Nanoparticle Based Treatment for Cardiovascular Diseases

Author(s): Purnima Gupta, Evelyn Garcia, Amrita Sarkar, Sumit Kapoor, Khadija Rafiq, Hitendra S. Chand, Rahul Dev Jayant*.

Journal Name: Cardiovascular & Hematological Disorders-Drug Targets

Volume 19 , Issue 1 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Nanotechnology has gained increased attention for delivering therapeutic agents effectively to the cardiovascular system. Heart targeted nanocarrier based drug delivery is a new, effective and efficacious approach for treating various cardiac related disorders such as atherosclerosis, hypertension, and myocardial infarction. Nanocarrier based drug delivery system circumvents the problems associated with conventional drug delivery systems, including their nonspecificity, severe side effects and damage to the normal cells. Modification of physicochemical properties of nanocarriers such as size, shape and surface modifications can immensely alter its invivo pharmacokinetic and pharmacodynamic data and will provide better treatment strategy. Several nanocarriers such as lipid, phospholipid nanoparticles have been developed for delivering drugs to the target sites within the heart. This review summarizes and increases the understanding of the advanced nanosized drug delivery systems for treating cardiovascular disorders with the promising use of nanotechnology.

Keywords: Nanomedicine, nanocarriers, nanoformulations, nanotechnology, cardiovascular diseases, targeted drug delivery systems.

[1]
Bosetti, F.; Galis, Z.S.; Bynoe, M.S.; Charette, M.; Cipolla, M.J.; Del Zoppo, G.J.; Gould, D.; Hatsukami, T.S.; Jones, T.L.; Koenig, J.I.; Lutty, G.A.; Maric-Bilkan, C.; Stevens, T.; Tolunay, H.E.; Koroshetz, W. Small blood vessels: Big Health Problems” Workshop Participants. Small blood vessels: Big health problems?”: scientific recommendations of the national institutes of health workshop. J. Am. Heart Assoc., 2016, 5(11), e004389.
[2]
Sidney, S.; Quesenberry, C.P. Jr, Jaffe, M.G.; Sorel, M.; Nguyen- Huynh, M.N.; Kushi, L.H.; Go, A.S.; Rana, J.S. Recent trends in cardiovascular mortality in the United States and public health goals. JAMA Cardiol., 2016, 1(5, 594-599.
[3]
Ostadal, B. The past, the present and the future of experimental research on myocardial ischemia and protection. Pharmacol. Rep., 2009, 61(1), 3-12.
[4]
Moran, A.E.; Forouzanfar, M.H.; Roth, G.A.; Mensah, G.A.; Ezzati, M.; Murray, C.J.; Naghavi, M. Temporal trends in ischemic heart disease mortality in 21 world regions, 1980-2010: The Global Burden of Disease 2010 Study. Circulation, 2014, 129(14), 1483-1492.
[5]
Khodabandehloo, H.; Zahednasab, H.; Hafez, A.A. Nanocarriers usage for drug delivery in cancer therapy. Iran. J. Cancer Prev., 2016, 9(2), e3966.
[6]
Kumari, P.; Ghosh, B.; Biswas, S. Nanocarriers for cancer-targeted drug delivery. J. Drug Target., 2016, 24(3), 179-191.
[7]
Kaushik, A.; Jayant, R.D.; Sagar, V.; Nair, M. The potential of magneto-electric nanocarriers for drug delivery. Expert Opin. Drug Deliv., 2014, 11(10), 1635-1646.
[8]
Ali, I.; Rahis-Uddin Salim, K.; Rather, M.A.; Wani, W.A.; Haque, A. Advances in nano drugs for cancer chemotherapy. Curr. Cancer Drug Targets, 2011, 11(2), 135-146.
[9]
Tang, J.; Lobatto, M.E.; Read, J.C.; Mieszawska, A.J.; Fayad, Z.A.; Mulder, W.J. Nanomedical theranostics in cardiovascular disease. Curr. Cardiovasc. Imaging Rep., 2012, 5(1), 19-25.
[10]
Bae, Y.H.; Park, K. Targeted drug delivery to tumors: myths, reality and possibility. J. Contr. Rel, 2011, 153(3), 198.
[11]
Gagliardi, M. Novel biodegradable nanocarriers for enhanced drug delivery. Ther. Deliv., 2016, 7(12), 809-826.
[12]
Maeda, H.; Sawa, T.; Konno, T. Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS. J. Control. Release, 2001, 74(1), 47-61.
[13]
Yuan, F.; Dellian, M.; Fukumura, D.; Leunig, M.; Berk, D.A.; Torchilin, V.P.; Jain, R.K. Vascular permeability in a human tumor xenograft: Molecular size dependence and cutoff size. Cancer Res., 1995, 55(17), 3752-3756.
[14]
Bertrand, N.; Wu, J.; Xu, X.; Kamaly, N.; Farokhzad, O.C. Cancer nanotechnology: The impact of passive and active targeting in the era of modern cancer biology. Adv. Drug Deliv. Rev., 2014, 66, 2-25.
[15]
Ruoslahti, E. Specialization of tumour vasculature. Nat. Rev. Cancer, 2002, 2(2), 83-90.
[16]
Yu, X.; Trase, I.; Ren, M.; Duval, K.; Guo, X.; Chen, Z. Design of nanoparticle-based carriers for targeted drug delivery. J. Nanomat., 2016, 2016, pii: 1087250
[17]
Verma, D.D.; Levchenko, T.S.; Bernstein, E.A.; Mongayt, D.; Torchilin, V.P. ATP-loaded immunoliposomes specific for cardiac myosin provide improved protection of the mechanical functions of myocardium from global ischemia in an isolated rat heart model. J. Drug Target., 2006, 14(5), 273-280.
[18]
Scott, R.C.; Rosano, J.M.; Ivanov, Z.; Wang, B.; Chong, P.L.; Issekutz, A.C.; Crabbe, D.L.; Kiani, M.F. Targeting VEGF-encapsulated immunoliposomes to MI heart improves vascularity and cardiac function. FASEB J., 2009, 23(10), 3361-3367.
[19]
Welch, W.J.; Paln, W.J.; Bruley, D.F.; Harrison, D.K., Eds.; Oxygen transport to tissue XXXIV; Springer Science & Business Media, 2012, Vol. 765, .
[20]
Dvir, T.; Bauer, M.; Schroeder, A.; Tsui, J.H.; Anderson, D.G.; Langer, R.; Liao, R.; Kohane, D.S. Nanoparticles targeting the infarcted heart. Nano Lett., 2011, 11(10), 4411-4414.
[21]
Takahama, H.; Minamino, T.; Asanuma, H.; Fujita, M.; Asai, T.; Wakeno, M.; Sasaki, H.; Kikuchi, H.; Hashimoto, K.; Oku, N.; Asakura, M.; Kim, J.; Takashima, S.; Komamura, K.; Sugimachi, M.; Mochizuki, N.; Kitakaze, M. Prolonged targeting of ischemic/ reperfused myocardium by liposomal adenosine augments cardio-protection in rats. J. Am. Coll. Cardiol., 2009, 53(8), 709-717.
[22]
Paulis, L.E.; Geelen, T.; Kuhlmann, M.T.; Coolen, B.F.; Schäfers, M.; Nicolay, K.; Strijkers, G.J. Distribution of lipid-based nanoparticles to infarcted myocardium with potential application for MRI-monitored drug delivery. J. Control. Release, 2012, 162(2), 276-285.
[23]
Torchilin, V.; Klibanov, A.L.; Huang, L.; O’Donnell, S.; Nossiff, N.D.; Khaw, B.A. Targeted accumulation of polyethylene glycol-coated immunoliposomes in infarcted rabbit myocardium. FASEB J., 1992, 6(9), 2716-2719.
[24]
Majmudar, M.D.; Keliher, E.J.; Heidt, T.; Leuschner, F.; Truelove, J.; Sena, B.F.; Gorbatov, R.; Iwamoto, Y.; Dutta, P.; Wojtkiewicz, G.; Courties, G.; Sebas, M.; Borodovsky, A.; Fitzgerald, K.; Nolte, M.W.; Dickneite, G.; Chen, J.W.; Anderson, D.G.; Swirski, F.K.; Weissleder, R.; Nahrendorf, M. Monocyte-directed RNAi targeting CCR2 improves infarct healing in atherosclerosis-prone mice. Circulation, 2013, 127(20), 2038-2046.
[25]
Date, A.A.; Desai, N.; Dixit, R.; Nagarsenker, M. Self-nanoemulsifying drug delivery systems: Formulation insights, applications and advances. Nanomedicine (Lond.), 2010, 5(10), 1595-1616.
[26]
Goddeeris, C.; Coacci, J.; Van den Mooter, G. Correlation between digestion of the lipid phase of smedds and release of the anti-HIV drug UC 781 and the anti-mycotic drug enilconazole from smedds. Eur. J. Pharm. Biopharm., 2007, 66(2), 173-181.
[27]
Beg, S.; Swain, S.; Singh, H.P.; Patra, ChN.; Rao, M.E. Development, optimization, and characterization of solid self-nanoemulsifying drug delivery systems of valsartan using porous carriers. AAPS PharmSciTech, 2012, 13(4), 1416-1427.
[28]
Ansari, K.A.; Pagar, K.P.; Anwar, S.; Vavia, P.R. Design and optimization of self-microemulsifying drug delivery system (SMEDDS) of felodipine for chronotherapeutic application. Braz. J. Pharm. Sci., 2014, 50(1, 203-212.
[29]
Patel, J.; Patel, A.; Raval, M.; Sheth, N. Formulation and development of a self-nanoemulsifying drug delivery system of irbesartan. J. Adv. Pharm. Technol. Res., 2011, 2(1), 9.
[30]
Singh, B.; Singh, R.; Bandyopadhyay, S.; Kapil, R.; Garg, B. Optimized nanoemulsifying systems with enhanced bioavailability of carvedilol. Colloids Surf. B Biointerfaces, 2013, 101, 465-474.
[31]
McClements, D.J. Nanoemulsions versus microemulsions: terminology, differences, and similarities. Soft Matter, 2012, 8(6), 1719-1729.
[32]
Sharma, M.; Sharma, R.; Jain, D.K. Nanotechnology based approaches for enhancing oral bioavailability of poorly water soluble antihypertensive drugs.Scientifica,, 2016. 2016.
[33]
Chhabra, G.; Chuttani, K.; Mishra, A.K.; Pathak, K. Design and development of nanoemulsion drug delivery system of amlodipine besilate for improvement of oral bioavailability. Drug Dev. Ind. Pharm., 2011, 37(8), 907-916.
[34]
Jang, D-J.; Jeong, E.J.; Lee, H.M.; Kim, B.C.; Lim, S.J.; Kim, C.K. Improvement of bioavailability and photostability of amlodipine using redispersible dry emulsion. Eur. J. Pharm. Sci., 2006, 28(5), 405-411.
[35]
Rabinow, B.E. Nanosuspensions in drug delivery. Nat. Rev. Drug Discov., 2004, 3(9), 785-796.
[36]
Mou, D.; Chen, H.; Wan, J.; Xu, H.; Yang, X. Potent dried drug nanosuspensions for oral bioavailability enhancement of poorly soluble drugs with pH-dependent solubility. Int. J. Pharm., 2011, 413(1), 237-244.
[37]
Thadkala, K.; Sailu, C.; Aukunuru, J. Formulation, optimization and evaluation of oral nanosuspension tablets of nebivolol hydrochloride for enhancement of dissoluton rate. Der Pharmacia Lettre, 2015, 7(3), 71-84.
[38]
Patel, J.; Dhingani, A.; Garala, K.; Raval, M.; Sheth, N. Design and development of solid nanoparticulate dosage forms of telmisartan for bioavailability enhancement by integration of experimental design and principal component analysis. Powder Technol., 2014, 258, 331-343.
[39]
Liu, D.; Yu, S.; Zhu, Z.; Lyu, C.; Bai, C.; Ge, H.; Yang, X.; Pan, W. Controlled delivery of carvedilol nanosuspension from osmotic pump capsule: in vitro and in vivo evaluation. Int. J. Pharm., 2014, 475(1), 496-503.
[40]
Müller, R.; Radtke, M.; Wissing, S. Nanostructured lipid matrices for improved microencapsulation of drugs. Int. J. Pharm., 2002, 242(1), 121-128.
[41]
Chen, Z.; Lai, X.; Song, S.; Zhu, X.; Zhu, J. Nanostructured lipid carriers based temozolomide and gene co-encapsulated nanomedicine for gliomatosis cerebri combination therapy. Drug Deliv., 2016, 23(4), 1369-1373.
[42]
MuÈller. R.H.; MaÈder, K.; Gohla, S. Solid lipid nanoparticles (SLN) for controlled drug delivery-a review of the state of the art. Eur. J. Pharm. Biopharm., 2000, 50(1), 161-177.
[43]
Müller, R.H.; Radtke, M.; Wissing, S.A. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv. Drug Deliv. Rev., 2002, 54, S131-S155.
[44]
Selvamuthukumar, S.; Velmurugan, R. Nanostructured lipid carriers: a potential drug carrier for cancer chemotherapy. Lipids Health Dis., 2012, 11(1), 159.
[45]
Zhou, J.; Zhou, D. Improvement of oral bioavailability of lovastatin by using nanostructured lipid carriers. Drug Des. Devel. Ther., 2015, 9, 5269.
[46]
Ranpise, N.S.; Korabu, S.S.; Ghodake, V.N. Second generation lipid nanoparticles (NLC) as an oral drug carrier for delivery of lercanidipine hydrochloride. Colloids Surf. B Biointerfaces, 2014, 116, 81-87.
[47]
Pisal, D.S.; Kosloski, M.P.; Balu‐Iyer, S.V. Delivery of therapeutic proteins. J. Pharm. Sci., 2010, 99(6), 2557-2575.
[48]
Sanchis, J.; Canal, F.; Lucas, R.; Vicent, M.J. Polymer-drug conjugates for novel molecular targets. Nanomedicine , 2010, 5(6), 915-935.
[49]
Williams, S.J.; Wang, Q.; Macgregor, R.R.; Siahaan, T.J.; Stehno-Bittel, L.; Berkland, C. Adhesion of pancreatic beta cells to biopolymer films. Biopolymers, 2009, 91(8), 676-685.
[50]
Hu, X.; Tang, Y.; Wang, Q.; Li, Y.; Yang, J.H.; Du, Y.; Kennedy, J.F. Rheological behaviour of chitin in NaOH/urea aqueous solution. Carbohydr. Polym., 2011, 83(3), 1128-1133.
[51]
Mukherjee, S.; Ray, S.; Thakur, R. Solid lipid nanoparticles: a modern formulation approach in drug delivery system. Indian J. Pharm. Sci., 2009, 71(4), 349.
[52]
Khan, S.; Khan, S.; Baboota, S.; Ali, J. Immunosuppressive drug therapy–biopharmaceutical challenges and remedies. Expert Opin. Drug Deliv., 2015, 12(8), 1333-1349.
[53]
Venishetty, V.K.; Chede, R.; Komuravelli, R.; Adepu, L.; Sistla, R.; Diwan, P.V. Design and evaluation of polymer coated carvedilol loaded solid lipid nanoparticles to improve the oral bioavailability: A novel strategy to avoid intraduodenal administration. Colloids Surf. B Biointerfaces, 2012, 95, 1-9.
[54]
Havanoor, S.M.; Manjunath, K.; Bhagawati, S.T.; Veerapur, V. Isradipine loaded solid lipid nanoparticles for better treatment of hypertension–preparation, characterization and in vivo evaluation. Int. J. Biopharm., 2014, 5, 218-224.
[55]
Zhang, Z.; Gao, F.; Bu, H.; Xiao, J.; Li, Y. Solid lipid nanoparticles loading candesartan cilexetil enhance oral bioavailability: in vitro characteristics and absorption mechanism in rats. Nanomedicine: Nanotechnology, Biology and Medicine, 2012, 8(5), 740-747.
[56]
Dudhipala, N.; Veerabrahma, K. Pharmacokinetic and phar-macodynamic studies of nisoldipine-loaded solid lipid nanoparticles developed by central composite design. Drug Dev. Ind. Pharm., 2015, 41(12), 1968-1977.
[57]
Kumar, V.V.; Chandrasekar, D.; Ramakrishna, S.; Kishan, V.; Rao, Y.M.; Diwan, P.V. Development and evaluation of nitrendipine loaded solid lipid nanoparticles: Influence of wax and glyceride lipids on plasma pharmacokinetics. Int. J. Pharm., 2007, 335(1), 167-175.
[58]
Shah, M.K.; Madan, P.; Lin, S. Preparation, in vitro evaluation and statistical optimization of carvedilol-loaded solid lipid nanoparticles for lymphatic absorption via oral administration. Pharm. Dev. Technol., 2014, 19(4), 475-485.
[59]
Chan, J.M.; Valencia, P.M.; Zhang, L.; Langer, R.; Farokhzad, O.C. Polymeric nanoparticles for drug delivery. Methods Mol. Biol., 2010, 624, 163-175.
[60]
Matoba, T.; Egashira, K. Nanoparticle-mediated drug delivery system for cardiovascular disease. Int. Heart J., 2014, 55(4), 281-286.
[61]
Desai, P.P.; Date, A.A.; Patravale, V.B. Overcoming poor oral bioavailability using nanoparticle formulations–opportunities and limitations. Drug Discov. Today. Technol., 2012, 9(2), e87-e95.
[62]
Nepolean, R. Colon targeted methacrylic acid copolymeric nanoparticles for improved oral bioavailability of nisoldipine. Intern. J. Biol. Pharm. Res, 2012, 3(8), 962-967.
[63]
Shah, U.; Joshi, G.; Sawant, K. Improvement in antihypertensive and antianginal effects of felodipine by enhanced absorption from PLGA nanoparticles optimized by factorial design. Mater. Sci. Eng. C, 2014, 35, 153-163.
[64]
Antal, I.; Kubovcikova, M.; Zavisova, V.; Koneracka, M.; Pechanova, O.; Barta, A.; Cebova, M.; Antal, V.; Diko, P.; Zduriencikova, M.; Pudlak, M.; Kopcansky, P. Magnetic poly (D, L-lactide) nanoparticles loaded with aliskiren: A promising tool for hypertension treatment. J. Magn. Magn. Mater., 2015, 380, 280-284.
[65]
Katsuki, S.; Matoba, T.; Nakashiro, S.; Sato, K.; Koga, J.; Nakano, K.; Nakano, Y.; Egusa, S.; Sunagawa, K.; Egashira, K. Nanoparticle-mediated delivery of pitavastatin inhibits atherosclerotic plaque destabilization/rupture in mice by regulating the recruitment of inflammatory monocytes. Circulation, 2014, 129(8), 896-906.
[66]
Nakashiro, S.; Matoba, T.; Umezu, R.; Koga, J.; Tokutome, M.; Katsuki, S.; Nakano, K.; Sunagawa, K.; Egashira, K. Pioglitazone-incorporated nanoparticles prevent plaque destabilization and rupture by regulating monocyte/macrophage differentiation in ApoE−/− Mice. Arterioscler. Thromb. Vasc. Biol., 2016, 36(3), 491-500.
[67]
Somasuntharam, I.; Boopathy, A.V.; Khan, R.S.; Martinez, M.D.; Brown, M.E.; Murthy, N.; Davis, M.E. Delivery of Nox2-NADPH oxidase siRNA with polyketal nanoparticles for improving cardiac function following myocardial infarction. Biomaterials, 2013, 34(31), 7790-7798.
[68]
Lundy, D.J.; Chen, K.H.; Toh, E.K.; Hsieh, P.C. Distribution of systemically administered nanoparticles reveals a size-dependent effect immediately following cardiac ischaemia-reperfusion injury. Sci. Rep., 2016, 6, 25613.
[69]
Niaz, T.; Shabbir, S.; Manzoor, S.; Rehman, A.; Rahman, A.; Nasir, H.; Imran, M. Antihypertensive nano-ceuticales based on chitosan biopolymer: Physico-chemical evaluation and release kinetics. Carbohydr. Polym., 2016, 142, 268-274.
[70]
Chadha, R.; Bhandari, S.; Kataria, D.; Gupta, S. Exploring lecithin/chitosan nanoparticles of ramipril for improved antihypertensive efficacy. J. Nanopharm. Drug Deliv., 2013, 1(2), 173-181.
[71]
Ha, E-S.; Choo, G.H.; Baek, I.H.; Kim, J.S.; Cho, W.; Jung, Y.S.; Jin, S.E.; Hwang, S.J.; Kim, M.S. Dissolution and bioavailability of lercanidipine–hydroxypropylmethyl cellulose nanoparticles with surfactant. Intern. J. Biol. Macromol., 2015, 72, 218-222.
[72]
American College of Cardiology Foundation Task Force on Expert Consensus Documents. Hundley, W.G.; Bluemke, D.A.; Finn, J.P.; Flamm, S.D.; Fogel, M.A.; Friedrich, M.G.; Ho, V.B.; Jerosch-Herold, M.; Kramer, C.M.; Manning, W.J.; Patel, M.; Pohost, G.M.; Stillman, A.E.; White, R.D.; Woodard, P.K. ACCF/ACR/ AHA/NASCI/SCMR 2010 expert consensus document on cardiovascular magnetic resonance: A report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents. J. Am. Coll. Cardiol., 2010, 55(23), 2614-2662.
[73]
Abbasi, E.; Aval, S.F.; Akbarzadeh, A.; Milani, M.; Nasrabadi, H.T.; Joo, S.W.; Hanifehpour, Y.; Nejati-Koshki, K.; Pashaei-Asl, R. Dendrimers: Synthesis, applications, and properties. Nanoscale Res. Lett., 2014, 9(1), 247.
[74]
Atluri, V.S.R.; Jayant, R.D.; Pilakka-Kanthikeel, S.; Garcia, G.; Samikkannu, T.; Yndart, A.; Kaushik, A.; Nair, M. Development of TIMP1 magnetic nanoformulation for regulation of synaptic plasticity in HIV-1 infection. Int. J. Nanomedicine, 2016, 11, 4287.
[75]
Jayant, R.; Nair, M. Nanotechnology for the treatment of NeuroAIDS. J. Nanomed. Res, 2016, 3(1), 00047.
[76]
Jayant, R.D.; Atluri, V.S.; Agudelo, M.; Sagar, V.; Kaushik, A.; Nair, M. Sustained-release nanoART formulation for the treatment of neuroAIDS. Int. J. Nanomedicine, 2015, 10, 1077.
[77]
Jayant, R.D.; Atluri, V.S.R.; Tiwari, S.; Pilakka-Kanthikeel, S.; Kaushik, A.; Yndart, A.; Nair, M. Novel nanoformulation to mitigate co-effects of drugs of abuse and HIV-1 infection: towards the treatment of NeuroAIDS. J. Neurovirol., 2017, 23(4), 603-614.
[78]
Jayant, R.D.; Madhavan, N. Materials and methods for sustained release of active compounds.2016, US Patent App. 15/082,611,
[79]
Kaushik, A.; Jayant, R.D.; Bhardwaj, V.; Nair, M. Personalized nanomedicine for CNS diseases. Drug Discov. Today, 2018, 23(5), 1007-1015.
[80]
Kaushik, A.; Jayant, R.D.; Nair, M. Advancements in nano-enabled therapeutics for neuroHIV management. Int. J. Nanomedicine, 2016, 11, 4317.
[81]
Kaushik, A.; Jayant, R.D.; Nikkhah-Moshaie, R.; Bhardwaj, V.; Roy, U.; Huang, Z.; Ruiz, A.; Yndart, A.; Atluri, V.; El-Hage, N.; Khalili, K.; Nair, M. Magnetically guided central nervous system delivery and toxicity evaluation of magneto-electric nanocarriers. Sci. Rep., 2016, 6, 25309.
[82]
Nair, M.; Jayant, R.D.; Kaushik, A.; Sagar, V. Getting into the brain: potential of nanotechnology in the management of NeuroAIDS. Adv. Drug Deliv. Rev., 2016, 103, 202-217.
[83]
Tomitaka, A.; Arami, H.; Raymond, A.; Yndart, A.; Kaushik, A.; Jayant, R.D.; Takemura, Y.; Cai, Y.; Toborek, M.; Nair, M. Development of magneto-plasmonic nanoparticles for multimodal image-guided therapy to the brain. Nanoscale, 2017, 9(2), 764-773.
[84]
Sensenig, R.; Sapir, Y.; MacDonald, C.; Cohen, S.; Polyak, B. Magnetic nanoparticle-based approaches to locally target therapy and enhance tissue regeneration in vivo. Nanomedicine (Lond.), 2012, 7(9), 1425-1442.
[85]
Cao, Q.; Han, X.; Li, L. Enhancement of the efficiency of magnetic targeting for drug delivery: Development and evaluation of magnet system. J. Magn. Magn. Mater., 2011, 323(15), 1919-1924.
[86]
Ottersbach, A.; Mykhaylyk, O.; Heidsieck, A.; Eberbeck, D.; Rieck, S.; Zimmermann, K.; Breitbach, M.; Engelbrecht, B.; Brügmann, T.; Hesse, M.; Welz, A.; Sasse, P.; Wenzel, D.; Plank, C.; Gleich, B.; Hölzel, M.; Bloch, W.; Pfeifer, A.; Fleischmann, B.K.; Roell, W. Improved heart repair upon myocardial infarction: Combination of magnetic nanoparticles and tailored magnets strongly increases engraftment of myocytes. Biomaterials, 2018, 155, 176-190.
[87]
Asmatulu, R.; Zalich, M.A.; Claus, R.O.; Riffle, J.S. Synthesis, characterization and targeting of biodegradable magnetic nanocomposite particles by external magnetic fields. J. Magn. Magn. Mater., 2005, 292, 108-119.
[88]
Bietenbeck, M.; Florian, A.; Faber, C.; Sechtem, U.; Yilmaz, A. Remote magnetic targeting of iron oxide nanoparticles for cardiovascular diagnosis and therapeutic drug delivery: Where are we now? Int. J. Nanomedicine, 2016, 11, 3191.
[89]
Cheng, K.; Shen, D.; Hensley, M.T.; Middleton, R.; Sun, B.; Liu, W.; De Couto, G.; Marbán, E. Magnetic antibody-linked nanomatchmakers for therapeutic cell targeting. Nat. Commun., 2014, 5, 4880.
[90]
Vandergriff, A.C.; Hensley, T.M.; Henry, E.T.; Shen, D.; Anthony, S.; Zhang, J.; Cheng, K. Magnetic targeting of cardiosphere-derived stem cells with ferumoxytol nanoparticles for treating rats with myocardial infarction. Biomaterials, 2014, 35(30), 8528-8539.
[91]
Santoso, M.R.; Yang, P.C. Magnetic nanoparticles for targeting and imaging of stem cells in myocardial infarction. Stem Cells Int., 2016, 2016, 4198790.
[92]
Zhang, Y.; Li, W.; Ou, L.; Wang, W.; Delyagina, E.; Lux, C.; Sorg, H.; Riebemann, K.; Steinhoff, G.; Ma, N. Targeted delivery of human VEGF gene via complexes of magnetic nanoparticle-adenoviral vectors enhanced cardiac regeneration. PLoS One, 2012, 7(7), e39490.
[93]
Malhotra, S.; Haag, R. Dendrimers and hyperbranched polymers in medicine; Encyclopedia Polymeric Nanomaterials, 2015, pp. 534-540.
[94]
Huang, X.; Zheng, S.; Kim, I. Hyperbranched polymers and dendrimers as templates for organic/inorganic hybrid nanomaterials. J. Nanosci. Nanotechnol., 2014, 14(2), 1631-1646.
[95]
Madaan, K.; Kumar, S.; Poonia, N.; Lather, V.; Pandita, D. Dendrimers in drug delivery and targeting: Drug-dendrimer interactions and toxicity issues. J. Pharm. Bioallied Sci., 2014, 6(3), 139.
[96]
Johnson, T.A.; Stasko, N.A.; Matthews, J.L.; Cascio, W.E.; Holmuhamedov, E.L.; Johnson, C.B.; Schoenfisch, M.H. Reduced ischemia/reperfusion injury via glutathione-initiated nitric oxide-releasing dendrimers. Nitric Oxide, 2010, 22(1), 30-36.
[97]
Chanyshev, B.; Shainberg, A.; Isak, A.; Litinsky, A.; Chepurko, Y.; Tosh, D.K.; Phan, K.; Gao, Z.G.; Hochhauser, E.; Jacobson, K.A. Anti-ischemic effects of multivalent dendrimeric A 3 adenosine receptor agonists in cultured cardiomyocytes and in the isolated rat heart. Pharmacol. Res., 2012, 65(3), 338-346.
[98]
Liu, J.; Gu, C.; Cabigas, E.B.; Pendergrass, K.D.; Brown, M.E.; Luo, Y.; Davis, M.E. Functionalized dendrimer-based delivery of angiotensin type 1 receptor siRNA for preserving cardiac function following infarction. Biomaterials, 2013, 34(14), 3729-3736.
[99]
Aronson, D.; Edelman, E.R. Revascularization for coronary artery disease in diabetes mellitus: angioplasty, stents and coronary artery bypass grafting. Rev. Endocr. Metab. Disord., 2010, 11(1), 75-86.
[100]
King, S.B., III; Marshall, J.J.; Tummala, P.E. Revascularization for coronary artery disease: stents versus bypass surgery. Annu. Rev. Med., 2010, 61, 199-213.
[101]
Yin, R-X.; Yang, D-Z.; Wu, J-Z. Nanoparticle drug-and gene-eluting stents for the prevention and treatment of coronary restenosis. Theranostics, 2014, 4(2), 175.
[102]
Tsukie, N.; Nakano, K.; Matoba, T.; Masuda, S.; Iwata, E.; Miyagawa, M.; Zhao, G.; Meng, W.; Kishimoto, J.; Sunagawa, K.; Egashira, K. Pitavastatin-incorporated nanoparticle-eluting stents attenuate in-stent stenosis without delayed endothelial healing effects in a porcine coronary artery model. J. Atheroscler. Thromb., 2013, 20(1), 32-45.
[103]
Masuda, S.; Nakano, K.; Funakoshi, K.; Zhao, G.; Meng, W.; Kimura, S.; Matoba, T.; Miyagawa, M.; Iwata, E.; Sunagawa, K.; Egashira, K. Imatinib mesylate-incorporated nanoparticle-eluting stent attenuates in-stent neointimal formation in porcine coronary arteries. J. Atheroscler. Thromb., 2011, 18(12), 1043-1053.
[104]
Bhargava, B.; Reddy, N.K.; Karthikeyan, G.; Raju, R.; Mishra, S.; Singh, S.; Waksman, R.; Virmani, R.; Somaraju, B. A novel paclitaxel‐eluting porous carbon–carbon nanoparticle coated, nonpolymeric cobalt–chromium stent: Evaluation in a porcine model. Catheter. Cardiovasc. Interv., 2006, 67(5), 698-702.
[105]
Chorny, M.; Fishbein, I.; Yellen, B.B.; Alferiev, I.S.; Bakay, M.; Ganta, S.; Adamo, R.; Amiji, M.; Friedman, G.; Levy, R.J. Targeting stents with local delivery of paclitaxel-loaded magnetic nanoparticles using uniform fields. Proc. Natl. Acad. Sci. USA, 2010, 107(18), 8346-8351.
[106]
Acharya, G.; Lee, C.H.; Lee, Y. Optimization of cardiovascular stent against restenosis: factorial design-based statistical analysis of polymer coating conditions. PLoS One, 2012, 7(8), e43100.
[107]
Danenberg, H.D.; Fishbein, I.; Gao, J.; Mönkkönen, J.; Reich, R.; Gati, I.; Moerman, E.; Golomb, G. Macrophage depletion by clodronate-containing liposomes reduces neointimal formation after balloon injury in rats and rabbits. Circulation, 2002, 106(5), 599-605.
[108]
Yin, X.; Fu, Y.; Yutani, C.; Ikeda, Y.; Enjyoji, K.; Kato, H. HVJ-AVE liposome-mediated Tissue Factor Pathway Inhibitor (TFPI) gene transfer with recombinant TFPI (rTFPI) irrigation attenuates restenosis in atherosclerotic arteries. Int. J. Cardiol., 2009, 135(2), 245-248.
[109]
Smalling, R.W.; Feld, S.; Ramanna, N.; Amirian, J.; Felli, P.; Vaughn, W.K.; Swenson, C.; Janoff, A. Infarct salvage with liposomal prostaglandin E 1 administered by intravenous bolus immediately before reperfusion in a canine infarction-reperfusion model. Circulation, 1995, 92(4), 935-943.
[110]
Verma, D.D.; Hartner, W.C.; Levchenko, T.S.; Bernstein, E.A.; Torchilin, V.P. ATP-loaded liposomes effectively protect the myocardium in rabbits with an acute experimental myocardial infarction. Pharm. Res., 2005, 22(12), 2115-2120.
[111]
Shirodkar, R.; Misra, C.; Gh, C.; Shetty, P.; Attari, Z.; Mutalik, S.; Lewis, S. Subacute toxicity profile of lacidipine nanoformulation in Wistar rats. Sci. World J., 2015, 2015, 947623.
[112]
Veerareddy, P.R.; Poluri, K.; Sistla, R.; Chaganty, S. Formulation development and comparative pharmacokinetic evaluation of felodipine nanoemulsion in SD rats. Am. J. PharmTech. Res., 2012, 2(3), 931-945.
[113]
Lee, B.S.; Kang, M.J.; Choi, W.S.; Choi, Y.B.; Kim, H.S.; Lee, S.K.; Lee, J.; Choi, Y.W. Solubilized formulation of olmesartan medoxomil for enhancing oral bioavailability. Arch. Pharm. Res., 2009, 32(11), 1629-1635.
[114]
Zaitsev, S.; Cartier, R.; Vyborov, O.; Sukhorukov, G.; Paulke, B.R.; Haberland, A.; Parfyonova, Y.; Tkachuk, V.; Böttger, M. Polyelectrolyte nanoparticles mediate vascular gene delivery. Pharm. Res., 2004, 21(9), 1656-1661.
[115]
Fishbein, I.; Waltenberger, J.; Banai, S.; Rabinovich, L.; Chorny, M.; Levitzki, A.; Gazit, A.; Huber, R.; Mayr, U.; Gertz, S.D.; Golomb, G. Local delivery of platelet-derived growth factor receptor–specific tyrphostin inhibits neointimal formation in rats. Arterioscler. Thromb. Vasc. Biol., 2000, 20(3), 667-676.
[116]
Banai, S.; Chorny, M.; Gertz, S.D.; Fishbein, I.; Gao, J.; Perez, L.; Lazarovichi, G.; Gazit, A.; Levitzki, A.; Golomb, G. Locally delivered nanoencapsulated tyrphostin (AGL-2043) reduces neointima formation in balloon-injured rat carotid and stented porcine coronary arteries. Biomaterials, 2005, 26(4), 451-461.
[117]
Sanchez-Gaytan, B.L.; Fay, F.; Lobatto, M.E.; Tang, J.; Ouimet, M.; Kim, Y.; van der Staay, S.E.; van Rijs, S.M.; Priem, B.; Zhang, L.; Fisher, E.A.; Moore, K.J.; Langer, R.; Fayad, Z.A.; Mulder, W.J. HDL-mimetic PLGA nanoparticle to target atherosclerosis plaque macrophages. Bioconjug. Chem., 2015, 26(3), 443-451.
[118]
Getts, D.R.; Terry, R.L.; Getts, M.T.; Deffrasnes, C.; Müller, M.; van Vreden, C.; Ashhurst, T.M.; Chami, B.; McCarthy, D.; Wu, H.; Ma, J.; Martin, A.; Shae, L.D.; Witting, P.; Kansas, G.S.; Kühn, J.; Hafezi, W.; Campbell, I.L.; Reilly, D.; Say, J.; Brown, L.; White, M.Y.; Cordwell, S.J. Chadban, S.J.; Thorp, E.B.; Bao, S.; Miller, S.D.; King, N.J. Therapeutic inflammatory monocyte modulation using immune-modifying microparticles. Sci. Transl. Med., 2014, 6(219), 219ra7-219ra7.


Rights & PermissionsPrintExport Cite as


Article Details

VOLUME: 19
ISSUE: 1
Year: 2019
Page: [33 - 44]
Pages: 12
DOI: 10.2174/1871529X18666180508113253
Price: $58

Article Metrics

PDF: 50
HTML: 2