Recent Progress in the Analysis of Captopril Using Electrochemical Methods: A Review

Author(s): Sarfaraz Ahmed Mahesar*, Saeed Ahmed Lakho, Syed Tufail Hussain Sherazi, Hamid Ali Kazi, Kamran Ahmed Abro, Razium Ali Soomro, Andrei A. Bunaciu.

Journal Name: Current Analytical Chemistry

Volume 15 , Issue 3 , 2019

Submit Manuscript
Submit Proposal

Graphical Abstract:


Abstract:

Background: Captopril is the synthetic dipeptide used as an angiotensin converting enzyme inhibitor. Captopril is used to treat hypertension as well as for the treatment of moderate heart failure. Analytical instrumentation and methodology plays an important role in pharmaceutical analysis.

Methods: This review presents some important applications of electrochemical modes used for the analysis of captopril. So far captopril has been analyzed by using different bare and modified working electrodes with a variety of modifiers from organic and inorganic materials to various types of nano particles/materials.

Results: This paper presents some of the methods which have been published in the last few years i.e. from 2003 to 2016. This review highlights the role of the analytical instrumentation, particularly electrochemical methods in assessing captopril using various working electrodes.

Conclusion: A large number of studies on voltammetry noted by means of various bare and modified electrodes. Among all of the published voltammetric methods, DPV, SWV, CV and miscellaneous modes were trendy techniques used to analyze captopril in pharmaceutical formulations as well as biological samples. Electrodes modified with nanomaterials are promising sensing tools as this showed high sensitivity, good accuracy with precision as well as selectivity. In comparison to chromatographic methods, the main advantages of electrochemical methods are its cheaper instrumentation, lower detection limit and minimal or no sample preparation.

Keywords: Captopril, electroanalytical techniques, working electrodes, miscellaneous modes, modifiers, hypertension.

[1]
Florey, K. Analytical Profiles of Drug substances; Academic Press: New York, 1982, Vol. 11, pp. 79-137.
[2]
Goodman, A.; Goodman, L.S.; Rall, T.W.; Murad, F. Les Bases Farmacologicas de la Terapeutica; Panamericana: Madrid, 1989, pp. 616-620.
[3]
Ozkan, S.A.; Uslu, B.; Aboul-Enein, H.Y. Analysis of pharmaceuticals and biological fluids using modern electroanalytical techniques. Crit. Rev. Anal. Chem., 2003, 33(3), 155-181.
[4]
Shetti, N.P.; Malode, S.J.; Nandibewoor, S.T. Electro-oxidation of captopril at a gold electrode and its determination in pharmaceuticals and human fluids. Anal. Meth, 2015, 7, 8673-8682.
[5]
Adams, R.N.; Olson, C. Carbon paste electrodes application to anodic voltammetry. J. Anal. Chim. Acta, 1960, 22, 582-589.
[6]
Ghoreishi, S.M.; Behpour, M.; Delshad, A.; Khoobi, A. Electrochemical determination of tyrosine in the presence of uric acid at a carbon paste electrode modified with multi-walled carbon nanotubes enhanced by sodium dodecyl sulfate. Cent. Eur. J. Chem., 2012, 10, 1824-1829.
[7]
Tashkhourian, M.R.; Nezhad, H.; Khodavesi, J.; Javadi, S. Silver nanoparticles modified carbon nanotube paste electrode for simultaneous determination of dopamine and ascorbic acid. J. Electroanal. Chem., 2009, 633, 85-91.
[8]
Mazloum-Ardakani, M.; Sabaghian, F.; Khoshroo, A.; Abolhasani, M.; Naeimi, H. Electrochemical determination of captopril in the presence of acetaminophen, tryptophan, folic acid, and L-cysteine at the surface of modified carbon nanotube paste electrode. Ionics, 2015, 21, 239-250.
[9]
Mazloum-Ardakani, M.; Sheikh-Mohseni, M.A.; Bibi-Fatemeh, M.; Zamani, L. Simultaneous determination of captopril, acetaminophen and tryptophan at a modified electrode based on carbon nanotubes. J. Electroanal. Chem., 2012, 686, 12-18.
[10]
Shahrokhian, S.; Karimi, M.; Khajehsharifi, H. Carbon-paste electrode modified with cobalt-5-nitrolsalophen as a sensitive voltammetric sensor for detection of captopril. Sens. Actuat. B, 2005, 109, 278-284.
[11]
Fouladgar, M. Electrocatalytic measurement of trace amount of captopril using multiwall carbon nanotubes as a sensor and ferrocene as a mediator. Int. J. Electrochem. Sci., 2011, 6, 705-716.
[12]
Dias, I.A.R.B.; Costa, W.M.; Cervini, P.; Cavalheiro, E.T.G.; Marques, A.L.B. Ruthenium hexacyanoferrate (III) modified glassy carbon electrode for determination of captopril. Electroanalysis, 2016, 28, 1-8.
[13]
Ensafi, A.A.; Karimi-Maleh, H.; Mallakpour, S.; Rezaei, B. Highly sensitive voltammetric sensor based on catechol-derivative-multiwall carbon nanotubes for the catalytic determination of captopril in patient human urine samples. Colloids Surf. B, 2011, 87, 480-488.
[14]
Hasanzadeh, M.; Pournaghi-Azar, M.H.; Shadjou, N.; Jouyban, A. Electropolymerization of taurine on gold surface and its sensory application for determination of captopril in undiluted human serum. Mater. Sci. Eng. C, 2014, 38, 197-205.
[15]
Ghoreishi, S.M.; Karamali, E.; Khoobi, A.; Enhessari, M. Preparation of a manganese titanate nanosensor: Application in electrochemical studies of captopril in the presence of para-aminobenzoic acid. Anal. Biochem., 2015, 487, 49-58.
[16]
Stefan-van Staden, R-I.; Balasoiu, S-C.; Bazylak, G.; Frederick-van Staden, J.; Aboul-Enein, H.Y.; Radu, G.L. Inulins as electroactive materials for enantioanalysis of chiral drugs. J. Electrochem. Soc., 2013, 160(10), B192-B195.
[17]
Parham, H.; Zargar, B. Square-wave voltammetric (SWV) determination of Captopril in reconstituted serum and pharmaceutical formulations. Talanta, 2005, 65, 776-780.
[18]
Zargar, B.; Parmar, H.; Hatamie, A. Mercury thin film at glassy carbon electrode for adsorptive stripping voltammetric determination of captopril in pharmaceutical samples. Anal. Bioanal. Electrochem, 2015, 7(3), 344-357.
[19]
Ioannides, X.; Economou, A.; Voulgaropoulos, A. A study of the determination of the hypertensive drug captopril by square wave cathodic adsorptive stripping voltammetry. J. Pharm. Biomed. Anal., 2003, 33, 309-316.
[20]
Rajabzadeh, N.; Ali, B.; Mazloum-Ardakani, M.; Afsaneh, D.F.; Rasoul, V. A highly sensitive sensor based on reduced graphene oxide, carbon nanotube and a Co(II) complex modified carbon paste electrode: simultaneous determination of isoprenaline, captopril and tryptophan. Electroanalysis, 2015, 27, 2792-2799.
[21]
Chermini, S.A.; Karimi, H.; Keyvanfard, M.; Aliza, K. Determination of captopril using multiwall carbon nanotubes paste electrode in the presence of isoproterenol as a mediator. Iran. J. Pharm. Res., 2016, 15(1), 107-117.
[22]
Karimi-Maleh, H.; Ensafi, A.A.; Allafchian, A.R. Fast and sensitive determination of captopril by voltammetric method using ferrocenedicarboxylic acid modified carbon paste electrode. J. Solid State Electrochem., 2010, 14, 9-15.
[23]
Beitollahi, H.; Susan, G.I.; Reza, A.; Rahman, H. Preparation, Characterization and electrochemical application of ZnO-CuO Nanoplates for voltammetric determination of captopril and tryptophan using modified carbon paste electrode. Electroanalysis, 2015, 27, 1-9.
[24]
Seifie-Makrani, R.; Nasim, S.; Omran, Y.; Hasan, B. A new strategy for determination of captopril as a hypertension drug using ZnO nanoparticle modified carbon paste electrode. Int. J. Electrochem. Sci., 2014, 9, 1799-1811.
[25]
Beitollahi, H.; Mohammad, A.T.; Malihe, A.; Rahman, H. Electrocatalytic determination of captopril using a modified carbon nanotube paste electrode: Application to determination of captopril in pharmaceutical and biological samples. Measurement, 2014, 47, 770-776.
[26]
Ensafi, A.A.; Rezaei, B.; Mirahmadi-Zare, Z.; Karimi-Maleh, H. Highly selective and sensitive voltammetric sensor for captopril determination based on modified multiwall carbon nanotubes paste electrode. J. Braz. Chem. Soc., 2011, 22(7), 1315-1322.
[27]
Bagheri, H.; Karimi-Maleh, H.; Karimi, F.; Mallakpour, S.; Keyvanfard, M. Square wave voltammetric determination of captopril in liquid phase using N-(4-hydroxyphenyl)-3,5-dinitrobenzamide modified ZnO/CNT carbon paste electrode as a novel electrochemical sensor. J. Mol. Liq., 2014, 198, 193-199.
[28]
Khalilzadeh, M.A.; Karimi-Maleh, H.; Amiri, A.; Gholami, F.; Mazhabi, R.M. Determination of captopril in patient human urine using ferrocenemonocarboxylic acid modified carbon nanotubes paste electrode. Chin. Chem. Lett., 2010, 21, 1467-1470.
[29]
Rezaei, B.; Damiri, S. Voltammetric behavior of multi-walled carbon nanotubes modified electrode-hexacyanoferrate(II) electrocatalyst system as a sensor for determination of captopril. Sens. Actuat. B 134, 2008, 324-331.
[30]
Ensafi, A.A.; Monsef, M.; Rezaei, B.; Karimi-Maleh, H. Electrocatalytic oxidation of captopril on a vinylferrocene modified carbon nanotubes paste electrode. Anal. Meth, 2012, 4, 1332-1338.
[31]
Siangproh, W.; Ngamukot, P.; Chailapakul, O. Electrochemical determination of captopril at boron-doped diamond thin film electrode applied to a flow injection system. Sens. Actuat. B, 2003, 91, 60-66.
[32]
Ziyatdinova, G.K.; Budnikov, G.K.; Pogorel’tsev, V.I. Determination of captopril in pharmaceutical forms by stripping voltammetry. J. Anal. Chem., 2006, 61(8), 798-800.
[33]
Hossein, B.; Fahimeh, J. Voltammetric determination of captopril using chlorpromazine as a homogeneous mediator. Int. J. Electrochem., 2011, 2011, Article ID 864358.
[34]
Fahimeh, J.; Hossein, B. Homogeneous electrocatalytic oxidation of captopril by iodide and its application to pharmaceutical analysis. J. Iran. Chem. Soc., 2012, 9, 889-894.
[35]
Wen-Rong, C.; Guang-Yao, Z.; Tao, S.; Xue-Ji, Z.; Dan, S. Cobalt hexacyanoferrate electrodeposited on electrode with the assistance of laponite: The enhanced electrochemical sensing of captopril. Electro. Chim. Acta, 2016, 198, 32-39.
[36]
Habibi, D.; Faraji, A.R.; Gil, A. A highly sensitive supported manganese-based voltammetric sensor for the electrocatalytic determination of captopril. Sens. Actuat. B., 2013, 182, 80-86.


Rights & PermissionsPrintExport Cite as


Article Details

VOLUME: 15
ISSUE: 3
Year: 2019
Page: [198 - 206]
Pages: 9
DOI: 10.2174/1573411014666180510151528
Price: $58

Article Metrics

PDF: 32
HTML: 2
EPUB: 1
PRC: 1