The Impact of Antioxidants from the Diet on Breast Cancer Cells Monitored by Raman Microspectroscopy

Author(s): Paula Sofia Coutinho Medeiros, Ana Lúcia Marques Batista de Carvalho*, Cristina Ruano, Juan Carlos Otero, Maria Paula Matos Marques.

Journal Name: Letters in Drug Design & Discovery

Volume 16 , Issue 2 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Background: The impact of the ubiquitous dietary phenolic compound p-coumaric acid on human breast cancer cells was assessed, through a multidisciplinary approach: Combined biological assays for cytotoxicity evaluation and biochemical profiling by Raman microspectroscopic analysis in cells.

Methods: Para-coumaric acid was shown to exert in vitro chemoprotective and antitumor activities, depending on the concentration and cell line probed: a significant anti-invasive ability was detected for the triple-negative MDA-MB-231 cells, while a high pro-oxidant effect was found for the estrogen- dependent MCF-7 cells. A striking cell selectivity was obtained, with a more noticeable outcome on the triple-negative MDA-MB-231 cell line.

Results: The main impact on the cellular biochemical profile was verified to be on proteins and lipids, thus justifying the compound´s anti-invasive effect and chemoprotective ability.

Conclusion: p-Coumaric acid was thus shown to be a promising chemoprotective/chemotherapeutic agent, particularly against the low prognosis triple-negative human breast adenocarcinoma.

Keywords: Dietary antioxidants, p-coumaric acid, breast cancer cells, chemoprotective/chemotherapeutic, raman microspectroscopy, antitumor activities.

Nourazarian, A.R.; Kangari, P.; Salmaninejad, A. Roles of oxidative stress in the development and progression of breast cancer. Asian Pac. J. Cancer Prev., 2014, 15, 4745-4751.
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144, 646-674.
Magee, P.J.; Rowland, I.R. Phyto-oestrogens, their mechanism of action: current evidence for a role in breast and prostate cancer. Br. J. Nutr., 2004, 91, 513-531.
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2017. CA Cancer J. Clin., 2017, 67, 7-30.
Klaunig, J.E.; Wang, Z.M.; Pu, X.Z.; Zhou, S.Y. Oxidative stress and oxidative damage in chemical carcinogenesis. Toxicol. Appl. Pharmacol., 2011, 254, 86-99.
Vera-Ramirez, L.; Sanchez-Rovira, P.; Ramirez-Tortosa, M.C.; Ramirez-Tortosa, C.L.; Granados-Principal, S.; Lorente, J.A.; Quiles, J.L. Free radicals in breast carcinogenesis, breast cancer progression and cancer stem cells. Biological bases to develop oxidative-based therapies. Crit. Rev. Oncol. Hematol., 2011, 80, 347-368.
Ambrosone, C.B. Oxidants and antioxidants in breast cancer. Antioxid. Redox Signal., 2000, 2, 903-917.
Francisco, D.C.; Peddi, P.; Hair, J.M.; Flood, B.a.; Cecil, A.M.; Kalogerinis, P.T.; Sigounas, G.; Georgakilas, A.G. Induction and processing of complex DNA damage in human breast cancer cells MCF-7 and nonmalignant MCF-10A cells. Free Radic. Biol. Med., 2008, 44, 558-569.
Liu, R.H. Potential synergy of phytochemicals in cancer prevention: mechanism of action. J. Nutr., 2004, 134, 3479S-3485S.
Brown, N.S.; Bicknell, R. Hypoxia and oxidative stress in breast cancer. Oxidative stress: its effects on the growth, metastatic potential and response to therapy of breast cancer. Breast Cancer Res., 2001, 3, 323-327.
Sosa, V.; Moline, T.; Somoza, R.; Paciucci, R.; Kondoh, H.; Leonart, M.E. Oxidative stress and cancer: An overview. Ageing Res. Rev., 2013, 12, 376-390.
Venugopal, R.; Liu, R.H. Phytochemicals in diets for breast cancer prevention: The importance of resveratrol and ursolic acid. Food Sci. Hum. Wellness, 2012, 1, 1-13.
Halliwell, B. Biochemistry of oxidative stress. Biochem. Soc. Trans., 2007, 35, 1147-1150.
D’Archivio, M.; Filesi, C.; Di Benedetto, R.; Gargiulo, R.; Giovannini, C.; Masella, R. Polyphenols, dietary sources and bioavailability. Ann. Ist. Super. Sanita, 2007, 43, 348-361.
Rocha, L.D.; Monteiro, M.C.; Teodoro, A.J. Anticancer Properties of Hydroxycinnamic Acids: A Review. J. Cancer Res. Clin. Oncol., 2012, 1, 109-121.
Tsao, R. Chemistry and biochemistry of dietary polyphenols. Nutrient, 2010, 2, 1231-1246.
Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr., 2004, 79, 727-747.
El-Seedi, H.R.; El-Said, A.M.a.; Khalifa, S.A.M.; Göransson, U.; Bohlin, L.; Borg-Karlson, A.K.; Verpoorte, R. Biosynthesis, natural sources, dietary intake, pharmacokinetic properties, and biological activities of hydroxycinnamic acids. J. Agric. Food Chem., 2012, 60, 10877-10895.
Crozier, A.; Jaganath, I.B.; Clifford, M.N. Dietary phenolics: Chemistry, bioavailability and effects on health. Nat. Prod. Rep., 2009, 26, 1001-1043.
Dias, M.M.; Machado, N.F.; Marques, M.P. Dietary chromones as antioxidant agents-the structural variable. Food Funct., 2011, 2, 595-602.
Machado, N.F.; Calheiros, R.; Fiuza, S.M.; Borges, F.; Gaspar, A.; Garrido, J.; Marques, M.P. Phenolic esters with potential anticancer activity-the structural variable. J. Mol. Model., 2007, 13, 865-877.
Machado, N.F.L.; Calheiros, R.; Gaspar, A.; Garrido, J.; Borges, F.; Marques, M.P.M. Antioxidant phenolic esters with potential anticancer activity: Solution equilibria studied by Raman spectroscopy. J. Raman Spectrosc., 2009, 40, 80-85.
Nohara, K.; Wang, F.; Spiegel, S. Glycosphingolipid composition of MDA-MB-231 and MCF-7 human breast cancer cell lines. Breast Cancer Res. Treat., 1998, 48, 149-157.
Lou, Z.; Wang, H.; Rao, S.; Sun, J.; Ma, C.; Li, J. p-Coumaric acid kills bacteria through dual damage mechanisms. Food Cont, 2012, 25, 550-554.
Heleno, S.A.; Martins, A.; Queiroz, M.J.R.P.; Ferreira, I.C.F.R. Bioactivity of phenolic acids: Metabolites versus parent compounds: A review. Food Chem., 2015, 173, 501-513.
Fiuza, S.M.; Van Besien, E.; Milhazes, N.; Borges, F.; Marques, M.P.M. Conformational analysis of a trihydroxylated derivative of cinnamic acid-a combined Raman spectroscopy and Ab initio study. J. Mol. Struct., 2004, 693, 103-118.
Brownson, D.M.; Azios, N.G.; Fuqua, B.K.; Dharmawardhane, S.F.; Mabry, T.J. Flavonoid effects relevant to cancer. J. Nutrit., 2002, 132, 3482S-3489S.
Serafim, T.L.; Carvalho, F.S.; Marques, M.P.; Calheiros, R.; Silva, T.; Garrido, J.; Milhazes, N.; Borges, F.; Roleira, F.; Silva, E.T.; Holy, J.; Oliveira, P.J. Lipophilic caffeic and ferulic acid derivatives presenting cytotoxicity against human breast cancer cells. Chem. Res. Toxicol., 2011, 24, 763-774.
Esteves, M.; Siquet, C.; Gaspar, A.; Rio, V.; Sousa, J.B.; Reis, S.; Marques, M.P.M.; Borges, F. Antioxidant versus cytotoxic properties of hydroxycinnamic acid derivatives - A new paradigm in phenolic research. Arch. Pharm. (Weinheim), 2008, 341, 164-173.
Calheiros, R.; Machado, N.F.L.; Fiuza, S.M.; Gaspar, A.; Garrido, J.; Milhazes, N.; Borges, F.; Marques, M.P.M. Antioxidant phenolic esters with potential anticancer activity: A Raman spectroscopy study. J. Raman Spectrosc., 2008, 39, 95-107.
Kiliç, I.; Yeşiloǧlu, Y. Spectroscopic studies on the antioxidant activity of p-coumaric acid. Spectrochim. Acta A, 2013, 115, 719-724.
Zang, L.Y.; Cosma, G.; Gardner, H.; Shi, X.; Castranova, V.; Vallyathan, V. Effect of antioxidant protection by p-coumaric acid on low-density lipoprotein cholesterol oxidation. Am. J. Physiol. Cell Physiol., 2000, 279, C954-C960.
Guglielmi, F.; Luceri, C.; Giovannelli, L.; Dolara, P.; Lodovici, M. Effect of 4-coumaric and 3,4-dihydroxybenzoic acid on oxidative DNA damage in rat colonic mucosa. Br. J. Nutr., 2003, 89, 581-587.
Luceri, C.; Guglielmi, F.; Lodovici, M.; Giannini, L.; Messerini, L.; Dolara, P. Plant phenolic 4-coumaric acid protects against intestinal inflammation in rats. Scand. J. Gastroenterol., 2004, 39, 1128-1133.
Luceri, C.; Giannini, L.; Lodovici, M.; Antonucci, E.; Abbate, R.; Masini, E.; Dolara, P. p-Coumaric acid, a common dietary phenol, inhibits platelet activity in vitro and in vivo. Br. J. Nutr., 2007, 97, 458-463.
Aviram, M.; Dornfeld, L.; Kaplan, M.; Coleman, R.; Gaitini, D.; Nitecki, S.; Hofman, A.; Rosenblat, M.; Volkova, N.; Presser, D.; Attias, J.; Hayek, T.; Fuhrman, B. Pomegranate juice flavonoids inhibit low-density lipoprotein oxidation and cardiovascular diseases: Studies in atherosclerotic mice and in humans. Drugs Exp. Clin. Res., 2002, 28, 49-62.
Chang, M-Y.; Shen, Y-L. Linalool exhibits cytotoxic effects by activating antitumor immunity. Molecule, 2014, 19, 6694-6706.
Pei, K.; Ou, J.; Huang, J.; Ou, S. p-Coumaric acid and its conjugates: dietary sources, pharmacokinetic properties and biological activities. J. Sci. Food Agric., 2016, 96, 2952-2962.
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65, 55-63.
Skehan, P.; Storeng, R.; Scudiero, D.; Monks, A.; McMahon, J.; Vistica, D.; Warren, J.T.; Bokesch, H.; Kenney, S.; Boyd, M.R. New colorimetric cytotoxicity assay for anticancer-drug screening. J. Natl. Cancer Inst., 1990, 82, 1107-1112.
Boyden, S. The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes. J. Exp. Med., 1962, 115, 453-466.
Keston, A.S.; Brandt, R. The fluorometric analysis of ultramicro quantities of hydrogen peroxide. Anal. Biochem., 1965, 11, 1-5.
Smith, R.; Wright, K.L.; Ashton, L. Raman spectroscopy: An evolving technique for live cell studies. The Analyst , 2016, 141, 3590-3600.
Flower, K.R.; Khalifa, I.; Bassan, P.; Demoulin, D.; Jackson, E.; Lockyer, N.P.; McGown, A.T.; Miles, P.; Vaccari, L.; Gardner, P. Synchrotron FTIR analysis of drug treated ovarian A2780 cells: An ability to differentiate cell response to different drugs? Analyst , 2011, 136, 498-507.
Guo, C.; Sun, L.; Chen, X.; Zhang, D. Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regen. Res., 2013, 8, 2003-2014.
Posadino, A.M.; Cossu, A.; Giordo, R.; Zinellu, A.; Sotgia, S.; Vardeu, A.; Hoa, P.T.; Deiana, L.; Carru, C.; Pintus, G. Coumaric acid induces mitochondrial damage and oxidative-mediated cell death of human endothelial cells. Cardiovasc. Toxicol., 2013, 13, 301-306.
Gomes, C.A.; Girão Da Cruz, T.G.; Andrade, J.L.; Milhazes, N.; Borges, F.; Marques, M.P.M. Anticancer activity of phenolic acids of natural or synthetic origin: a structure-activity study. J. Medicin. Chem., 2003, 46, 5395-5401.
Yang, S.; Zhou, Q.; Yang, X. Caspase-3 status is a determinant of the differential responses to genistein between MDA-MB-231 and MCF-7 breast cancer cells. Biochim. Biophys. Acta, 2007, 1773, 903-911.
Dampier, K.; Hudson, E.A.; Howells, L.M.; Manson, M.M.; Walker, R.A.; Gescher, A. Differences between human breast cell lines in susceptibility towards growth inhibition by genistein. Br. J. Cancer, 2001, 85, 618-624.
Zheng, W.; Zhang, Y.; Ma, D.; Shi, Y.; Liu, C.; Wang, P. [+/-]Equol inhibits invasion in prostate cancer DU145 cells possibly via down-regulation of matrix metalloproteinase-9, matrix metalloproteinase-2 and urokinase-type plasminogen activator by antioxidant activity. J. Clinic. Biochem. Nutrit., 2012, 51, 61-67.
Jezierska-Drutel, A.; Rosenzweig, S.A.; Neumann, C.A. Role of oxidative stress and the microenvironment in breast cancer development and progression. Adv. Cancer Res., 2013, 119, 1-14.
Kong, C-S.; Jeong, C-H.; Choi, J-S.; Kim, K-J.; Jeong, J-W. Antiangiogenic effects of p-coumaric acid in human endothelial cells. Phytother. Res., 2012, 199, 317-323.
Jin, S.; Zhang, Q.Y.; Kang, X.M.; Wang, J.X.; Zhao, W.H. Daidzein induces MCF-7 breast cancer cell apoptosis via the mitochondrial pathway. Ann. Oncol., 2010, 21, 263-268.
Roy, A.J.; Stanely Mainzen Prince, P. Preventive effects of p-coumaric acid on cardiac hypertrophy and alterations in electrocardiogram, lipids, and lipoproteins in experimentally induced myocardial infarcted rats. Food Chem. Toxicol., 2013, 60, 348-354.
Yoon, S.A.; Kang, S.I.; Shin, H.S.; Kang, S.W.; Kim, J.H.; Ko, H.C.; Kim, S.J. P-Coumaric acid modulates glucose and lipid metabolism via AMP-activated protein kinase in L6 skeletal muscle cells. Biochem. Biophys. Res. Commun., 2013, 432, 553-557.
Ota, A.; Abramovič, H.; Abram, V.; Poklar Ulrih, N. Interactions of p-coumaric, caffeic and ferulic acids and their styrenes with model lipid membranes. Food Chem., 2011, 125, 1256-1261.
Ferguson, L.R.; Lim, I.F.; Pearson, A.E.; Ralph, J.; Harris, P.J. Bacterial antimutagenesis by hydroxycinnamic acids from plant cell walls. Mutat. Res., 2003, 542, 49-58.
Lodovici, M.; Raimondi, L.; Guglielmi, F.; Gemignani, S.; Dolara, P. Protection against ultraviolet B-induced oxidative DNA damage in rabbit corneal-derived cells [SIRC] by 4-coumaric acid. Toxicology, 2003, 184, 141-147.
Kikugawa, K.; Hakamada, T.; Hasunuma, M.; Kurechi, T. Reaction of p-hydroxycinnamic acid derivatives with nitrite and its relevance to nitrosamine formation. J. Agric. Food Chem., 1983, 31, 780-785.
Schie, I.W.; Huser, T. Methods and applications of raman microspectroscopy to sing-cell analysis. Appl. Spectrosc., 2013, 67, 993-996.
Janicke, B.; Hegardt, C.; Krogh, M.; Onning, G.; Akesson, B.; Cirenajwis, H.M.; Oredsson, S.M. The antiproliferative effect of dietary fiber phenolic compounds ferulic acid and p-coumaric acid on the cell cycle of Caco-2 cells. Nutr. Cancer, 2011, 63, 611-622.
Janicke, B.; Önning, G.; Oredsson, S.M. Differential effects of ferulic acid and p-coumaric acid on S phase distribution and length of S phase in the human colonic cell line Caco-2. J. Agric. Food Chem., 2005, 53, 6658-6665.
Roy, N.; Narayanankutty, A.; Nazeem, P.A.; Valsalan, R.; Babu, T.D.; Mathew, D. Plant phenolics ferulic acid and p-coumaric acid inhibit colorectal cancer cell proliferation through egfr down-regulation. Asian Pac. J. Cancer Prev., 2016, 17, 4019-4023.
D’Incalci, M.; Steward, W.P.; Gescher, A.J. Use of cancer chemopreventive phytochemicals as antineoplastic agents. Lancet Oncol., 2005, 6, 899-904.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Page: [127 - 137]
Pages: 11
DOI: 10.2174/1570180815666180502120804
Price: $58

Article Metrics

PDF: 17