Highly Sensitive Chitosan and ZrO2 Nanoparticles-Based Electrochemical Sensor for 8-Hydroxy-2’-deoxyguanosine Determination

Author(s): Shengzhong Rong, Deng Pan, Xuehui Li, Mucong Gao, Hongwei Yu, Jinghui Jiang, Ze Zhang, Dongdong Zeng, Hongzhi Pan*, Dong Chang*.

Journal Name: Current Analytical Chemistry

Volume 15 , Issue 6 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: 8-Hydroxy-2’-deoxyguanosine (8-OHdG) has been regarded as a typical stable biomarker of DNA oxidative damage, and its level is one of the criteria for early diagnosis of various diseases. Considering the significance of 8-OhdG, various analytical techniques have been used for assaying 8-OHdG but all of them suffer from basic limitations like highly expensive instrumentation, large amount of sample requirement, complicated sample pre-treatment, tedious and time-consuming procedures etc. However, electroanalytical sensors provide a faster, easy and sensitive means of analyzing.

Methods: The chitosan (CS) film provided the high electrode activity and stability which is required for detecting 8-OHdG though direct electrochemical oxidation. Zirconia was employed because it has some unique properties, such as high redox activity and selectivity etc. High-performance composite was easily detected by differential pulse voltammetry at a working voltage of 0. 51 V (vs. Ag/AgCl). A rapid and sensitive electrochemical sensor based on CS and metal oxide nanocrystalline for the determination of 8-OHdG was established.

Results: Under optimized experimental conditions, the peak currents of differential pulse voltammetry increased as the concentrations of 8-OHdG increased from 10 to 200 ng·mL-1. The detection limit was 3.67 ng·mL-1 which was calculated by the S/N ratio of 3. The recoveries of the real spiked samples are in the range between 93.2 to 105.3%.

Conclusion: The electrochemical sensor for direct 8-OHdG determination using a new CS/zirconia composite for GCE modification was developed and showed excellent reproducibility, stability and sensitivity for the specific determination of 8-OHdG in real urine specimen.

Keywords: Electrochemical sensor, Oxidative DNA damage, 8-Hydroxy-2’-desoxyguanosine, metal oxide nanocrystalline, CS, determination, electrochemical oxidation.

[1]
Huimei, C.; Caixia, S.; Wenwen, G.; Ran, M.; Hong, D.; Qiufeng, Q.; Xin, G.; Lirong, L.; Kui, Z.; Dalong, Z.; Yaping, W. AluYb8 insertion in the MUTYH gene is related to increased 8-OHdG in genomic DNA and could be a risk factor for type 2 diabetes in a Chinese population. Mol. Cell. Endocrinol., 2011, 332(1-2), 301-305.
[2]
Huang, Y.W.; Jian, L.; Zhang, M.B.; Zhou, Q.; Yan, X.F.; Hua, X.D.; Zhou, Y.; He, J.L. An investigation of oxidative DNA damage in pharmacy technicians exposed to antineoplastic drugs in two chinese hospitals using the Urinary 8-OHdG assay. Biomed. Environ. Sci., 2012, 25(1), 109-116.
[3]
Tsubota, A.; Yoshikawa, T.; Nariai, K.; Mitsunaga, M.; Yumoto, Y.; Fukushima, K.; Hoshina, S.; Fujise, K. Bovine lactoferrin potently inhibits liver mitochondrial 8-OHdG levels and retrieves hepatic OGG1 activities in Long-evans Cinnamon rats. J. Hepatol., 2008, 48(3), 486-493.
[4]
Yano, T.; Shoji, F.; Baba, H.; Koga, T.; Shiraishi, T.; Orita, H.; Kohno, H. Significance of the urinary 8-OHdG level as an oxidative stress marker in lung cancer patients. Lung Cancer, 2009, 63(1), 111-114.
[5]
Yasuda, M.; Ide, H.; Furuya, K.; Yoshii, T.; Nishio, K.; Saito, K.; Isotani, S.; Kamiyama, Y.; Muto, S.; Horie, S. Salivary 8-OHdG: A useful biomarker for predicting severe ED and hypogonadism. J. Sex. Med., 2008, 5(6), 1482-1491.
[6]
Kryston, T.B.; Georgiev, A.B.; Pissis, P.; Georgakilas, A.G. Role of oxidative stress and DNA damage in human carcinogenesis. Mutat. Res-Fund. Mol. M., 2011, 711(1-2), 193-201.
[7]
Bishnoi, S.; Goyal, R.N.; Shim, Y.B. A novel nanogold-single wall carbon nanotube modified sensor for the electrochemical determination of 8-hydroxyguanine, a diabetes risk biomarker. Bioelectrochemistry, 2014, 99, 24-29.
[8]
Priolli, D.G.; Canelloi, T.P.; Lopes, C.O.; Valdivia, J.C.M.; Martinez, N.P.; Acari, D.P.; Cardinalli, I.A.; Ribeiro, M.L. Oxidative DNA damage and beta-catenin expression in colorectal cancer evolution. Int. J. Colorectal Dis., 2013, 28(5), 713-722.
[9]
Gupta, R.C.; Arif, J.M. An improved 32P-postlabeling assay for the sensitive detection of 8-oxodeoxyguanosine in tissue DNA. Chem. Res. Toxicol., 2001, 14(8), 951-957.
[10]
Ravanat, J.L.; Guicherd, P.; Tuce, Z.; Cadet, J. Simultaneous determination of five oxidative DNA lesions in human urine. Chem. Res. Toxicol., 1999, 12(9), 802-808.
[11]
Koide, S.; Kinoshita, Y.; Ito, N.; Kimura, J.; Yokoyama, K.; Karube, I. Determination of human serum 8-hydroxy-2 '-deoxyguanosine (8-OHdG) by HPLC-ECD combined with solid phase extraction (SPE). J. Chromatogr. B, 2010, 878(23), 2163-2167.
[12]
Rossner, P.; Orhan, H.; Koppen, G.; Sakai, K.; Santella, R.M.; Ambroz, A.; Rossnerova, A.; Sram, R.J.; Ciganek, M.; Neca, J.; Arzuk, E.; Mutlu, N.; Cooke, M.S. Urinary 8-oxo-7,8-dihydro-2 '-deoxyguanosine analysis by an improved ELISA: An inter-laboratory comparison study. Free Radic. Biol. Med., 2016, 95, 169-179.
[13]
Guan, Y.Q.; Zhou, G.B.; Ye, J.N. Fast quantification of salivary 8-Hydroxy-2′-deoxyguanosine as DNA damage biomarker using CE with electrochemical detection. Chromatographia, 2014, 77(7-8), 603-607.
[14]
Zhang, T.T.; Zhao, H.M.; Fan, X.F.; Chen, S.; Quan, X. Electrochemiluminescence immunosensor for highly sensitive detection of 8-hydroxy-2 '-deoxyguanosine based on carbon quantum dot coated Au/SiO2 core-shell nanoparticles. Talanta, 2015, 131, 379-385.
[15]
Pan, D.; Zhou, Q.; Rong, S.Z.; Zhang, G.T.; Zhang, Y.N.; Liu, F.H.; Li, M.J.; Chang, D.; Pan, H.Z. Electrochemical immunoassay for the biomarker 8-hydroxy-2′-deoxyguanosine using a glassy carbon electrode modified with CS and poly(indole-5-carboxylic acid). Microchim. Acta, 2016, 183(1), 361-368.
[16]
Kato, D.; Komoriya, M.; Nakamoto, K.; Kurita, R.; Hirono, S.; Niwa, O. Electrochemical determination of oxidative damaged DNA with high sensitivity and stability using a nanocarbon film. Anal. Sci., 2011, 27(7), 703-707.
[17]
Cao, X.M.; Xu, Y.H.; Luo, L.Q.; Ding, Y.P.; Zhang, Y. Simultaneous determination of uric acid and ascorbic acid at the film of CS incorporating cetylpyridine bromide modified glassy carbon electrode. J. Solid State Electr., 2010, 14(5), 829-834.
[18]
Li, Y.H.; Zhai, X.R.; Liu, X.S.; Ji, X.L.; Wang, L. Voltammetric determination of uric acid in the presence of ascorbic acid and dopamine using CS/ionic liquid composite electrode. Ionics, 2014, 20(9), 1247-1254.
[19]
Yin, B.; Yuan, R.; Chai, Y.Q.; Chen, S.H.; Cao, S.R.; Xu, Y.; Fu, P. Amperometric glucose biosensors based on layer-by-layer assembly of CS and glucose oxidase on the Prussian blue-modified gold electrode. Biotechnol. Lett., 2008, 30(2), 317-322.
[20]
Yang, S.L.; Lu, Z.Z.; Luo, S.L.; Liu, C.B.; Tang, Y.H. Direct electrodeposition of a biocomposite consisting of reduced graphene oxide, CS and glucose oxidase on a glassy carbon electrode for direct sensing of glucose. Microchim. Acta, 2013, 180(1-2), 127-135.
[21]
Roushani, M.; Sarabaegi, M. Novel electrochemical sensor based on carbon nanodots/CS nanocomposite for the detection of tryptophan. J. Iran. Chem. Soc., 2015, 12(10), 1875-1882.
[22]
Wang, D.L.; Lin, Z.F.; Wang, T.; Yao, Z.F.; Qin, M.N.; Zheng, S.R.; Lu, W. Where does the toxicity of metal oxide nanoparticles come from: The nanoparticles, the ions, or a combination of both? J. Hazard. Mater., 2016, 308, 328-334.
[23]
Zhang, Z.; Liu, R.M.; Zhao, M.; Qian, Y.T. Synthesis of metal and metal oxide nanocrystallines by pyrolysis of metal complex. Mater. Chem. Phys., 2001, 71(2), 161-164.
[24]
Zhang, D.Z.; Chang, H.Y.; Li, P.; Liu, R.H.; Xue, Q.Z. Fabrication and characterization of an ultrasensitive humidity sensor based on metal oxide/graphene hybrid nanocomposite. Sensor. Actuat. B. Chem., 2016, 225, 233-240.
[25]
Zhou, X.F.; Jiang, T.; Zhang, J.; Wang, X.H.; Zhu, Z.Q. Humidity sensor based on quartz tuning fork coated with sol-gel-derived nanocrystalline zinc oxide thin film. Sens. Actuat B Chem., 2007, 123(1), 299-305.
[26]
Siddiquee, S.; Yusof, N.A.; Salleh, A.B.; Tan, S.G.; Abu Bakar, F. Development of electrochemical DNA biosensor for Trichoderma harzianum based on ionic liquid/ZnO nanoparticles/CS/gold electrode. J. Solid State Electr., 2012, 16(1), 273-282.
[27]
Roushani, M.; Shamsipur, M.; Pourmortazavi, S.M. Amprometric detection of Glycine, L-Serine, and L-Alanine using glassy carbon electrode modified by NiO nanoparticles. J. Appl. Electrochem., 2012, 42(12), 1005-1011.
[28]
Maruszewska, A.; Podsiadly, R. Synthesis and ultraviolet-visible spectroscopic and electrochemical analyses of dyes derived from 2-aminobenzothiazole, and study of their adsorption on titanium dioxide. Color. Technol., 2014, 130(4), 243-249.
[29]
Sun, M.J.; Cheng, M.; Wang, X.Q.; Liu, C.G. Fast-determination total phosphorous based on tio2/c electrode photo-electrocatalytic oxidation method. Adv. Intel. Soft. Comp., 2011, 112, 745-753.
[30]
Wen, Y.P.; Wen, W.; Zhang, X.H.; Wang, S.F. Highly sensitive amperometric biosensor based on electrochemically-reduced graphene oxide-CS/hemoglobin nanocomposite for nitromethane determination. Biosens. Bioelectron., 2016, 79, 894-900.
[31]
Yang, Y.H.; Wang, Z.J.; Yang, M.H.; Li, J.S.; Zheng, F.; Shen, G.L.; Yu, R.Q. Electrical detection of deoxyribonucleic acid hybridization based on carbon-nanotubes/nano zirconium dioxide/CS-modified electrodes. Anal. Chim. Acta, 2007, 584(2), 268-274.
[32]
Rong, Q.F.; Feng, F.; Ma, Z.F. Metal ions doped CS-poly(acrylic acid) nanospheres: Synthesis and their application in simultaneously electrochemical detection of four markers of pancreatic cancer. Biosens. Bioelectron., 2016, 75, 148-154.
[33]
Yang, X.; Zhang, Q.; Sun, Y.; Liu, S. Direct electron transfer reactivity of glucose oxidase on electrodes modified with zirconium dioxide nanoparticles. IEEE Sens. J., 2007, 7(11-12), 1735-1741.
[34]
Wang, Z.H.; Xia, J.F.; Xia, Y.Z.; Lu, C.Y.; Shi, G.Y.; Zhang, F.F.; Zhu, F.Q.; Li, Y.H.; Xia, L.H.; Tang, J. Fabrication and characterization of a zirconia/multi-walled carbon nanotube mesoporous composite. Mat. Sci. Eng. C. Mater., 2013, 33(7), 3931-3934.
[35]
Baytak, A.K.; Teker, T.; Duzmen, S.; Aslanoglu, M. A sensitive determination of terbutaline in pharmaceuticals and urine samples using a composite electrode based on zirconium oxide nanoparticles. Mat. Sci. Eng. C. Mater., 2016, 67, 125-131.
[36]
Ma, X.M.; Zhou, W.Q.; Mo, D.Z.; Wang, Z.P.; Xu, J.K. Capacitance comparison of poly(indole-5-carboxylic acid) in different electrolytes and its symmetrical supercapacitor in HClO4 aqueous electrolyte. Synthetic. Met., 2015, 203, 98-106.
[37]
Liu, H.; Wang, Y.S.; Wang, J.C.; Xue, J.H.; Zhou, B.; Zhao, H.; Liu, S.D.; Tang, X.; Chen, S.H.; Li, M.H.; Cao, J.X. A colorimetric aptasensor for the highly sensitive detection of 8-hydroxy-2 '-deoxyguanosine based on G-quadruplex-hemin DNAzyme. Anal. Biochem., 2014, 458, 4-10.
[38]
Gutierrez, A.; Gutierrez, S.; Garcia, G.; Galicia, L.; Rivas, G.A. Determinatiom of 8-Hydroxy 2′-Deoxyguanosine using electrodes modified with a dispersion of carbon nanotubes in polyethylenimine. Electroanalysis, 2011, 23(5), 1221-1228.
[39]
Zhang, Q.; Wang, Y.Q.; Meng, X.Y.; Dhar, R.; Huang, H.D. Triple-Stranded DNA containing 8-Oxo-7,8-dihydro-2 '-deoxyguanosine: Implication in the design of selective aptamer sensors for 8-Oxo-7,8-dihydroguanine. Anal. Chem., 2013, 85(1), 201-207.
[40]
Zhang, S.W.; Zou, C.J.; Luo, N.; Weng, Q.F.; Cai, L.S.; Wu, C.Y.; Xing, J. Determination of urinary 8-hydroxy-2 '-deoxyguanosine by capillary electrophoresis with molecularly imprinted monolith in-tube solid phase microextraction. Chin. Chem. Lett., 2010, 21(1), 85-88.


Rights & PermissionsPrintExport Cite as


Article Details

VOLUME: 15
ISSUE: 6
Year: 2019
Page: [648 - 655]
Pages: 8
DOI: 10.2174/1573411014666180501153300
Price: $65

Article Metrics

PDF: 21
HTML: 2
EPUB: 1
PRC: 1