2015, 5, 58609-58615.
[224]
Wang, Y.; Zhou, J.; Han, Q.; Chen, Q.; Guo, L.; Fu, Y. Chiral recognition of penicillamine enantiomers based on DNA-MWNT complex modified electrode. Electroanalysis, 2012, 24, 1561-1566.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 15
ISSUE: 3
Year: 2019
Page: [249 - 276]
Pages: 28
DOI: 10.2174/1573411014666180510152154
Price: $58

Article Metrics

PDF: 45
HTML: 2
EPUB: 1
PRC: 1