Freely Accessible Chemical Database Resources of Compounds for In Silico Drug Discovery

Author(s): JingFang Yang, Di Wang, Chenyang Jia, Mengyao Wang, GeFei Hao*, GuangFu Yang*.

Journal Name: Current Medicinal Chemistry

Volume 26 , Issue 42 , 2019

  Journal Home
Translate in Chinese

Abstract:

Background: In silico drug discovery has been proved to be a solidly established key component in early drug discovery. However, this task is hampered by the limitation of quantity and quality of compound databases for screening. In order to overcome these obstacles, freely accessible database resources of compounds have bloomed in recent years. Nevertheless, how to choose appropriate tools to treat these freely accessible databases is crucial. To the best of our knowledge, this is the first systematic review on this issue.

Objective: The existed advantages and drawbacks of chemical databases were analyzed and summarized based on the collected six categories of freely accessible chemical databases from literature in this review.

Results: Suggestions on how and in which conditions the usage of these databases could be reasonable were provided. Tools and procedures for building 3D structure chemical libraries were also introduced.

Conclusion: In this review, we described the freely accessible chemical database resources for in silico drug discovery. In particular, the chemical information for building chemical database appears as attractive resources for drug design to alleviate experimental pressure.

Keywords: In silico, drug design, chemical databases, target discovery, lead discovery, dock.

[1]
Terstappen, G.C.; Reggiani, A. In silico research in drug discovery. Trends Pharmacol. Sci., 2001, 22(1), 23-26.
[http://dx.doi.org/10.1016/S0165-6147(00)01584-4] [PMID: 11165668]
[2]
Hertzberg, R.P.; Pope, A.J. High-throughput screening: new technology for the 21st century. Curr. Opin. Chem. Biol., 2000, 4(4), 445-451.
[http://dx.doi.org/10.1016/S1367-5931(00)00110-1] [PMID: 10959774]
[3]
Chung, P.Y. Current technology in the discovery and development of novel antibacterials. Curr. Drug Targets, 2018, 19(7), 832-840.
[http://dx.doi.org/10.2174/1389450118666170911114604] [PMID: 28891454]
[4]
Sliwoski, G.; Kothiwale, S.; Meiler, J.; Lowe, E.W. Jr. Computational methods in drug discovery. Pharmacol. Rev., 2013, 66(1), 334-395.
[http://dx.doi.org/10.1124/pr.112.007336] [PMID: 24381236]
[5]
Alsamman, K.; El-Masry, O.S. Developmental Phases of Anticancer Screening Models. Comb. Chem. High Throughput Screen., 2017, 20(5), 440-450.
[http://dx.doi.org/10.2174/1386207319666161226142822] [PMID: 28025935]
[6]
Alagappan, M.; Jiang, D.; Denko, N.; Koong, A.C. A multimodal data analysis approach for targeted drug discovery involving topological data analysis (TDA) In: Tumor Microenvironment: Study Protocols; Koumenis, C.; Coussens, L.M.; Giaccia, A.; Hammond, E., Eds, 2016; Vol. 899, pp. 253-268.
[7]
Bajorath, J. Integration of virtual and high-throughput screening. Nat. Rev. Drug Discov., 2002, 1(11), 882-894.
[http://dx.doi.org/10.1038/nrd941] [PMID: 12415248]
[8]
Gasteiger, J. Chemoinformatics: a new field with a long tradition. Anal. Bioanal. Chem., 2006, 384(1), 57-64.
[http://dx.doi.org/10.1007/s00216-005-0065-y] [PMID: 16177914]
[9]
Gasteiger, J. The central role of chemoinformatics. Chemom. Intell. Lab. Syst., 2006, 82(1-2), 200-209.
[http://dx.doi.org/10.1016/j.chemolab.2005.06.022]
[10]
Sousa, S.F.; Cerqueira, N.M.F.S.A.; Fernandes, P.A.; Ramos, M.J. Virtual screening in drug design and development. Comb. Chem. High Throughput Screen., 2010, 13(5), 442-453.
[http://dx.doi.org/10.2174/138620710791293001] [PMID: 20236061]
[11]
Schneider, G. Virtual screening: an endless staircase? Nat. Rev. Drug Discov., 2010, 9(4), 273-276.
[http://dx.doi.org/10.1038/nrd3139] [PMID: 20357802]
[12]
Koutsoukas, A.; Simms, B.; Kirchmair, J.; Bond, P.J.; Whitmore, A.V.; Zimmer, S.; Young, M.P.; Jenkins, J.L.; Glick, M.; Glen, R.C.; Bender, A. From in silico target prediction to multi-target drug design: current databases, methods and applications. J. Proteomics, 2011, 74(12), 2554-2574.
[http://dx.doi.org/10.1016/j.jprot.2011.05.011] [PMID: 21621023]
[13]
De Azevedo, W.F. Jr. Structure-based virtual screening. Curr. Drug Targets, 2010, 11(3), 261-263.
[http://dx.doi.org/10.2174/138945010790711941] [PMID: 20214598]
[14]
Abdolmaleki, A.; Ghasemi, J.B.; Ghasemi, F. Computer aided drug design for multi-target drug design: SAR/QSAR, molecular docking and pharmacophore methods. Curr. Drug Targets, 2017, 18(5), 556-575.
[http://dx.doi.org/10.2174/1389450117666160101120822] [PMID: 26721410]
[15]
Kutchukian, P.S.; Chang, C.; Fox, S.J.; Cook, E.; Barnard, R.; Tellers, D.; Wang, H.; Pertusi, D.; Glick, M.; Sheridan, R.P.; Wallace, I.M.; Wassermann, A.M. CHEMGENIE: integration of chemogenomics data for applications in chemical biology. Drug Discov. Today, 2018, 23(1), 151-160.
[http://dx.doi.org/10.1016/j.drudis.2017.09.004] [PMID: 28917822]
[16]
Ganai, S.A. Designing isoform-selective inhibitors against Classical HDACs for effective anticancer therapy: Insight and perspectives from in silico. Curr. Drug Targets, 2018, 19(7), 815-824.
[http://dx.doi.org/10.2174/1389450118666170112130151] [PMID: 28078985]
[17]
Ash, S.; Cline, M.A.; Homer, R.W.; Hurst, T.; Smith, G.B. SYBYL Line Notation (SLN): a versatile language for chemical structure representation. J. Chem. Inf. Comput. Sci., 1997, 37(1), 71-79.
[http://dx.doi.org/10.1021/ci960109j]
[18]
Huang, X-P.; Karpiak, J.; Kroeze, W.K.; Zhu, H.; Chen, X.; Moy, S.S.; Saddoris, K.A.; Nikolova, V.D.; Farrell, M.S.; Wang, S.; Mangano, T.J.; Deshpande, D.A.; Jiang, A.; Penn, R.B.; Jin, J.; Koller, B.H.; Kenakin, T.; Shoichet, B.K.; Roth, B.L. Allosteric ligands for the pharmacologically dark receptors GPR68 and GPR65. Nature, 2015, 527(7579), 477-483.
[http://dx.doi.org/10.1038/nature15699] [PMID: 26550826]
[19]
Riniker, S.; Landrum, G.A. Open-source platform to benchmark fingerprints for ligand-based virtual screening. J. Cheminform., 2013, 5(1), 26.
[http://dx.doi.org/10.1186/1758-2946-5-26] [PMID: 23721588]
[20]
Shoichet, B.K. Virtual screening of chemical libraries. Nature, 2004, 432(7019), 862-865.
[http://dx.doi.org/10.1038/nature03197] [PMID: 15602552]
[21]
Lionta, E.; Spyrou, G.; Vassilatis, D.K.; Cournia, Z. Structure-based virtual screening for drug discovery: principles, applications and recent advances. Curr. Top. Med. Chem., 2014, 14(16), 1923-1938.
[http://dx.doi.org/10.2174/1568026614666140929124445] [PMID: 25262799]
[22]
Agarwal, A.K.; Fishwick, C.W.G. In: Antimicrobial Therapeutics Reviews; Bush, K., Ed.; , 2010; Vol. 1213, pp. 20-45.
[23]
Lavecchia, A.; Di Giovanni, C. Virtual screening strategies in drug discovery: a critical review. Curr. Med. Chem., 2013, 20(23), 2839-2860.
[http://dx.doi.org/10.2174/09298673113209990001] [PMID: 23651302]
[24]
Hartshorn, M.J.; Murray, C.W.; Cleasby, A.; Frederickson, M.; Tickle, I.J.; Jhoti, H. Fragment-based lead discovery using X-ray crystallography. J. Med. Chem., 2005, 48(2), 403-413.
[http://dx.doi.org/10.1021/jm0495778] [PMID: 15658854]
[25]
Visini, R.; Awale, M.; Reymond, J-L. Fragment database FDB-17. J. Chem. Inf. Model., 2017, 57(4), 700-709.
[http://dx.doi.org/10.1021/acs.jcim.7b00020] [PMID: 28375006]
[26]
de Azevedo, W.F., Jr; Dias, R. Computational methods for calculation of ligand-binding affinity. Curr. Drug Targets, 2008, 9(12), 1031-1039.
[http://dx.doi.org/10.2174/138945008786949405] [PMID: 19128212]
[27]
Kitchen, D.B.; Decornez, H.; Furr, J.R.; Bajorath, J. Docking and scoring in virtual screening for drug discovery: methods and applications. Nat. Rev. Drug Discov., 2004, 3(11), 935-949.
[http://dx.doi.org/10.1038/nrd1549] [PMID: 15520816]
[28]
Wassermann, A.M.; Bajorath, J. BindingDB and ChEMBL: online compound databases for drug discovery. Expert Opin. Drug Discov., 2011, 6(7), 683-687.
[http://dx.doi.org/10.1517/17460441.2011.579100] [PMID: 22650976]
[29]
Pence, H.E.; Williams, A. ChemSpider: An online chemical information resource. J. Chem. Educ., 2010, 87(11), 1123-1124.
[http://dx.doi.org/10.1021/ed100697w]
[30]
Degtyarenko, K.; de Matos, P.; Ennis, M.; Hastings, J.; Zbinden, M.; McNaught, A.; Alcántara, R.; Darsow, M.; Guedj, M.; Ashburner, M.ChE.B.I. a database and ontology for chemical entities of biological interest. Nucleic Acids Res., 2008, 36(Database issue), D344-D350.
[http://dx.doi.org/ 10.1093/nar/gkm791] [PMID: 17932057]
[31]
Kim, S.; Thiessen, P.A.; Bolton, E.E.; Chen, J.; Fu, G.; Gindulyte, A.; Han, L.; He, J.; He, S.; Shoemaker, B.A.; Wang, J.; Yu, B.; Zhang, J.; Bryant, S.H. pubchem substance and compound databases. Nucleic Acids Res., 2016, 44(D1), D1202-D1213.
[http://dx.doi.org/10.1093/nar/gkv951] [PMID: 26400175]
[32]
Gaulton, A.; Bellis, L.J.; Bento, A.P.; Chambers, J.; Davies, M.; Hersey, A.; Light, Y.; McGlinchey, S.; Michalovich, D.; Al-Lazikani, B.; Overington, J.P. ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res., 2012, 40(Database issue), D1100-D1107.
[http://dx.doi.org/10.1093/nar/gkr777] [PMID: 21948594]
[33]
Liu, T.; Lin, Y.; Wen, X.; Jorissen, R.N.; Gilson, M.K. BindingDB: a web-accessible database of experimentally determined protein-ligand binding affinities. Nucleic Acids Res., 2007, 35(Database issue), D198-D201.
[http://dx.doi.org/10.1093/nar/gkl999] [PMID: 17145705]
[34]
Seiler, K.P.; George, G.A.; Happ, M.P.; Bodycombe, N.E.; Carrinski, H.A.; Norton, S.; Brudz, S.; Sullivan, J.P.; Muhlich, J.; Serrano, M.; Ferraiolo, P.; Tolliday, N.J.; Schreiber, S.L.; Clemons, P.A. ChemBank: a small-molecule screening and cheminformatics resource database. Nucleic Acids Res., 2008, 36(Database issue), D351-D359.
[http://dx.doi.org/ 10.1093/nar/gkm843] [PMID: 17947324]
[35]
Wang, R.; Fang, X.; Lu, Y.; Wang, S. The PDBbind database: collection of binding affinities for protein-ligand complexes with known three-dimensional structures. J. Med. Chem., 2004, 47(12), 2977-2980.
[http://dx.doi.org/10.1021/jm030580l] [PMID: 15163179]
[36]
Wishart, D.S.; Knox, C.; Guo, A.C.; Shrivastava, S.; Hassanali, M.; Stothard, P.; Chang, Z.; Woolsey, J. DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res., 2006, 34(Database issue), D668-D672.
[http://dx.doi.org/10.1093/nar/gkj067] [PMID: 16381955]
[37]
Banerjee, P.; Erehman, J.; Gohlke, B-O.; Wilhelm, T.; Preissner, R.; Dunkel, M. Super Natural II--a database of natural products. Nucleic Acids Res., 2015, 43(Database issue), D935-D939.
[http://dx.doi.org/10.1093/nar/gku886] [PMID: 25300487]
[38]
Gu, J.; Gui, Y.; Chen, L.; Yuan, G.; Lu, H-Z.; Xu, X. Use of natural products as chemical library for drug discovery and network pharmacology. PLoS One, 2013, 8(4)e62839
[http://dx.doi.org/10.1371/journal.pone.0062839] [PMID: 23638153]
[39]
Ntie-Kang, F.; Mbah, J.A.; Mbaze, L.M.; Lifongo, L.L.; Scharfe, M.; Hanna, J.N.; Cho-Ngwa, F.; Onguéné, P.A.; Owono Owono, L.C.; Megnassan, E.; Sippl, W.; Efange, S.M.N. CamMedNP: building the Cameroonian 3D structural natural products database for virtual screening. BMC Complement. Altern. Med., 2013, 13, 88.
[http://dx.doi.org/10.1186/1472-6882-13-88] [PMID: 23590173]
[40]
Chen, C.Y-C. TCM Database@Taiwan: the world’s largest traditional Chinese medicine database for drug screening in silico. PLoS One, 2011, 6(1)e15939
[http://dx.doi.org/10.1371/journal.pone.0015939] [PMID: 21253603]
[41]
Irwin, J.J.; Sterling, T.; Mysinger, M.M.; Bolstad, E.S.; Coleman, R.G. ZINC: a free tool to discover chemistry for biology. J. Chem. Inf. Model., 2012, 52(7), 1757-1768.
[http://dx.doi.org/10.1021/ci3001277] [PMID: 22587354]
[42]
Voigt, J.H.; Bienfait, B.; Wang, S.; Nicklaus, M.C. Comparison of the NCI open database with seven large chemical structural databases. J. Chem. Inf. Comput. Sci., 2001, 41(3), 702-712.
[http://dx.doi.org/10.1021/ci000150t] [PMID: 11410049]
[43]
Ahmed, J.; Worth, C.L.; Thaben, P.; Matzig, C.; Blasse, C.; Dunkel, M.; Preissner, R. FragmentStore--a comprehensive database of fragments linking metabolites, toxic molecules and drugs. Nucleic Acids Res., 2011, 39(Database issue), D1049-D1054.
[http://dx.doi.org/10.1093/nar/gkq969] [PMID: 20965964]
[44]
Bolton, E.E.; Kim, S.; Bryant, S.H. PubChem3D: Conformer generation. J. Cheminform., 2011, 3(1), 4.
[http://dx.doi.org/10.1186/1758-2946-3-4] [PMID: 21272340]
[45]
Ekins, S.; Mestres, J.; Testa, B. In silico pharmacology for drug discovery: applications to targets and beyond. Br. J. Pharmacol., 2007, 152(1), 21-37.
[http://dx.doi.org/10.1038/sj.bjp.0707306] [PMID: 17549046]
[46]
Hopkins, A.L. Network pharmacology. Nat. Biotechnol., 2007, 25(10), 1110-1111.
[http://dx.doi.org/10.1038/nbt1007-1110] [PMID: 17921993]
[47]
Wale, N.; Karypis, G. Target fishing for chemical compounds using target-ligand activity data and ranking based methods. J. Chem. Inf. Model., 2009, 49(10), 2190-2201.
[http://dx.doi.org/10.1021/ci9000376] [PMID: 19764745]
[48]
Wolber, G.; Langer, T. LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters. J. Chem. Inf. Model., 2005, 45(1), 160-169.
[http://dx.doi.org/10.1021/ci049885e] [PMID: 15667141]
[49]
Li, H.; Gao, Z.; Kang, L.; Zhang, H.; Yang, K.; Yu, K.; Luo, X.; Zhu, W.; Chen, K.; Shen, J.; Wang, X.; Jiang, H. TarFisDock: a web server for identifying drug targets with docking approach. Nucleic Acids Res., 2006, 34(Web Server issue), W219-24.
[http://dx.doi.org/10.1093/nar/gkl114] [PMID: 16844997]
[50]
Houston, D.R.; Walkinshaw, M.D. Consensus docking: improving the reliability of docking in a virtual screening context. J. Chem. Inf. Model., 2013, 53(2), 384-390.
[http://dx.doi.org/10.1021/ci300399w] [PMID: 23351099]
[51]
Trott, O.; Olson, A.J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[http://dx.doi.org/10.1002/jcc.21334] [PMID: 19499576]
[52]
Durrant, J.D.; McCammon, J.A. NNScore: a neural-network-based scoring function for the characterization of protein-ligand complexes. J. Chem. Inf. Model., 2010, 50(10), 1865-1871.
[http://dx.doi.org/10.1021/ci100244v] [PMID: 20845954]
[53]
Neudert, G.; Klebe, G. DSX: a knowledge-based scoring function for the assessment of protein-ligand complexes. J. Chem. Inf. Model., 2011, 51(10), 2731-2745.
[http://dx.doi.org/10.1021/ci200274q] [PMID: 21863864]
[54]
Tang, Y.T.; Marshall, G.R. PHOENIX: a scoring function for affinity prediction derived using high-resolution crystal structures and calorimetry measurements. J. Chem. Inf. Model., 2011, 51(2), 214-228.
[http://dx.doi.org/10.1021/ci100257s] [PMID: 21214225]
[55]
Zheng, Z.; Merz, K.M. Jr Ligand Identification Scoring Algorithm (LISA). J. Chem. Inf. Model., 2011, 51(6), 1296-1306.
[http://dx.doi.org/10.1021/ci2000665] [PMID: 21561101]
[56]
Liu, Q.; Kwoh, C.K.; Li, J. Binding affinity prediction for protein-ligand complexes based on β contacts and B factor. J. Chem. Inf. Model., 2013, 53(11), 3076-3085.
[http://dx.doi.org/10.1021/ci400450h] [PMID: 24191692]
[57]
Zilian, D.; Sotriffer, C.A. SFCscore(RF): a random forest-based scoring function for improved affinity prediction of protein-ligand complexes. J. Chem. Inf. Model., 2013, 53(8), 1923-1933.
[http://dx.doi.org/10.1021/ci400120b] [PMID: 23705795]
[58]
Li, G-B.; Yang, L-L.; Wang, W-J.; Li, L-L.; Yang, S-Y. ID-Score: a new empirical scoring function based on a comprehensive set of descriptors related to protein-ligand interactions. J. Chem. Inf. Model., 2013, 53(3), 592-600.
[http://dx.doi.org/10.1021/ci300493w] [PMID: 23394072]
[59]
Zheng, Z.; Merz, K.M. Jr. Development of the knowledge-based and empirical combined scoring algorithm (KECSA) to score protein-ligand interactions. J. Chem. Inf. Model., 2013, 53(5), 1073-1083.
[http://dx.doi.org/10.1021/ci300619x] [PMID: 23560465]
[60]
Plewczynski, D.; Łaźniewski, M.; von Grotthuss, M.; Rychlewski, L.; Ginalski, K. VoteDock: consensus docking method for prediction of protein-ligand interactions. J. Comput. Chem., 2011, 32(4), 568-581.
[http://dx.doi.org/10.1002/jcc.21642] [PMID: 20812324]
[61]
Jain, A.N. Surflex: Docking and scoring on CSAR. Abstracts of Papers of the American Chemical Society, 2402010,
[62]
Chang, C.; Bahadduri, P.M.; Polli, J.E.; Swaan, P.W.; Ekins, S. Rapid identification of P-glycoprotein substrates and inhibitors. Drug Metab. Dispos., 2006, 34(12), 1976-1984.
[http://dx.doi.org/10.1124/dmd.106.012351] [PMID: 16997908]
[63]
Chong, C.R.; Sullivan, D.J. Jr. New uses for old drugs. Nature, 2007, 448(7154), 645-646.
[http://dx.doi.org/10.1038/448645a] [PMID: 17687303]
[64]
Jolivette, L.J.; Ekins, S. Methods for predicting human drug metabolism in: Adv. Clin. Chem; Makowski, G.S., Ed.; , 2007, Vol. 43, pp. 131-176.
[65]
Wishart, D.S. Discovering drug targets through the web. Comp. Biochem. Physiol. Part D Genomics Proteomics, 2007, 2(1), 9-17.
[http://dx.doi.org/10.1016/j.cbd.2006.01.003] [PMID: 20483274]
[66]
Awale, M.; Reymond, J-L. Cluster analysis of the DrugBank chemical space using molecular quantum numbers. Bioorg. Med. Chem., 2012, 20(18), 5372-5378.
[http://dx.doi.org/10.1016/j.bmc.2012.03.017] [PMID: 22465859]
[67]
Simon, J. The evolution of drug discovery. from traditional medicines to modern drugs. Ambix, 2012, 59(3), 304-304.
[68]
Driggers, E.M.; Hale, S.P.; Lee, J.; Terrett, N.K. The exploration of macrocycles for drug discovery--an underexploited structural class. Nat. Rev. Drug Discov., 2008, 7(7), 608-624.
[http://dx.doi.org/10.1038/nrd2590] [PMID: 18591981]
[69]
Harvey, A.L.; Edrada-Ebel, R.; Quinn, R.J. The re-emergence of natural products for drug discovery in the genomics era. Nat. Rev. Drug Discov., 2015, 14(2), 111-129.
[http://dx.doi.org/10.1038/nrd4510] [PMID: 25614221]
[70]
Kingston, D.G.I. Modern natural products drug discovery and its relevance to biodiversity conservation. J. Nat. Prod., 2011, 74(3), 496-511.
[http://dx.doi.org/10.1021/np100550t] [PMID: 21138324]
[71]
Prachayasittikul, V.; Worachartcheewan, A.; Shoombuatong, W.; Songtawee, N.; Simeon, S.; Prachayasittikul, V.; Nantasenamat, C. Computer-Aided Drug Design of Bioactive Natural Products. Curr. Top. Med. Chem., 2015, 15(18), 1780-1800.
[http://dx.doi.org/10.2174/1568026615666150506151101] [PMID: 25961523]
[72]
Tian, S.; Wang, J.; Li, Y.; Li, D.; Xu, L.; Hou, T. The application of in silico drug-likeness predictions in pharmaceutical research. Adv. Drug Deliv. Rev., 2015, 86, 2-10.
[http://dx.doi.org/10.1016/j.addr.2015.01.009] [PMID: 25666163]
[73]
Sukuru, S.C.K.; Jenkins, J.L.; Beckwith, R.E.J.; Scheiber, J.; Bender, A.; Mikhailov, D.; Davies, J.W.; Glick, M. Plate-based diversity selection based on empirical HTS data to enhance the number of hits and their chemical diversity. J. Biomol. Screen., 2009, 14(6), 690-699.
[http://dx.doi.org/10.1177/1087057109335678] [PMID: 19531667]
[74]
Tsai, T-Y.; Chang, K-W.; Chen, C.Y-C. iScreen: world’s first cloud-computing web server for virtual screening and de novo drug design based on TCM database@Taiwan. J. Comput. Aided Mol. Des., 2011, 25(6), 525-531.
[http://dx.doi.org/10.1007/s10822-011-9438-9] [PMID: 21647737]
[75]
Vuorinen, A.; Engeli, R.T.; Leugger, S.; Bachmann, F.; Akram, M.; Atanasov, A.G.; Waltenberger, B.; Temml, V.; Stuppner, H.; Krenn, L.; Ateba, S.B.; Njamen, D.; Davis, R.A.; Odermatt, A.; Schuster, D. Potential Antiosteoporotic Natural Product Lead Compounds That Inhibit 17β-Hydroxysteroid Dehydrogenase Type 2. J. Nat. Prod., 2017, 80(4), 965-974.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00950] [PMID: 28319389]
[76]
Yang, S-C.; Chang, S-S.; Chen, H-Y.; Chen, C.Y-C. Identification of potent EGFR inhibitors from TCM Database@Taiwan. PLOS Comput. Biol., 2011, 7(10) e1002189
[http://dx.doi.org/10.1371/journal.pcbi.1002189] [PMID: 22022246]
[77]
Irwin, J.J.; Raushel, F.M.; Shoichet, B.K. Virtual screening against metalloenzymes for inhibitors and substrates. Biochemistry, 2005, 44(37), 12316-12328.
[http://dx.doi.org/10.1021/bi050801k] [PMID: 16156645]
[78]
Milletti, F.; Vulpetti, A. Tautomer preference in PDB complexes and its impact on structure-based drug discovery. J. Chem. Inf. Model., 2010, 50(6), 1062-1074.
[http://dx.doi.org/10.1021/ci900501c] [PMID: 20515065]
[79]
Shang, J.; Sun, H.; Liu, H.; Chen, F.; Tian, S.; Pan, P.; Li, D.; Kong, D.; Hou, T. Comparative analyses of structural features and scaffold diversity for purchasable compound libraries. J. Cheminform., 2017, 9(1), 25.
[http://dx.doi.org/10.1186/s13321-017-0212-4] [PMID: 29086044]
[80]
Saxena, A.K.; Prathipati, P. Collection and preparation of molecular databases for virtual screening. SAR QSAR Environ. Res., 2006, 17(4), 371-392.
[http://dx.doi.org/10.1080/10629360600884462] [PMID: 16920660]
[81]
Krier, M.; Bret, G.; Rognan, D. Assessing the scaffold diversity of screening libraries. J. Chem. Inf. Model., 2006, 46(2), 512-524.
[http://dx.doi.org/10.1021/ci050352v] [PMID: 16562979]
[82]
John, A.; Vetrivel, U.; Subramanian, K.; Deepa, P.R. Comparative docking of dual conformations in human fatty acid synthase thioesterase domain reveals potential binding cavity for virtual screening of ligands. J. Biomol. Struct. Dyn., 2017, 35(6), 1350-1366.
[http://dx.doi.org/10.1080/07391102.2016.1184183] [PMID: 27145135]
[83]
Miao, Y.; Goldfeld, D.A.; Moo, E.V.; Sexton, P.M.; Christopoulos, A.; McCammon, J.A.; Valant, C. Accelerated structure-based design of chemically diverse allosteric modulators of a muscarinic G protein-coupled receptor. Proc. Natl. Acad. Sci. USA, 2016, 113(38), E5675-E5684.
[http://dx.doi.org/10.1073/pnas.1612353113] [PMID: 27601651]
[84]
Masciocchi, J.; Frau, G.; Fanton, M.; Sturlese, M.; Floris, M.; Pireddu, L.; Palla, P.; Cedrati, F.; Rodriguez-Tomé, P.; Moro, S. MMsINC: a large-scale chemoinformatics database. Nucleic Acids Res., 2009, 37(Database issue), D284-D290.
[http://dx.doi.org/10.1093/nar/gkn727] [PMID: 18931373]
[85]
Del Rio, A.; Barbosa, A.J.M.; Caporuscio, F.; Mangiatordi, G.F. CoCoCo: a free suite of multiconformational chemical databases for high-throughput virtual screening purposes. Mol. Biosyst., 2010, 6(11), 2122-2128.
[http://dx.doi.org/10.1039/c0mb00039f] [PMID: 20694263]
[86]
Schneider, G.; Fechner, U. Computer-based de novo design of drug-like molecules. Nat. Rev. Drug Discov., 2005, 4(8), 649-663.
[http://dx.doi.org/10.1038/nrd1799] [PMID: 16056391]
[87]
Ruddigkeit, L.; Blum, L.C.; Reymond, J-L. Visualization and virtual screening of the chemical universe database GDB-17. J. Chem. Inf. Model., 2013, 53(1), 56-65.
[http://dx.doi.org/10.1021/ci300535x] [PMID: 23259841]
[88]
Hajduk, P.J.; Greer, J. A decade of fragment-based drug design: strategic advances and lessons learned. Nat. Rev. Drug Discov., 2007, 6(3), 211-219.
[http://dx.doi.org/10.1038/nrd2220] [PMID: 17290284]
[89]
Arnold, E. Fragment screening for drug discovery: efficient approaches for exploring chemical space. Prog. Biophys. Mol. Biol., 2014, 116(2-3), 81-81.
[http://dx.doi.org/10.1016/j.pbiomolbio.2014.11.002] [PMID: 25433582]
[90]
Lauck, F.; Rarey, M. FSees: Customized enumeration of chemical subspaces with limited main memory consumption. J. Chem. Inf. Model., 2016, 56(9), 1641-1653.
[http://dx.doi.org/10.1021/acs.jcim.6b00117] [PMID: 27617881]
[91]
Schmidt, U.; Struck, S.; Gruening, B.; Hossbach, J.; Jaeger, I.S.; Parol, R.; Lindequist, U.; Teuscher, E.; Preissner, R. SuperToxic: a comprehensive database of toxic compounds. Nucleic Acids Res., 2009, 37(Database issue), D295-D299.
[http://dx.doi.org/10.1093/nar/gkn850] [PMID: 19004875]
[92]
Kanehisa, M. The KEGG database. Novartis Found. Symp., 2002, 247, 91-101. discussion 101-103, 119-128, 244-152.
[http://dx.doi.org/10.1002/0470857897.ch8]
[93]
Lewell, X.Q.; Judd, D.B.; Watson, S.P.; Hann, M.M. RECAP--retrosynthetic combinatorial analysis procedure: a powerful new technique for identifying privileged molecular fragments with useful applications in combinatorial chemistry. J. Chem. Inf. Comput. Sci., 1998, 38(3), 511-522.
[http://dx.doi.org/10.1021/ci970429i] [PMID: 9611787]
[94]
Pesticide web site (alan wood). Available at: http://www.alanwood.net/pesticides/index.html (Accessed1995)
[95]
Bologa, C.G.; Olah, M.M.; Oprea, T.I. Methods Mol. Biol; Larson, R.S., Ed.; , 2006, Vol. 316, pp. 375-388.
[96]
Irwin, J.J.; Shoichet, B.K. ZINC--a free database of commercially available compounds for virtual screening. J. Chem. Inf. Model., 2005, 45(1), 177-182.
[http://dx.doi.org/10.1021/ci049714+] [PMID: 15667143]
[97]
The evolution of molecular design. Available at: http://www.eyesopen.com (Accessed 1997)
[98]
A program for filtering out molecules with unwanted properties( Filter-it). Available at: http://silicos-it.be.s3-website-eu-west-1.amazonaws.com/software/filter-it/1.0.2/filter-it.html (Accessed Date: September 20, 2012)
[99]
MOE Molecular Operating Environment. Available at:. http://www.chemcomp.com (Accessed January, 2001).
[100]
A chemical toolbox designed to speak the many languages of chemical data(Openbabel)., Available at: http://openbabel.org/wiki/Main_Page (Accessed Date: 2 June, 2005)
[101]
Interactive perspective: drug development and FDA approval, 1938-2013. N. Engl. J. Med., 2015, 372(6), 588-588.
[http://dx.doi.org/10.1056/NEJMx140057] [PMID: 25651270]
[102]
Kola, I.; Landis, J. Can the pharmaceutical industry reduce attrition rates? Nat. Rev. Drug Discov., 2004, 3(8), 711-715.
[http://dx.doi.org/10.1038/nrd1470] [PMID: 15286737]
[103]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2012, 64(1-3), 4-17.
[http://dx.doi.org/10.1016/j.addr.2012.09.019] [PMID: 11259830]
[104]
Veber, D.F.; Johnson, S.R.; Cheng, H-Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem., 2002, 45(12), 2615-2623.
[http://dx.doi.org/10.1021/jm020017n] [PMID: 12036371]
[105]
Rapid ADME predictions of drug candidates(QikProp), Available at: https://www.schrodinger.com/qikprop (Accessed 1990)
[106]
A software to calculate pharmacodynamics, pharmacokinetics and toxicological properties of compounds(PaDel), Available at: http://www.yapcwsoft.com/dd/padelddpredictor/ (Accessed Date: 18 May, 2011)
[107]
An interactive data analysis and visualization software with chemical intelligence, which was developed at Actelion Pharmaceuticals(DataWarrior), Available at: http://www.openmolecules.org/datawarrior/download.html (Accessed June, 2014)
[108]
Drug likeness tool(DruLiTo), Available at: http://www.niper.nic.in/pi_dev_tools/DruLiToWeb/DruLiTo_index.html
[109]
QED software for quantitative estimation of drug-likendess, Available at: http://crdd.osdd.net/oscadd/qed/
[110]
ChemBioSever. Available at:. http://bioserver-3.bioacademy.gr/Bioserver/ChemBioServer/ (Accessed Date: 15 November, 2012)
[111]
SwissADME. Available at:. http://www.swissadme.ch/ (Accessed Date: 3 March, 2017)
[112]
A web server developed for predicting drug-likelihood of a compound(DrugMint). Available at: http://crdd.osdd.net/oscadd/drugmint/ (Accessed Date: 25 June, 2013)
[113]
SmartsFilter. Availabe at:. http://pasilla.health.unm.edu/tomcat/biocomp/smartsfilter (Accessed Date: 17 August, 2017)
[114]
Dearden, J.C. In silico prediction of aqueous solubility. Expert Opin. Drug Discov., 2006, 1(1), 31-52.
[http://dx.doi.org/10.1517/17460441.1.1.31] [PMID: 23506031]
[115]
Yusof, I.; Segall, M.D. Considering the impact drug-like properties have on the chance of success. Drug Discov. Today, 2013, 18(13-14), 659-666.
[http://dx.doi.org/10.1016/j.drudis.2013.02.008] [PMID: 23458995]
[116]
Del Rio, A. Exploring enantioselective molecular recognition mechanisms with chemoinformatic techniques. J. Sep. Sci., 2009, 32(10), 1566-1584.
[http://dx.doi.org/10.1002/jssc.200800693] [PMID: 19391174]
[117]
A fast and powerful 3D structure generator for small and medium sized, typically drug-like molecules(CORINA). Available at: http://www.molecular-networks.com (Accessed Date: 15 March, 2001)
[118]
Versatile generation of accurate 3D molecular models. Available at: https://www.schrodinger.com/ligprep (Accessed 1990)
[119]
Abreu, R.M.V.; Froufe, H.J.C.; Daniel, P.O.M.; Queiroz, M.J.R.P.; Ferreira, I.C.F.R. ChemT, an open-source software for building template-based chemical libraries. SAR QSAR Environ. Res., 2011, 22(5-6), 603-610.
[http://dx.doi.org/10.1080/1062936X.2011.604097] [PMID: 21846264]
[120]
Schueller, A.; Haehnke, V.; Schneider, G. SmiLib v2.0: A Java-based tool for rapid combinatorial library enumeration. QSAR Comb. Sci., 2007, 26(3), 407-410.
[http://dx.doi.org/10.1002/qsar.200630101]
[121]
Song, C.M.; Bernardo, P.H.; Chai, C.L.; Tong, J.C. CLEVER: pipeline for designing in silico chemical libraries. J. Mol. Graph. Model., 2009, 27(5), 578-583.
[http://dx.doi.org/10.1016/j.jmgm.2008.09.009] [PMID: 18986817]
[122]
Fang, G.; Xue, M.; Su, M.; Hu, D.; Li, Y.; Xiong, B.; Ma, L.; Meng, T.; Chen, Y.; Li, J.; Li, J.; Shen, J. CCLab--a multi-objective genetic algorithm based combinatorial library design software and an application for histone deacetylase inhibitor design. Bioorg. Med. Chem. Lett., 2012, 22(14), 4540-4545.
[http://dx.doi.org/10.1016/j.bmcl.2012.05.123] [PMID: 22738629]
[123]
Truchon, J-F. Chemical Library Design; Zhou, J.Z.X., Ed.; , 2011, Vol. 685, pp. 337-346.
[http://dx.doi.org/10.1007/978-1-60761-931-4_17]
[124]
Douguet, D. e-LEA3D: a computational-aided drug design web server. Nucleic Acids Res., 2010, 38(Web Server issue), W615-W621.
[http://dx.doi.org/10.1093/nar/gkq322] [PMID: 20444867]
[125]
Combinatorial library generation and screening, Available at: http://www.vlifesciences.com/products/Functional_products/leadgrow.php (Accessed Date: April, 2006)
[126]
Automated combinatorial materials library generation. Available at: https://www.schrodinger.com/ms-combi (Accessed 1990)


Rights & PermissionsPrintExport Cite as


Article Details

VOLUME: 26
ISSUE: 42
Year: 2019
Page: [7581 - 7597]
Pages: 17
DOI: 10.2174/0929867325666180508100436
Price: $65

Article Metrics

PDF: 47
HTML: 5