Electrochemical Sensors Based on Molecularly Imprinted Polymers for Pharmaceuticals Analysis

Author(s): Abd-Egawad Radi*, Tarek Wahdan, Amir El-Basiony.

Journal Name: Current Analytical Chemistry

Volume 15 , Issue 3 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: The electrochemical sensing of drugs in pharmaceutical formulations and biological matrices using molecular-imprinting polymer (MIP) as a recognition element combined with different electrochemical signal transduction has been widely developed. The MIP electrochemical sensors based on nanomaterials such as graphene, carbon nanotubes, nanoparticles, as well as other electrode modifiers incorporated into the MIPs to enhance the performance of the sensor, have been discussed. The recent advances in enantioselective sensing using MIP-based electrochemical sensors have been described.

Methods: The molecular imprinting has more than six decades of history. MIPs were introduced in electrochemistry only in the 1990s by Mosbach and coworkers. This review covers recent literature published a few years ago. The future outlook for sensing, miniaturization and development of portable devices for multi-analyte detection of the target analytes was also given.

Results: The growing pharmaceutical interest in molecularly imprinted polymers is probably a direct consequence of its major advantages over other analytical techniques, namely, increased selectivity and sensitivity of the method. Due to the complexity of biological samples and the trace levels of drugs in biological samples, molecularly imprinted polymers have been used to improve the response signal, increase the sensitivity, and decrease the detection limit of the sensors. The emergence of nanomaterials opened a new horizon in designing integrated electrochemical systems. The success of obtaining a high-performance electrochemical sensor based on MIPs lies in the kind of material that builds up the detection platform.

Conclusion: The novel approaches to produce MIP materials, combined with electrochemical transduction to develop sensors for screening different pharmaceutically active compounds have been overviewed. MIPs may appear indispensable for sensing in harsh conditions, or sensing that requires longterm stability unachievable by biological receptors. The electrochemical sensors provide several benefits including low costs, shortening analysis time, simple design; portability; miniaturization, easy-touse, can be tailored using a simple procedure for particular applications. The performance of sensor can be improved by incorporating some conductive nanomaterials as AuNPs, CNTs, graphene, nanowires and magnetic nanoparticles in the polymeric matrix of MIP-based sensors. The application of new electrochemical sensing scaffolds based on novel multifunctional-MIPs is expected to be widely developed and used in the future.

Keywords: Pharmaceutical analysis, molecular imprinting, nanomaterials, electrochemistry, sensors, analytical techniques.

[1]
Pardeshi, S.; Singh, S.K. Precipitation polymerization: a versatile tool for preparing molecularly imprinted polymer beads for chromatography applications. RSC Adv, 2016, 6(28), 23525-23536.
[2]
Tang, Y.; Fang, G.; Wang, S.; Sun, J.; Qian, K. Rapid determination of metolcarb residues in foods using a biomimetic enzyme-linked immunosorbent assay employing a novel molecularly imprinted polymer film as artificial antibody. J. AOAC Int., 2013, 96(2), 453-458.
[3]
Lasáková, M.; Jandera, P. Molecularly imprinted polymers and their application in solid phase extraction. J. Sep. Sci., 2009, 32(5‐6), 799-812.
[4]
Blanco-López, M.; Lobo-Castanon, M.; Miranda-Ordieres, A.; Tunon-Blanco, P. Electrochemical sensors based on molecularly imprinted polymers. TrAC Trends in Analytical Chemistry, 2004, 23(1), 36-48.
[5]
Piletsky, S.A.; Turner, A.P. Electrochemical sensors based on molecularly imprinted polymers. Electroanalysis, 2002, 14(5), 317-323.
[6]
Sharma, P.S.; D’Souza, F.; Kutner, W. Molecular imprinting for selective chemical sensing of hazardous compounds and drugs of abuse. TrAC Tr. Anal. Chem., 2012, 34, 59-77.
[7]
Tiwari, A.; Uzun, L. Advanced Molecularly Imprinting Materials; John Wiley & Sons, 2016.
[8]
Wulff, G.; Sarhan, A.; Zabrocki, K. Enzyme-analogue built polymers and their use for the resolution of racemates. Tetrahed Lett., 1973, 14(44), 4329-4332.
[9]
Wulff, G.; Vesper, W.; Grobe‐Einsler, R.; Sarhan, A. Enzyme‐analogue built polymers, 4. On the synthesis of polymers containing chiral cavities and their use for the resolution of racemates. Macromol. Chem. Phys., 1977, 178(10), 2799-2816.
[10]
Mayes, A.G.; Mosbach, K. Molecularly imprinted polymers: useful materials for analytical chemistry? TrAC Tr. Anal. Chem., 1997, 16(6), 321-332.
[11]
Whitcombe, M.J.; Rodriguez, M.E.; Villar, P.; Vulfson, E.N. A new method for the introduction of recognition site functionality into polymers prepared by molecular imprinting: synthesis and characterization of polymeric receptors for cholesterol. J. Am. Chem. Soc., 1995, 117(27), 7105-7111.
[12]
Dechtrirat, D.; Yarman, A.; Peng, L.; Lettau, K.; Wollenberger, U.; Mosbach, K.; Scheller, F.W. Catalytically Active MIP Architectures. Mol. Impr. Catal. Princ. Synth. Appl., 2015, 1, 19-34.
[13]
Boysen, R.I.; Schwarz, L.J.; Nicolau, D.V.; Hearn, M.T. Molecularly imprinted polymer membranes and thin films for the separation and sensing of biomacromolecules. J. Sep. Sci., 2017, 40(1), 314-335.
[14]
Lange, U.; Roznyatovskaya, N.V.; Mirsky, V.M. Conducting polymers in chemical sensors and arrays. Anal. Chim. Acta, 2008, 614(1), 1-26.
[15]
Dai, H.; Xiao, D.; He, H.; Li, H.; Yuan, D.; Zhang, C. Synthesis and analytical applications of molecularly imprinted polymers on the surface of carbon nanotubes: a review. Microchim. Acta, 2015, 182(5-6), 893-908.
[16]
Ansari, S. Combination of molecularly imprinted polymers and carbon nanomaterials as a versatile biosensing tool in sample analysis: Recent applications and challenges. TrAC Tr. Anal. Chem., 2017, 93, 134-151.
[17]
Roy, E.; Patra, S.; Tiwari, A.; Madhuri, R.; Sharma, P.K. Introduction of selectivity and specificity to graphene using an inimitable combination of molecular imprinting and nanotechnology. Biosens. Bioelectron., 2017, 89, 234-248.
[18]
Xu, J.; Wang, Y.; Hu, S. Nanocomposites of graphene and graphene oxides: synthesis, molecular functionalization and application in electrochemical sensors and biosensors. A review. Microchim. Acta, 2017, 1, 1-44.
[19]
Ahmad, R.; Griffete, N.b.w; Lamouri, A.; Felidj, N.; Chehimi, M.M.; Mangeney, C. Nanocomposites of gold nanoparticles@ molecularly imprinted polymers: Chemistry, processing, and applications in sensors. Chem. Mat., 2015, 27(16), 5464-5478.
[20]
Wackerlig, J.; Schirhagl, R. Applications of molecularly imprinted polymer nanoparticles and their advances toward industrial use: a review. Anal. Chem., 2015, 88(1), 250-261.
[21]
Yáñez-Sedeño, P.; Campuzano, S.; Pingarrón, J.M. Electrochemical sensors based on magnetic molecularly imprinted polymers: A review. Anal. Chim. Acta, 2017, 960, 1-17.
[22]
Malitesta, C.; Mazzotta, E.; Picca, R.A.; Poma, A.; Chianella, I.; Piletsky, S.A. MIP sensors–the electrochemical approach. Anal. Bioanal. Chem., 2012, 402(5), 1827-1846.
[23]
Ramanavičius, A.; Ramanavičienė, A.; Malinauskas, A. Electrochemical sensors based on conducting polymer—polypyrrole. Electrochim. Acta, 2006, 51(27), 6025-6037.
[24]
Sharma, P.S.; Pietrzyk-Le, A.; D’souza, F.; Kutner, W. Electrochemically synthesized polymers in molecular imprinting for chemical sensing. Anal. Bioanal. Chem., 2012, 402(10), 3177-3204.
[25]
Lian, W.; Liu, S.; Wang, L.; Liu, H. A novel strategy to improve the sensitivity of antibiotics determination based on bioelectrocatalysis at molecularly imprinted polymer film electrodes. Biosens. Bioelectron., 2015, 73, 214-220.
[26]
Patel, K.N.; Limgavkar, R.S.; Raval, H.G.; Patel, K.G.; Gandhi, T.R. High-performance liquid chromatographic determination of cefalexin monohydrate and kanamycin monosulfate with precolumn derivatization. J. Liq. Chromatogr. Relat. Technol., 2015, 38(6), 716-721.
[27]
Gürler, B.; Özkorucuklu, S.P.; Kir, E. Voltammetric behavior and determination of doxycycline in pharmaceuticals at molecularly imprinted and non-imprinted overoxidized polypyrrole electrodes. J. Pharmaceut. Biomed. Anal., 2013, 84, 263-268.
[28]
Palamy, S.; Ruengsitagoon, W. A novel flow injection spectrophotometric method using plant extracts as green reagent for the determination of doxycycline. Spectrochim. Acta Part A Mol. Biomol. Spectr., 2017, 171, 200-206.
[29]
Gholivand, M.B.; Karimian, N. Development of piroxicam sensor based on molecular imprinted polymer-modified carbon paste electrode. Mat. Sci. Eng. C, 2011, 31(8), 1844-1851.
[30]
Dragomiroiu, G.T.A.B.; Cimpoieşu, A.; Ginghină, O.; Baloescu, C.; Bârcă, M.; Popa, D.E.; Ciobanu, A.; Anuţa, V. The development and validation of a rapid HPLC method for determination of piroxicam. Farmacia, 2015, 63(1), 123-131.
[31]
Alizadeh, T.; Akhoundian, M. Promethazine determination in plasma samples by using carbon paste electrode modified with molecularly imprinted polymer (MIP): Coupling of extraction, preconcentration and electrochemical determination. Electrochim. Acta, 2010, 55(20), 5867-5873.
[32]
Liu, P.; Liang, S.; Wang, B.J.; Guo, R.C. Development and validation of a sensitive LC-MS method for the determination of Promethazine hydrochloride in human plasma and urine. Eur. J. Drug Metabol. Pharmacokinet., 2009, 34(3-4), 177-184.
[33]
Gholivand, M.B.; Torkashvand, M. A novel high selective and sensitive metronidazole voltammetric sensor based on a molecularly imprinted polymer-carbon paste electrode. Talanta, 2011, 84(3), 905-912.
[34]
Bind, B.; Lokhande, R.; Munigela, N.; Kolhal, S.; Gupta, A. RP-HPLC method for the simultaneous determination of metronidazole, tinidazole, ornidazole, secnidazole and ofloxacin in bulk and pharmaceutical dosage form. Int. J. Pharmaceut. Sci. Rev. Res., 2015, 34(2), 61-67.
[35]
Liu, J.; Tang, H.; Zhang, B.; Deng, X.; Zhao, F.; Zuo, P.; Ye, B-C.; Li, Y. Electrochemical sensor based on molecularly imprinted polymer for sensitive and selective determination of metronidazole via two different approaches. Anal. Bioanal. Chem., 2016, 408(16), 4287-4295.
[36]
Naveed, S.; Waheed, N.; Nazeer, S. Degradation study of metronidazole in active and different formulation by UV spectroscopy. J. Bioequival Bioavail., 2014, 6(4), 124-127.
[37]
Xiao, N.; Deng, J.; Cheng, J.; Ju, S.; Zhao, H.; Xie, J.; Qian, D.; He, J. Carbon paste electrode modified with duplex molecularly imprinted polymer hybrid film for metronidazole detection. Biosens. Bioelectron., 2016, 81, 54-60.
[38]
Alizadeh, T.; Ganjali, M.R.; Zare, M.; Norouzi, P. Selective determination of chloramphenicol at trace level in milk samples by the electrode modified with molecularly imprinted polymer. Food Chem., 2012, 130(4), 1108-1114.
[39]
Kikuchi, H.; Sakai, T.; Teshima, R.; Nemoto, S.; Akiyama, H. Total determination of chloramphenicol residues in foods by liquid chromatography-tandem mass spectrometry. Food Chem., 2017, 230, 589-593.
[40]
Gholivand, M.B.; Malekzadeh, G.; Torkashvand, M. Determination of lamotrigine by using molecularly imprinted polymer–carbon paste electrode. J. Electroanal. Chem., 2013, 692, 9-16.
[41]
Ventura, S.; Rodrigues, M.; Pousinho, S.; Falcão, A.; Alves, G. Determination of lamotrigine in human plasma and saliva using microextraction by packed sorbent and high performance liquid chromatography–diode array detection: An innovative bioanalytical tool for therapeutic drug monitoring. Microchem. J., 2017, 130, 221-228.
[42]
Yan, C.; Liu, X.; Zhang, R.; Chen, Y.; Wang, G. A selective strategy for determination of ascorbic acid based on molecular imprinted copolymer of o-phenylenediamine and pyrrole. J. Electroanal. Chem., 2016, 780, 276-281.
[43]
Sudjarwo, Optimization and validation of visible-spectrophotometry method for determination ascorbic acid in Jeruk Bali (Citrus maxima) fruit from Indonesia. Int. J. Pharmaceut. Qual. Assur., 2017, 8(2), 44-48.
[44]
Özcan, L.; Sahin, M.; Sahin, Y. Electrochemical preparation of a molecularly imprinted polypyrrole-modified pencil graphite electrode for determination of ascorbic acid. Sensors, 2008, 8(9), 5792-5805.
[45]
Prasad, B.B.; Kumar, D.; Madhuri, R.; Tiwari, M.P. Ascorbic acid imprinted polymer-modified graphite electrode: A diagnostic sensor for hypovitaminosis C at ultra trace ascorbic acid level. Sens. Actuat B Chem., 2011, 160(1), 418-427.
[46]
Ozkorucuklu, S.P.; Sahin, Y.; Alsancak, G. Voltammetric behaviour of sulfamethoxazole on electropolymerized-molecularly imprinted overoxidized polypyrrole. Sensors , 2008, 8(12), 8463-8478.
[47]
Islas, G.; Rodríguez, J.A.; Páez-Hernández, M.E.; Corona-Avendaño, S.; Rojas-Hernández, A.; Barrado, E. Dispersive solid-phase extraction based on butylamide silica for the determination of sulfamethoxazole in milk samples by capillary electrophoresis. J. Liq. Chromatogr. Relat. Technol., 2016, 39(14), 658-665.
[48]
Liu, Y.; Song, Q-J.; Wang, L. Development and characterization of an amperometric sensor for triclosan detection based on electropolymerized molecularly imprinted polymer. Microchem. J., 2009, 91(2), 222-226.
[49]
Escarrone, A.L.V.; Caldas, S.S.; Soares, B.M.; Martins, S.E.; Primel, E.G.; Maia Nery, L.E. A vortex-assisted MSPD method for triclosan extraction from fish tissues with determination by LC-MS/MS. Anal. Methods, 2014, 6(20), 8306-8313.
[50]
Gómez-Caballero, A.; Goicolea, M.A.; Barrio, R.J. Paracetamol voltammetric microsensors based on electrocopolymerized–molecularly imprinted film modified carbon fiber microelectrodes. Analyst , 2005, 130(7), 1012-1018.
[51]
Langlois, M.H.; Vekris, A.; Bousses, C.; Mordelet, E.; Buhannic, N.; Séguard, C.; Couraud, P.O.; Weksler, B.B.; Petry, K.G.; Gaudin, K. Development of a solvent-free analytical method for paracetamol quantitative determination in Blood Brain Barrier in vitro model. J. Chromatogr. B Anal. Technol. Biomed. Life Sci., 2015, 988, 20-24.
[52]
Cervini, P.; Cavalheiro, E.T.G. Evaluation of the analytical potentialities of a composite electrode modified with molecularly imprinted polymers. Anal. Lett., 2009, 42(13), 1940-1957.
[53]
Özcan, L.; Şahin, Y. Determination of paracetamol based on electropolymerized-molecularly imprinted polypyrrole modified pencil graphite electrode. Sens. Actuat B Chem., 2007, 127(2), 362-369.
[54]
Weng, C-H.; Yeh, W-M.; Ho, K-C.; Lee, G-B. A microfluidic system utilizing molecularly imprinted polymer films for amperometric detection of morphine. Sens. Actuat B Chem., 2007, 121(2), 576-582.
[55]
Yang, Y.L.; Ye, X.X.; Li, Y.S.; Tan, Z.F.; Jiang, J.Z. Determination of Morphine in Pharmaceutical Products by On-Line Solid-Phase Extraction and High-Performance Liquid Chromatography. Anal. Lett., 2016, 49(9), 1303-1309.
[56]
Jara-Ulloa, P.; Salgado-Figueroa, P.; Moscoso, R.; Squella, J.A. Polypyrrole Molecularly Imprinted Modified Glassy Carbon Electrode for the Recognition of Gallic Acid. J. Electrochem. Soc., 2013, 160(4), H243-H246.
[57]
Liu, H.X.; Liu, Q.; Zhang, X.C.; Wang, L.T.; Huan, Y.F.; Ye, K.Q.; Yue, H.J. Capillary zone electrophoresis for the determination of gallic acid in jianmin throat tablet. In Advanced Materials Research., 2014, Vol 850-851, 1156-1159.
[58]
Karimian, N.; Zavar, M.H.A.; Chamsaz, M.; Turner, A.P.; Tiwari, A. On/off-switchable electrochemical folic acid sensor based on molecularly imprinted polymer electrode. Electrochem. Commun., 2013, 36, 92-95.
[59]
Al-Araji, R.R.; Mashkour, M.S.; Jaffar Al-Mulla, E.A. Spectrophotometric determination of Vitamin Folic Acid B9 in some drugs using 1, 2-Naphthoquine-4- Sulphonate (NQS). Nano Biomed. Eng., 2017, 9(3), 208-213.
[60]
Hrichi, H.; Louhaichi, M.R.; Monser, L.; Adhoum, N. Gliclazide voltammetric sensor based on electropolymerized molecularly imprinted polypyrrole film onto glassy carbon electrode. Sens. Actuat B Chem., 2014, 204, 42-49.
[61]
Jamadar, S.A.; Mulye, S.P.; Karekar, P.S.; Pore, Y.V.; Burade, K.B. Development and validation of UV spectrophotometric method for the determination of Gliclazide in tablet dosage form. Der Pharma Chem., 2011, 3(4), 338-343.
[62]
Gupta, V.K.; Yola, M.L.; Özaltın, N.; Atar, N.; Üstündağ, Z.; Uzun, L. Molecular imprinted polypyrrole modified glassy carbon electrode for the determination of tobramycin. Electrochim. Acta, 2013, 112, 37-43.
[63]
Tekkeli, S.E.K.; Önal, A.; Saǧirli, A.O. Spectrofluorimetric determination of tobramycin in human serum and pharmaceutical preparations by derivatization with fluorescamine. Luminescence, 2014, 29(1), 87-91.
[64]
Arvand, M.; Fallahi, P. Voltammetric determination of rivastigmine in pharmaceutical and biological samples using molecularly imprinted polymer modified carbon paste electrode. Sens. Actuat B Chem., 2013, 188, 797-805.
[65]
Mennickent, S.; Miranda, A.; Gómez, C.; Vega, M.; Ríos, G.; De Diego, M. Quantitative determination of Rivastigmine from a new biodegradable Microparticulate system by high-performance thin-layer chromatography. J. Plan Chromatogr. Mod. TLC, 2015, 28(3), 251-255.
[66]
Aswini, K.; Mohan, A.V.; Biju, V. Molecularly imprinted polymer based electrochemical detection of L-cysteine at carbon paste electrode. Mat. Sci. Eng. C, 2014, 37, 321-326.
[67]
Řezanka, P.; Koktan, J.; Řezanková, H.; Matějka, P.; Král, V. Spectrometric determination of l-cysteine and its enantiomeric purity using silver nanoparticles. Colloids Surf. A Physicochem. Eng. Aspect., 2013, 436, 961-966.
[68]
Aswini, K.; Mohan, A.V.; Biju, V. Molecularly imprinted poly (4-amino-5-hydroxy-2, 7-naphthalenedisulfonic acid) modified glassy carbon electrode as an electrochemical theophylline sensor. Mater. Sci. Eng. C, 2016, 65, 116-125.
[69]
Singh, D.K.; Sahu, A. Spectrophotometric determination of caffeine and theophylline in pure alkaloids and its application in pharmaceutical formulations. Anal. Biochem., 2006, 349(2), 176-180.
[70]
Kindschy, L.M.; Alocilja, E.C. Development of a molecularly imprinted biomimetic electrode. Sensors, 2007, 7(8), 1630-1642.
[71]
Zhou, T.; Tao, Y.; Jin, H.; Song, B.; Jing, T.; Luo, D.; Zhou, Y.; Zhou, Y.; Lee, Y-I.; Mei, S. Fabrication of a Selective and Sensitive Sensor Based on Molecularly Imprinted Polymer/Acetylene Black for the Determination of Azithromycin in Pharmaceuticals and Biological Samples. PloS One, 2016, 11(1), e0147002.
[72]
Rao, K.P. Visible spectrophotometric determination of azithromycin in pure and dosage forms. Int. J. Chem. Sci., 2016, 14(3), 1569-1576.
[73]
Chasta, H.; Goyal, R.N. Molecularly imprinted sensor based on o-aminophenol for the selective determination of norepinephrine in pharmaceutical and biological samples. Talanta, 2014, 125, 167-173.
[74]
Menon, S.; Jose, A.R.; Jesny, S.; Kumar, K.G. A colorimetric and fluorometric sensor for the determination of norepinephrine. Anal. Method, 2016, 8(29), 5801-5805.
[75]
Blanco-López, M.C.; Lobo-Castañón, M-J.; Miranda-Ordieres, A.J.; Tuñón-Blanco, P. Voltammetric response of diclofenac-molecularly imprinted film modified carbon electrodes. Anal. Bioanal. Chem., 2003, 377(2), 257-261.
[76]
Tumpa, A.; Miladinović, T.; Rakić, T.; Stajić, A.; Jančić-Stojanović, B. Quality by design determination of diclofenac potassium and its impurities by high-performance liquid chromatography. Anal. Lett., 2016, 49(4), 445-457.
[77]
Chen, P-Y.; Nien, P-C.; Wu, C-T.; Wu, T-H.; Lin, C-W.; Ho, K-C. Fabrication of a molecularly imprinted polymer sensor by self-assembling monolayer/mediator system. Anal. Chim. Acta, 2009, 643(1), 38-44.
[78]
Chen, M.; Zheng, Y.; Gao, J.; Li, C.; Yu, C.; Wang, Q. Fluorometric determination of dopamine by using a terbium (III) inorganic-organic network. Microchim. Acta, 2017, 184(7), 2275-2280.
[79]
Zhong, M.; Teng, Y.; Pang, S.; Yan, L.; Kan, X. Pyrrole–phenylboronic acid: A novel monomer for dopamine recognition and detection based on imprinted electrochemical sensor. Biosens. Bioelectron., 2015, 64, 212-218.
[80]
El Gohary, N.A.; Madbouly, A.; El Nashar, R.M.; Mizaikoff, B. Voltammetric Determination of Valaciclovir Using a Molecularly Imprinted Polymer Modified Carbon Paste Electrode. Electroanalysis, 2017, 29(5), 1388-1399.
[81]
Tarinc, D.; Golcu, A. A simple spectrophotometric procedure for determination of valaciclovir in dosage forms and biological fluids. J. Anal. Chem., 2013, 68(1), 27-32.
[82]
Gholivand, M.B.; Karimian, N. Development of piroxicam sensor based on molecular imprinted polymer-modified carbon paste electrode. Mat. Sci. Eng. C, 2011, 31(8), 1844-1851.
[83]
Panainte, A.D.; Vieriu, M.; Tantaru, G.; Apostu, M.; Bibire, N. Fast HPLC method for the determination of piroxicam and its application to stability study. Revista de Chimie, 2017, 68(4), 701-706.
[84]
Andrea, P.; Stanislav, M. A solid binding matrix/molecularly imprinted polymer-based sensor system for the determination of clenbuterol in bovine liver using differential-pulse voltammetry. Sens. Actuat B Chem., 2001, 76(1), 286-294.
[85]
Özkütük, E.B.; Uğurağ, D.; Ersöz, A.; Say, R. Determination of Clenbuterol by Multiwalled Carbon Nanotube Potentiometric Sensors. Anal. Lett., 2016, 49(6), 778-789.
[86]
Gutierrez‐Fernandez, S.; Lobo‐Castañón, M.J.; Miranda‐Ordieres, A.J.; Tuñón‐Blanco, P.; Carriedo, G.A.; Garcia‐Alonso, F.J.; Fidalgo, J.I. Molecularly imprinted polyphosphazene films as recognition element in a voltammetric rifamycin SV sensor. Electroanalysis, 2001, 13(17), 1399-1404.
[87]
Maniara, W.M.; Powell, M.L. Determination of the rifamycin-related hypolipidemic drug CGP 43371 in human feces, plasma and urine by high-performance liquid chromatography. J. Chromatogr. B Biomed. Sci. Appl., 1994, 660(1), 135-142.
[88]
Javanbakht, M.; Fathollahi, F.; Divsar, F.; Ganjali, M.R.; Norouzi, P. A selective and sensitive voltammetric sensor based on molecularly imprinted polymer for the determination of dipyridamole in pharmaceuticals and biological fluids. Sens. Actuat B Chem., 2013, 182, 362-367.
[89]
Qin, T.; Qin, F.; Li, N.; Lu, S.; Liu, W.; Li, F. Quantitative determination of dipyridamole in human plasma by high-performance liquid chromatography-tandem mass spectrometry and its application to a pharmacokinetic study. Biomed. Chromatogr., 2010, 24(3), 268-273.
[90]
Mazzotta, E.; Picca, R.; Malitesta, C.; Piletsky, S.; Piletska, E. Development of a sensor prepared by entrapment of MIP particles in electrosynthesised polymer films for electrochemical detection of ephedrine. Biosens. Bioelectron., 2008, 23(7), 1152-1156.
[91]
Deng, D.; Deng, H.; Zhang, L.; Su, Y. Determination of ephedrine and pseudoephedrine by field-amplified sample injection capillary electrophoresis. J. Chromatogr. Sci., 2014, 52(4), 357-362.
[92]
Radi, A-E.; El-Naggar, A-E.; Nassef, H.M. Molecularly imprinted polymer based electrochemical sensor for the determination of the anthelmintic drug oxfendazole. J. Electroanal. Chem., 2014, 729, 135-141.
[93]
Fleitman, J.; Neu, D.; Visor, G. Analysis of pharmaceutical dosage forms for oxfendazole: I. Reverse phase liquid chromatographic determination of oxfendazole in swine premix. J. Assoc. Offic. Anal. Chem., 1986, 69(1), 20-24.
[94]
Sadeghi, S.; Motaharian, A.; Moghaddam, A.Z. Electroanalytical determination of sulfasalazine in pharmaceutical and biological samples using molecularly imprinted polymer modified carbon paste electrode. Sens. Actuat B Chem., 2012, 168, 336-344.
[95]
Kwiecień, A.; Piątek, K.; Zmudzki, P.; Krzek, J. TLC-densitometric determination of sulfasalazine and its possible impurities in pharmaceutical preparations. Acta Chromatogr., 2015, 27(4), 623-635.
[96]
Turco, A.; Corvaglia, S.; Mazzotta, E. Electrochemical sensor for sulfadimethoxine based on molecularly imprinted polypyrrole: Study of imprinting parameters. Biosens. Bioelectron., 2015, 63, 240-247.
[97]
Li, H.; Smith, M.L.; Chiesa, O.A.; Kijak, P.J. Determination of sulfadimethoxine and 4N-acetylsulfadimethoxine in bovine plasma, urine, oral fluid, and kidney and liver biopsy samples obtained surgically from standing animals by LC/MS/MS. J. Chromatogr. B Anal. Technol. Biomed. Life Sci., 2009, 877(3), 237-246.
[98]
Sadeghi, S.; Motaharian, A. Voltammetric sensor based on carbon paste electrode modified with molecular imprinted polymer for determination of sulfadiazine in milk and human serum. Mat. Sci. Eng. C, 2013, 33(8), 4884-4891.
[99]
Zhang, J.; Li, M.; Xu, P.; Jiang, S.; Liu, Y.; Chen, Y.; Liu, L.; Sha, Z. Directly fast detection of digoxin in the serum sample by the synthetic receptor sensor. Mat. Sci. Eng. B, 2013, 178(18), 1191-1194.
[100]
Manimala, M.; Karpagam, S. Deecaraman, LC-MS-MS method for the determination of digoxin in human plasma. Int. J. Pharm. Pharmaceut. Sci., 2013, 5(Suppl. 2), 131-132.
[101]
Zhihua, W.; Xiaole, L.; Bowan, W.; Fangping, W.; Xiaoquan, L. Voltammetric determination of salicylic acid by molecularly imprinted film modified electrodes. Int. J. Polym. Anal. Character., 2012, 17(2), 122-132.
[102]
Barrientos, M.O.; Batista, A.D.; Rocha, F.R.P. Fast and environmentally friendly determination of salicylic acid in plant materials by sequential injection chromatography. Anal. Method, 2016, 8(34), 6398-6403.
[103]
Kang, J.; Zhang, H.; Wang, Z.; Wu, G.; Lu, X. A novel amperometric sensor for salicylic acid based on molecularly imprinted polymer-modified electrodes. Polym. Plast. Technol. Eng., 2009, 48(6), 639-645.
[104]
Radi, A-E.; El-Naggar, A-E.; Nassef, H.M. Determination of coccidiostat clopidol on an electropolymerized-molecularly imprinted polypyrrole polymer modified screen printed carbon electrode. Anal. Method, 2014, 6(19), 7967-7972.
[105]
Fang, B.; Su, Y.; Ding, H.; Zhang, J.; He, L. Determination of residual clopidol in chicken muscle by capillary gas chromatography-negative chemical ionization-mass spectrometry. Anal. Sci., 2009, 25(10), 1203-1206.
[106]
Radi, A-E.; Abd El-Ghany, N.; Wahdan, T. Voltammetric Determination of Flunixin on Molecularly Imprinted Polypyrrole Modified Glassy Carbon Electrode. J. Anal. Methods Chem., 2016, 2016, 1.
[107]
Lugoboni, B.; Barbarossa, A.; Gazzotti, T.; Zironi, E.; Farabegoli, F.; Pagliuca, G. A quick LC-MS-MS method for the determination of flunixin in bovine muscle. J. Anal. Toxicol., 2014, 38(2), 80-85.
[108]
Radi, A-E.; Abd-Elaziz, I. A halofuginone electrochemical sensor based on a molecularly imprinted polypyrrole coated glassy carbon electrode. Anal. Methods, 2015, 7(19), 8152-8158.
[109]
Yamamoto, Y.; Kondo, F. Determination of Halofuginone and Amprolium in Chicken Muscle and Egg by Liquid Chromatography. J. AOAC Int., 2001, 84(1), 43-46.
[110]
Nezhadali, A.; Rouki, Z.; Nezhadali, M. Electrochemical preparation of a molecularly imprinted polypyrrole modified pencil graphite electrode for the determination of phenothiazine in model and real biological samples. Talanta, 2015, 144, 456-465.
[111]
Mohamed, A.M.I.; Abdelmageed, O.H.; Salem, H.; Nagy, D.M.; Omar, M.A. Spectrofluorimetric determination of certain biologically active phenothiazines in commercial dosage forms and human plasma. Luminescence, 2013, 28(3), 345-354.
[112]
Nateghi, M.; Mosslemin, M.; Hakimi, A.; Kavoosi, S. Imprinted Poly (o-phenylenediamine-co-aniline) Electrode for Warfarin Assay in Human Samples by Differential Pulse Voltammetry. Asian J. Chem., 2010, 22(5), 3516.
[113]
Nowak, P.; Olechowska, P.; Mitoraj, M.; Woźniakiewicz, M.; Kościelniak, P. Determination of acid dissociation constants of warfarin and hydroxywarfarins by capillary electrophoresis. J. Pharmaceut. Biomed. Anal., 2015, 112, 89-97.
[114]
Li, B.L.; Luo, J.H.; Luo, H.Q.; Li, N.B. A novel strategy for selective determination of d-penicillamine based on molecularly imprinted polypyrrole electrode via the electrochemical oxidation with ferrocyanide. Sens. Actuat B Chem., 2013, 186, 96-102.
[115]
Martinović-Bevanda, A. Radic ́, N. Spectrophotometric sequential injection determination of d-penicillamine based on a complexation reaction with nickel ion. Anal. Sci., 2013, 29(6), 669-671.
[116]
Madrakian, T.; Haryani, R.; Ahmadi, M.; Afkhami, A. A sensitive electrochemical sensor for rapid and selective determination of venlafaxine in biological fluids using carbon paste electrode modified with molecularly imprinted polymer-coated magnetite nanoparticles. J. Iran. Chem. Soc., 2016, 13(2), 243-251.
[117]
Madrakian, T.; Haryani, R.; Ahmadi, M.; Afkhami, A. Spectrofluorometric determination of venlafaxine in biological samples after selective extraction on the superparamagnetic surface molecularly imprinted nanoparticles. Anal. Method, 2015, 7(2), 428-435.
[118]
Prasad, B.B.; Madhuri, R.; Tiwari, M.P.; Sharma, P.S. Electrochemical sensor for folic acid based on a hyperbranched molecularly imprinted polymer-immobilized sol–gel-modified pencil graphite electrode. Sens. Actuat B Chem., 2010, 146(1), 321-330.
[119]
Ribeiro, M.V.M.; Melo, I.S.; Lopes, F.C.C.; Moita, G.C. Development and validation of a method for the determination of folic acid in different pharmaceutical formulations using derivative spectrophotometry. Brazil. J. Pharmaceut. Sci., 2016, 52(4), 741-750.
[120]
Bougrini, M.; Florea, A.; Cristea, C.; Sandulescu, R.; Vocanson, F.; Errachid, A.; Bouchikhi, B.; El Bari, N.; Jaffrezic-Renault, N. Development of a novel sensitive molecularly imprinted polymer sensor based on electropolymerization of a microporous-metal-organic framework for tetracycline detection in honey. Food Control, 2016, 59, 424-429.
[121]
Goncharova, L.A.; Kobylinska, N.G.; Díaz-Garcia, M.E.; Zaitsev, V.N. Solid-phase luminescence determination of tetracycline in bottled water using chemically modified silica. J. Anal. Chem., 2017, 72(7), 724-733.
[122]
Atar, N.; Yola, M.L.; Eren, T. Sensitive determination of citrinin based on molecular imprinted electrochemical sensor. Appl. Surf. Sci., 2016, 362, 315-322.
[123]
Huertas-Pérez, J.F.; Arroyo-Manzanares, N.; García-Campaña, A.M.; Gámiz-Gracia, L. High-throughput determination of citrinin in rice by ultra-high-performance liquid chromatography and fluorescence detection (UHPLC-FL). Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess., 2015, 32(8), 1352-1357.
[124]
Yola, M.L.; Eren, T.; Atar, N. Molecularly imprinted electrochemical biosensor based on Fe@ Au nanoparticles involved in 2-aminoethanethiol functionalized multi-walled carbon nanotubes for sensitive determination of cefexime in human plasma. Biosens. Bioelectron., 2014, 60, 277-285.
[125]
Bushra, M.U.; Islam, M.M.; Sumon, M.S.I. Study of forced degradation of cefexime trihydrate indicating stability using reversed phase high performance liquid chromatographic (RP-HPLC) method. Der Pharma Chemica, 2013, 5(4), 341-346.
[126]
Karimian, N.; Gholivand, M.; Malekzadeh, G. Cefixime detection by a novel electrochemical sensor based on glassy carbon electrode modified with surface imprinted polymer/multiwall carbon nanotubes. J. Electroanal. Chem, 2016, 771, 64-72.
[127]
Alizadeh, T.; Azizi, S. Graphene/graphite paste electrode incorporated with molecularly imprinted polymer nanoparticles as a novel sensor for differential pulse voltammetry determination of fluoxetine. Biosens. Bioelectron., 2016, 81, 198-206.
[128]
Constantinescu, I.C.; Florea, M.; Neagu, A.F. Development of a spectrophotometric method for determination of fluoxetine hydrochloride in bulk and pharmaceutical dosage forms. Farmacia, 2015, 63(6), 816-820.
[129]
Azodi-Deilami, S.; Asadi, E.; Abdouss, M.; Ahmadi, F.; Najafabadi, A.H.; Farzaneh, S. Determination of meloxicam in plasma samples using a highly selective and sensitive voltammetric sensor based on carbon paste electrodes modified by molecularly imprinted polymer nanoparticle–multiwall carbon nanotubes. Anal. Methods, 2015, 7(4), 1280-1292.
[130]
Cox, S.; Bailey, J.; White, M.; Gordon, K.; Souza, M. Determination of Meloxicam in Egg Whites and Yolks Using Reverse Phase Chromatography. J. Chromatogr. Sci., 2017, 55(6), 610-616.
[131]
Prasad, B.B.; Jauhari, D.; Tiwari, M.P. A dual-template imprinted polymer-modified carbon ceramic electrode for ultra trace simultaneous analysis of ascorbic acid and dopamine. Biosens. Bioelectron., 2013, 50, 19-27.
[132]
Tashkhourian, J.; Dehbozorgi, A. Determination of dopamine in the presence of ascorbic and uric acids by fluorometric method using graphene quantum dots. Spectr. Lett., 2016, 49(5), 319-325.
[133]
Do, P.T.; Do, P.Q.; Nguyen, H.B.; Le, T.H.; Nguyen, L.H.; Pham, H.V.; Nguyen, T.L.; Tran, Q.H. A highly sensitive electrode modified with graphene, gold nanoparticles, and molecularly imprinted over-oxidized polypyrrole for electrochemical determination of dopamine. J. Mol. Liq., 2014, 198, 307-312.
[134]
Cao, W.; Xiong, H.; Gao, X.; Zhang, X.; Wang, S. A β 2-agonist sensor based on a molecularly imprinted poly-o-phenylenediamine film on a columnar-structured platinum electrode. Anal. Method, 2014, 6(7), 2349-2355.
[135]
Selinger, K.; Hill, H.M.; Matheou, D.; Dehelean, L. Determination of free and total metaproterenol in human plasma by high-performance liquid chromatography with fluorimetric detection. J. Chromatogr. B Biomed. Sci. Appl., 1989, 493(C), 230-238.
[136]
Gholivand, M.; Karimian, N. Fabrication of a highly selective and sensitive voltammetric ganciclovir sensor based on electropolymerized molecularly imprinted polymer and gold nanoparticles on multiwall carbon nanotubes/glassy carbon electrode. Sens. Actuat B Chem., 2015, 215, 471-479.
[137]
Padullés, A.; Colom, H.; Armendariz, Y.; Cerezo, G.; Caldes, A.; Pou, L.; Torras, J.; Grinyó, J.M.; Lloberas, N. Determination of ganciclovir in human plasma by ultra performance liquid chromatography-UV detection. Clin. Biochem., 2012, 45(4-5), 309-314.
[138]
Rezaei, B.; Majidi, N.; Ensafi, A.A.; Karimi-Maleh, H. Molecularly imprinted-multiwall carbon nanotube paste electrode as a biosensor for voltammetric detection of rutin. Anal. Method, 2011, 3(11), 2510-2516.
[139]
Chen, M.; Zhang, X.; Wang, H.; Lin, B.; Wang, S.; Hu, G. Determination of rutin in rat plasma by ultra performance liquid chromatography tandem mass spectrometry and application to pharmacokinetic study. J. Chromatogr. Sci., 2015, 53(4), 519-525.
[140]
Afkhami, A.; Ghaedi, H.; Madrakian, T.; Ahmadi, M.; Mahmood-Kashani, H. Fabrication of a new electrochemical sensor based on a new nano-molecularly imprinted polymer for highly selective and sensitive determination of tramadol in human urine samples. Biosens. Bioelectron., 2013, 44, 34-40.
[141]
Habibollahi, S.; Tavakkoli, N.; Nasirian, V.; Khani, H. Determination of tramadol by dispersive liquid-liquid microextraction combined with GC-MS. J. Chromatogr. Sci., 2015, 53(5), 655-661.
[142]
Bagheri, H.; Khoshsafar, H.; Amidi, S.; Ardakani, Y.H. Fabrication of an electrochemical sensor based on magnetic multi-walled carbon nanotubes for the determination of ciprofloxacin. Anal. Methods, 2016, 8(16), 3383-3390.
[143]
Palamy, S.; Ruengsitagoon, W. Reverse flow injection spectrophotometric determination of ciprofloxacin in pharmaceuticals using iron from soil as a green reagent. Spectrochim. Acta Part A Mol. Biomol. Spectr., 2018, 190, 129-134.
[144]
Bagheri, H.; Pajooheshpour, N.; Afkhami, A.; Khoshsafar, H. Fabrication of a novel electrochemical sensing platform based on a core–shell nano-structured/molecularly imprinted polymer for sensitive and selective determination of ephedrine. RSC Adv, 2016, 6(56), 51135-51145.
[145]
An, Q.; Dong, Y.M.; Lu, N.W.; Li, N. Micellar liquid chromatographic method for the determination of ephedrine and pseudoephedrine in human serum by direct inject of the sample with simple dilution. J. Liq. Chromatogr. Relat. Technol., 2017, 40(4), 177-183.
[146]
Prasad, B.B.; Kumar, A.; Singh, R. Synthesis of novel monomeric graphene quantum dots and corresponding nanocomposite with molecularly imprinted polymer for electrochemical detection of an anticancerous ifosfamide drug. Biosens. Bioelectron., 2017, 94, 1-9.
[147]
Zolezzi, C.; Ferrari, S.; Bacci, G.; Fasano, M.C.; Sormani, G.; Pizzoferrato, A. Determination of ifosfamide by HPLC using on-line sample preparation. J. Chemother., 1999, 11(1), 69-73.
[148]
Prasad, B.B.; Madhuri, R.; Tiwari, M.P.; Sharma, P.S. Imprinting molecular recognition sites on multiwalled carbon nanotubes surface for electrochemical detection of insulin in real samples. Electrochim. Acta, 2010, 55(28), 9146-9156.
[149]
Schappler, J.; Rudaz, S. Capillary electrophoresis-ultraviolet-mass spectrometry (CE-UV-MS) for the simultaneous determination and quantification of insulin formulations. In Methods in Molecular Biology., 2016, Vol 1466, 185-195.
[150]
Li, Y.; Liu, Y.; Liu, J.; Liu, J.; Tang, H.; Cao, C.; Zhao, D.; Ding, Y. Molecularly imprinted polymer decorated nanoporous gold for highly selective and sensitive electrochemical sensors. Sci. Rep., 2015, 5, 7699.
[151]
Wolf, J. Micro-thin layer chromatography: Metronidazole. Pharmazeutische Zeitung., 1996, 141(38), 65.
[152]
Li, Y.; Liu, Y.; Yang, Y.; Yu, F.; Liu, J.; Song, H.; Liu, J.; Tang, H.; Ye, B-C.; Sun, Z. Novel electrochemical sensing platform based on a molecularly imprinted polymer decorated 3D nanoporous nickel skeleton for ultrasensitive and selective determination of metronidazole. ACS Appl. Mat. Interf, 2015, 7(28), 15474-15480.
[153]
Yuan, L.; Jiang, L.; Hui, T.; Jie, L.; Bingbin, X.; Feng, Y.; Yingchun, L. Fabrication of highly sensitive and selective electrochemical sensor by using optimized molecularly imprinted polymers on multi-walled carbon nanotubes for metronidazole measurement. Sens. Actuat B Chem., 2015, 206, 647-652.
[154]
Chen, D.; Deng, J.; Liang, J.; Xie, J.; Hu, C.; Huang, K. A core–shell molecularly imprinted polymer grafted onto a magnetic glassy carbon electrode as a selective sensor for the determination of metronidazole. Sens. Actuat B Chem., 2013, 183, 594-600.
[155]
Lopes, F.; Pacheco, J.G.; Rebelo, P.; Delerue-Matos, C. Molecularly imprinted electrochemical sensor prepared on a screen printed carbon electrode for naloxone detection. Sens. Actuat B Chem., 2017, 243, 745-752.
[156]
Gil-Alegre, M.E.; Barone, M.L.; Torres-Suárez, A.I. Extraction and determination by liquid chromatography and spectrophotometry of naloxone in microparticles for drug-addiction treatment. J. Sep. Sci., 2005, 28(16), 2086-2093.
[157]
dos Santos Moretti, E.; de Fátima Giarola, J.; Kuceki, M.; Prete, M.C.; Pereira, A.C.; Tarley, C.R.T. A nanocomposite based on multi-walled carbon nanotubes grafted by molecularly imprinted poly (methacrylic acid–hemin) as a peroxidase-like catalyst for biomimetic sensing of acetaminophen. RSC Adv, 2016, 6(34), 28751-28760.
[158]
Medina, J.R.; Licea, A.; Hurtado, M. An improved micromethod for the determination of acetaminophen in plasma by visible spectrophotometry: Application to a pharmacokinetic study in rabbits. Int. J. Appl. Pharmaceut., 2017, 9(4), 96-98.
[159]
Motaharian, A.; Hosseini, M.R.M. Electrochemical sensor based on a carbon paste electrode modified by graphene nanosheets and molecularly imprinted polymer nanoparticles for determination of a chlordiazepoxide drug. Anal. Method, 2016, 8(33), 6305-6312.
[160]
Maheswar, K.U.; Kalyani, S.G.; Rambabu, C. Development and validation of a RP-HPLC method for the determination of chlordiazepoxide in formulations. Der Pharma Chemica., 2013, 5(6), 288-293.
[161]
Nezhadali, A.; Mojarrab, M. Computational study and multivariate optimization of hydrochlorothiazide analysis using molecularly imprinted polymer electrochemical sensor based on carbon nanotube/polypyrrole film. Sens. Actuat B Chem., 2014, 190, 829-837.
[162]
Alghamdi, A.F. Quantitative Analysis of Hydrochlorothiazide and its determination in a pharmaceutical preparation by HPLC. Pharmaceut. Chem. J., 2015, 48(12), 843-847.
[163]
Nezhadali, A.; Mojarrab, M. Fabrication of an electrochemical molecularly imprinted polymer triamterene sensor based on multivariate optimization using multi-walled carbon nanotubes. J. Electroanal. Chem., 2015, 744, 85-94.
[164]
Arvand, M.; Mousavi, M.F.; Zanjanchi, M.A.; Shamsipur, M. Direct determination of triamterene by potentiometry using a coated wire selective electrode. J. Pharmaceut. Biomed. Anal., 2003, 33(5), 975-982.
[165]
Prasad, B.B.; Fatma, S. One MoNomer doubly imprinted dendrimer nanofilm modified pencil graphite electrode for simultaneous electrochemical determination of norepinephrine and uric acid. Electrochim. Acta, 2017, 232, 474-483.
[166]
Weil-Fugazza, J.; Godefroy, F.; Manceau, V.; Besson, J.M. Increased norepinephrine and uric acid levels in the spinal cord of arthritic rats. Brain Res., 1986, 374(1), 190-194.
[167]
Prasad, B.B.; Kumar, A.; Singh, R. Molecularly imprinted polymer-based electrochemical sensor using functionalized fullerene as a nanomediator for ultratrace analysis of primaquine. Carbon, 2016, 109, 196-207.
[168]
Na-Bangchang, K.; Guirou, E.A.; Cheomung, A.; Karbwang, J. Determination of primaquine in whole blood and finger-pricked capillary blood dried on filter paper using HPLC and LCMS/MS. Chromatographia, 2014, 77(7-8), 561-569.
[169]
Prasad, B.B.; Kumar, D.; Madhuri, R.; Tiwari, M.P. Nonhydrolytic sol–gel derived imprinted polymer–multiwalled carbon nanotubes composite fiber sensors for electrochemical sensing of uracil and 5-fluorouracil. Electrochim. Acta, 2012, 71, 106-115.
[170]
Zhu, L.; Shen, G. J.; Ding, S. Q.; Hua, X. Determination of 5- fluorouracil in 5-fluorouracil injection and human serum by HPLC. J. Food Drug Anal., 2012, 20(4), 947-950+986.
[171]
Prasad, B.B.; Pathak, P.K. Development of surface imprinted nanospheres using the inverse suspension polymerization method for electrochemical ultra sensing of dacarbazine. Anal. Chim. Acta, 2017, 974, 75-86.
[172]
Safgren, S.L.; Reid, J.M.; Rios, R.; Ames, M.M. Validated high-performance liquid chromatographic assay for simultaneous determination of dacarbazine and the plasma metabolites 5-(3-hydroxymethyl-3-methyl-1-triazeno)imidazole-4-carboxamide and 5-(3-methyl-1-triazeno)imidazole-4-carboxamide. J. Chromatogr. B Biomed. Sci. Appl., 2001, 754(1), 91-96.
[173]
Prasad, B.B.; Singh, R.; Kumar, A. Gold nanorods vs. gold nanoparticles: application in electrochemical sensing of cytosine β-d-arabinoside using metal ion mediated molecularly imprinted polymer. RSC Advances, 2016, 6(84), 80679-80691.
[174]
Lloyd, D.K.; Cypess, A.M.; Wainer, I.W. Determination of cytosine-β-d-arabinoside in plasma using capillary electrophoresis. J. Chromatogr. B Biomed. Sci. Appl., 1991, 568(1), 117-124.
[175]
Rezaei, B.; Mirahmadi‐Zare, S. Nanoscale Manipulation of prednisolone as electroactive configuration using molecularly imprinted‐multiwalled carbon nanotube paste electrode. Electroanalysis, 2011, 23(11), 2724-2734.
[176]
Smits, E.A.W.; Soetekouw, J.A.; van Doormalen, I.; van den Berg, B.H.J.; van der Woude, M.P.; de Wijs-Rot, N.; Vromans, H. Quantitative LC-MS determination of liposomal encapsulated prednisolone phosphate and non-encapsulated prednisolone concentrations in murine whole blood and liver tissue. J. Pharmaceut. Biomed. Anal., 2015, 115, 552-561.
[177]
Roy, E.; Patra, S.; Madhuri, R.; Sharma, P.K. Gold nanoparticle mediated designing of non-hydrolytic sol–gel cross-linked metformin imprinted polymer network: A theoretical and experimental study. Talanta, 2014, 120, 198-207.
[178]
Pyzowski, J.; Lenartowicz, M.; Sobańska, A.W.; Brzezińska, E. Fast and convenient NIR spectroscopy procedure for determination of metformin hydrochloride in tablets. J. Appl. Spectr., 2017, 84(4), 710-715.
[179]
Wang, H.; Qian, D.; Xiao, X.; Gao, S.; Cheng, J.; He, B.; Liao, L.; Deng, J. A highly sensitive and selective sensor based on a graphene-coated carbon paste electrode modified with a computationally designed boron-embedded duplex molecularly imprinted hybrid membrane for the sensing of lamotrigine. Biosens. Bioelectron., 2017, 94, 663-670.
[180]
Wu, B.; Hou, L.; Zhang, T.; Han, Y.; Kong, C. A molecularly imprinted electrochemical sensor based on a gold nanoparticle/carbon nanotube hybrid material for the sensitive detection of isoniazid. Anal. Method, 2015, 7(21), 9121-9129.
[181]
Wen, X.R.; Tu, C.Q. Spectrophotometric determination of isoniazid in pharmaceutical sample by silicomolybdenum blue. In Adv. Mat. Res., 2014, 1033-1034, 548-551.
[182]
Rezaei, B.; Boroujeni, M.K.; Ensafi, A.A. A novel electrochemical nanocomposite imprinted sensor for the determination of lorazepam based on modified polypyrrole@ sol-gel@ gold nanoparticles/pencil graphite electrode. Electrochim. Acta, 2014, 123, 332-339.
[183]
Kondo, T.; Buss, D.C.; Routledge, P.A. A method for rapid determination of lorazepam by high-performance liquid chromatography. Therapeut. Drug Monitor., 1993, 15(1), 35-38.
[184]
Rezaei, B.; Rahmanian, O.; Ensafi, A.A. Sensing Lorazepam with a glassy carbon electrode coated with an electropolymerized-imprinted polymer modified with multiwalled carbon nanotubes and gold nanoparticles. Microchim. Acta, 2013, 180(1-2), 33-39.
[185]
Rezaei, B.; Esfahani, M.H.; Ensafi, A.A. Modified au nanoparticles/imprinted sol-gel/multiwall carbon nanotubes pencil graphite electrode as a selective electrochemical sensor for papaverine determination. IEEE Sens. J., 2016, 16(19), 7037-7044.
[186]
Badea, I.A.; Vladescu, L.; David, I.G.; David, V.; Litescu, S.C. Development of a new HPLC method for determination of papaverine in presence of its photooxidation products. Anal. Lett., 2010, 43(7), 1217-1229.
[187]
Rezaei, B.; Lotfi-Forushani, H.; Ensafi, A. Modified Au nanoparticles-imprinted sol–gel, multiwall carbon nanotubes pencil graphite electrode used as a sensor for ranitidine determination. Mat. Sci. Eng. C, 2014, 37, 113-119.
[188]
Vicentini, F.C.; Janegitz, B.C.; Bonifácio, V.G.; Fatibello-Filho, O.; Marcolino, L.H. Novel flow injection spectrophotometric determination of ranitidine in pharmaceuticals. Canad. J. Chem., 2016, 94(7), 604-607.
[189]
Roushani, M.; Nezhadali, A.; Jalilian, Z.; Azadbakht, A. Development of novel electrochemical sensor on the base of molecular imprinted polymer decorated on SiC nanoparticles modified glassy carbon electrode for selective determination of loratadine. Mat. Sci. Eng. C, 2017, 71, 1106-1114.
[190]
Güney, S.; Cebeci, F.C. Selective electrochemical sensor for theophylline based on an electrode modified with imprinted sol–gel film immobilized on carbon nanoparticle layer. Sens. Actuat B Chem., 2015, 208, 307-314.
[191]
Han, S.; Li, B.; Song, Z.; Pan, S.; Zhang, Z.; Yao, H.; Zhu, S.; Xu, G. A kanamycin sensor based on an electrosynthesized molecularly imprinted poly-o-phenylenediamine film on a single-walled carbon nanohorn modified glassy carbon electrode. Analyst, 2017, 142(1), 218-223.
[192]
Zhang, Y.; He, H.M.; Zhang, J.; Liu, F.J.; Li, C.; Wang, B.W.; Qiao, R.Z. HPLC-ELSD determination of kanamycin B in the presence of kanamycin A in fermentation broth. Biomed. Chromatogr., 2015, 29(3), 396-401.
[193]
Hu, Y.; Li, J.; Zhang, Z.; Zhang, H.; Luo, L.; Yao, S. Imprinted sol–gel electrochemical sensor for the determination of benzylpenicillin based on Fe 3 O 4@ SiO 2/multi-walled carbon nanotubes-chitosans nanocomposite film modified carbon electrode. Anal. Chim. Acta, 2011, 698(1), 61-68.
[194]
Peng, Y.; Liu, M.; Zhao, J.; Yuan, H.; Li, Y.; Tao, J.; Guo, H. Determination of Benzylpenicillin Potassium Residues in Duck Meat Using Surface Enhanced Raman Spectroscopy with Au Nanoparticles. J. Spectr., 2016, 2016, 1.
[195]
Jiang, Z.; Li, G.; Zhang, M. A novel sensor based on bifunctional monomer molecularly imprinted film at graphene modified glassy carbon electrode for detecting traces of moxifloxacin. RSC Adv, 2016, 6(39), 32915-32921.
[196]
Kepekci Tekkeli, S.E.; Gazioglu, I.; Kiziltas, M.V. An HPLC method for the determination of moxifloxacin in breast milk by fluorimetric detection with precolumn derivatization. Acta Chromatogr., 2017, 29(1), 57-65.
[197]
Khoshsafar, H.; Bagheri, H.; Rezaei, M.; Shirzadmehr, A.; Hajian, A.; Sepehri, Z. Magnetic carbon paste electrode modified with a high performance composite based on molecularly imprinted carbon nanotubes for sensitive determination of levofloxacin. J. Electrochem. Soc., 2016, 163(8), B422-B427.
[198]
Szerkus, O.; Jacyna, J.; Wiczling, P.; Gibas, A.; Sieczkowski, M.; Siluk, D.; Matuszewski, M.; Kaliszan, R.; Markuszewski, M.J. Ultra-high performance liquid chromatographic determination of levofloxacin in human plasma and prostate tissue with use of experimental design optimization procedures. J. Chromatogr. B Anal. Technol. Biomed. Life Sci., 2016, 1029-1030, 48-59.
[199]
Wang, Y.; Han, M.; Liu, G.; Hou, X.; Huang, Y.; Wu, K.; Li, C. Molecularly imprinted electrochemical sensing interface based on in-situ-polymerization of amino-functionalized ionic liquid for specific recognition of bovine serum albumin. Biosens. Bioelectron., 2015, 74, 792-798.
[200]
Prasad, B.B.; Kumar, D.; Madhuri, R.; Tiwari, M.P. Sol–gel derived multiwalled carbon nanotubes ceramic electrode modified with molecularly imprinted polymer for ultra trace sensing of dopamine in real samples. Electrochim. Acta, 2011, 56(20), 7202-7211.
[201]
Liu, Y.; Liu, J.; Liu, J.; Gan, W.; Ye, B-C.; Li, Y. Highly sensitive and selective voltammetric determination of dopamine using a gold electrode modified with a molecularly imprinted polymeric film immobilized on flaked hollow nickel nanospheres. Mikrochim. Acta, 2017, 184(5), 1285-1294.
[202]
Li, T. H.; Wang, D.; Lan, H. Z.; Gan, N. Determination of 17β- Estradiol Based on Electropolymerized-Molecularly Imprinted Polymer on Gold Nanoparticles-Graphene Modified Electrode In Advanced Materials Research; Trans Tech Publ:, 2014, 93-97.
[203]
Biancotto, G.; Angeletti, R.; Traldi, P.; Silvestri, M.; Saccon, M.; Guidugli, F. Determination of 17β-estradiol in bovine plasma: Development of a highly sensitive technique by ion trap gas chromatography-tandem mass spectometry using negative chemical ionization. J. Mass Spectr., 2002, 37(12), 1266-1271.
[204]
Li, Y.; Zhang, L.; Liu, J.; Zhou, S-F.; Al-Ghanim, K.A.; Mahboob, S.; Ye, B-C.; Zhang, X. A novel sensitive and selective electrochemical sensor based on molecularly imprinted polymer on a nanoporous gold leaf modified electrode for warfarin sodium determination. RSC Adv, 2016, 6(49), 43724-43731.
[205]
Lian, W.; Liu, S.; Yu, J.; Xing, X.; Li, J.; Cui, M.; Huang, J. Electrochemical sensor based on gold nanoparticles fabricated molecularly imprinted polymer film at chitosan–platinum nanoparticles/graphene–gold nanoparticles double nanocomposites modified electrode for detection of erythromycin. Biosens. Bioelectron., 2012, 38(1), 163-169.
[206]
Liu, X.; Zhong, J.; Rao, H.; Lu, Z.; Ge, H.; Chen, B.; Zou, P.; Wang, X.; He, H.; Zeng, X. Electrochemical dipyridamole sensor based on molecularly imprinted polymer on electrode modified with Fe3O4@ Au/amine-multi-walled carbon nanotubes. J. Solid State Electrochem., 2017, 1, 1-12.
[207]
Ma, M.; Zhu, P.; Pi, F.; Ji, J.; Sun, X. A disposable molecularly imprinted electrochemical sensor based on screen-printed electrode modified with ordered mesoporous carbon and gold nanoparticles for determination of ractopamine. J. Electroanal. Chem., 2016, 775, 171-178.
[208]
Zhang, W.; He, X.; Liu, P.; Li, W.; Liu, X. Rapid Determination of Ractopamine in Porcine Urine by a Fluorescence Immunochromatography Assay. Anal. Lett., 2016, 49(14), 2165-2176.
[209]
Madrakian, T.; Haghshenas, E.; Ahmadi, M.; Afkhami, A. Construction a magneto carbon paste electrode using synthesized molecularly imprinted magnetic nanospheres for selective and sensitive determination of mefenamic acid in some real samples. Biosens. Bioelectron., 2015, 68, 712-718.
[210]
Rezaei Kahkha, M.R.; Kaykhaii, M.; Afarani, M.S.; Sepehri, Z. Determination of mefenamic acid in urine and pharmaceutical samples by HPLC after pipette-tip solid phase microextraction using zinc sulfide modified carbon nanotubes. Anal. Methods, 2016, 8(30), 5978-5983.
[211]
Hosseini, M.R.M.; Motaharian, A. Electroanalytical determination of diazepam in tablet and human serum samples using a multiwalled carbon nanotube embedded molecularly imprinted polymer-modified carbon paste electrode. RSC Adv, 2015, 5(99), 81650-81659.
[212]
Chaichi, M.J.; Alijanpour, S.O. A new chemiluminescence method for determination of clonazepam and diazepam based on 1-Ethyl-3-Methylimidazolium Ethylsulfate/copper as catalyst. Spectrochim. Acta Part A Mol. Biomol. Spectr., 2014, 118, 36-41.
[213]
Peng, Y.; Wu, Z.; Liu, Z. An electrochemical sensor for paracetamol based on an electropolymerized molecularly imprinted o-phenylenediamine film on a multi-walled carbon nanotube modified glassy carbon electrode. Anal. Method, 2014, 6(15), 5673-5681.
[214]
Soleimani, M.; Afshar, M.G.; Shafaat, A.; Crespo, G.A. High‐Selective Tramadol Sensor Based on Modified Molecularly Imprinted Polymer Carbon Paste Electrode with Multiwalled Carbon Nanotubes. Electroanalysis, 2013, 25(5), 1159-1168.
[215]
Soleimani, M.; Afshar, M.G.; Ganjali, M.R. High selective methadone sensor based on molecularly imprinted polymer carbon paste electrode modified with carbon nanotubes. Sens. Lett., 2013, 11(10), 1983-1991.
[216]
Chiadmi, F.; Schlatter, J. Determination and validation of a solid-phase extraction gas chromatography-mass spectrometry for the quantification of methadone and its principal metabolite in human plasma. Anal. Chem. Insight, 2015, 10(1), 17-22.
[217]
Tan, F.; Zhao, Q.; Teng, F.; Sun, D.; Gao, J.; Quan, X.; Chen, J. Molecularly imprinted polymer/mesoporous carbon nanoparticles as electrode sensing material for selective detection of ofloxacin. Mat. Lett., 2014, 129, 95-97.
[218]
Timofeeva, I.; Timofeev, S.; Moskvin, L.; Bulatov, A. A dispersive liquid-liquid microextraction using a switchable polarity dispersive solvent. Automated HPLC-FLD determination of ofloxacin in chicken meat. Anal. Chim. Acta, 2017, 949, 35-42.
[219]
Bai, H.; Wang, C.; Chen, J.; Peng, J.; Cao, Q. A novel sensitive electrochemical sensor based on in-situ polymerized molecularly imprinted membranes at graphene modified electrode for artemisinin determination. Biosens. Bioelectron., 2015, 64, 352-358.
[220]
Graves, R.A.; Ledet, G.; Nation, C.A.; Showers, P.R.; Pramar, Y.; Mandal, T.; Bostanian, L.A. An ultra-high performance chromatographic method for the determination of artemisinin. Drug Develop. Industr. Pharm., 2015, 41(5), 819-824.
[221]
Handbook of Sustainable Polymers, Chapter 17 Chiral Electrochemical Sensors Based on Molecularly Imprinted Polymers with Pharmaceutical Applications..
[222]
Hu, Y-F.; Zhang, Z-h.; Zhang, H-b.; Luo, L-j.; Yao, S-z. Electrochemical determination of l-phenylalanine at polyaniline modified carbon electrode based on β-cyclodextrin incorporated carbon nanotube composite material and imprinted sol–gel film. Talanta, 2011, 84(2), 305-313.
[223]
Zhang, Z.; Hu, Y.; Zhang, H.; Luo, L.; Yao, S. Layer-by-layer assembly sensitive electrochemical sensor for selectively probing l-histidine based on molecular imprinting sol–gel at functionalized indium tin oxide electrode. Biosens. Bioelectron., 2010, 26(2), 696-702.
[224]
Prasad, B.B.; Pandey, I. Electrochemically imprinted molecular recognition sites on multiwalled carbon-nanotubes/pencil graphite electrode surface for enantioselective detection of d-and l-aspartic acid. Electrochim. Acta, 2013, 88, 24-34.
[225]
Prasad, B.B.; Pandey, I.; Srivastava, A.; Kumar, D.; Tiwari, M.P. Multiwalled carbon nanotubes-based pencil graphite electrode modified with an electrosynthesized molecularly imprinted nanofilm for electrochemical sensing of methionine enantiomers. Sens. Actuat B Chem., 2013, 176, 863-874.
[226]
Kong, Y.; Zhao, W.; Yao, S.; Xu, J.; Wang, W.; Chen, Z. Molecularly imprinted polypyrrole prepared by electrodeposition for the selective recognition of tryptophan enantiomers. J. Appl. Polym. Sci., 2010, 115(4), 1952-1957.
[227]
Chen, Y.; Chen, L.; Bi, R.; Xu, L.; Liu, Y. A potentiometric chiral sensor for l-Phenylalanine based on crosslinked polymethylacrylic acid–polycarbazole hybrid molecularly imprinted polymer. Anal. Chim. Acta, 2012, 754, 83-90.
[228]
Huang, J.; Wei, Z.; Chen, J. Molecular imprinted polypyrrole nanowires for chiral amino acid recognition. Sens. Actuat B Chem., 2008, 134(2), 573-578.
[229]
Prasad, B.B.; Madhuri, R.; Tiwari, M.P.; Sharma, P.S. Enantioselective recognition of d-and l-tryptophan by imprinted polymer-carbon composite fiber sensor. Talanta, 2010, 81(1), 187-196.
[230]
Granot, E.; Tel‐Vered, R.; Lioubashevski, O.; Willner, I. Stereoselective and enantioselective electrochemical sensing of monosaccharides using imprinted boronic acid‐functionalized polyphenol films. Adv. Funct. Mat., 2008, 18(3), 478-484.
[231]
Liao, H.; Zhang, Z.; Nie, L.; Yao, S. Electrosynthesis of imprinted polyacrylamide membranes for the stereospecific L-histidine sensor and its characterization by AC impedance spectroscopy and piezoelectric quartz crystal technique. J. Biochem. Biophys. Method, 2004, 59(1), 75-87.
[232]
Prasad, B.B.; Srivastava, A.; Tiwari, M.P. Molecularly imprinted polymer-matrix nanocomposite for enantioselective electrochemical sensing of d-and l-aspartic acid. Mat. Sci. Eng. C, 2013, 33(7), 4071-4080.
[233]
Prasad, B.B.; Pandey, I. Metal incorporated molecularly imprinted polymer-based electrochemical sensor for enantio-selective analysis of pyroglutamic acid isomers. Sens. Actuators B Chem., 2013, 186, 407-416.
[234]
Prasad, B.B.; Madhuri, R.; Tiwari, M.P.; Sharma, P.S. Layer-by-layer assembled molecularly imprinted polymer modified silver electrode for enantioselective detection of d-and l-thyroxine. Anal. Chim. Acta, 2010, 681(1), 16-26.
[235]
Iacob, B-C.; Bodoki, E.; Florea, A.; Bodoki, A.E.; Oprean, R. Simultaneous enantiospecific recognition of several β-blocker enantiomers using molecularly imprinted polymer-based electrochemical sensor. Anal. Chem., 2015, 87(5), 2755-2763.
[236]
Zhang, B.; Lu, L.; Huang, F.; Lin, Z. [Ru(bpy)3]2+-mediated photoelectrochemical detection of bisphenol A on a molecularly imprinted polypyrrole modified SnO2 electrode. Anal. Chim. Acta, 2015, 887, 59-66.
[237]
Pandey, I.; Jha, S.S. Molecularly imprinted polyaniline-ferrocene-sulfonic acid-Carbon dots modified pencil graphite electrodes for chiral selective sensing of D-Ascorbic acid and L-Ascorbic acid: A clinical biomarker for preeclampsia. Electrochim. Acta, 2015, 182, 917-928.
[238]
Huan, S.; Shen, G.; Yu, R. Enantioselective recognition of amino acid by differential pulse voltammetry in molecularly imprinted monolayers assembled on Au electrodes. Electroanalysis, 2004, 16(12), 1019-1023.
[239]
Saksena, K.; Shrivastava, A.; Kant, R. Chiral analysis of ascorbic acid in bovine serum using ultrathin molecular imprinted polyaniline/graphite electrode. J. Electroanal. Chem., 2017, 795, 103-109.
[240]
Dai, W.; Li, H.; Li, M.; Li, C.; Wu, X.; Yang, B. Electrochemical imprinted polycrystalline nickel–nickel oxide half-nanotube-modified boron-doped diamond electrode for the detection of l-serine. ACS Appl. Mat. Interf, 2015, 7(41), 22858-22867.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 15
ISSUE: 3
Year: 2019
Page: [219 - 239]
Pages: 21
DOI: 10.2174/1573411014666180501100131
Price: $58

Article Metrics

PDF: 51
HTML: 1