Natural Alkaloids Intervening the Insulin Pathway: New Hopes for Anti-Diabetic Agents?

Author(s): Maria-Ioanna Christodoulou*, Job Tchoumtchoua, Alexios-Leandros Skaltsounis, Andreas Scorilas, Maria Halabalaki.

Journal Name: Current Medicinal Chemistry

Volume 26 , Issue 32 , 2019

  Journal Home
Translate in Chinese

Abstract:

Background: Accumulating experimental data supports the capacity of natural compounds to intervene in complicated molecular pathways underlying the pathogenesis of certain human morbidities. Among them, diabetes is now a world’s epidemic associated with increased risk of death; thus, the detection of novel anti-diabetic agents and/or adjuvants is of vital importance. Alkaloids represent a diverse group of natural products with a range of therapeutic properties; during the last 20 years, published research on their anti-diabetic capacity has been tremendously increased.

Purpose: To discuss current concepts on the anti-diabetic impact of certain alkaloids, with special reference to their molecular targets throughout the insulin-signaling pathway.

Methodology: Upon in-depth search in the SCOPUS and PUBMED databases, the literature on alkaloids with insulin secretion/sensitization properties was critically reviewed.

Results: In-vitro and in-vivo evidence supports the effect of berberine, trigonelline, piperine, oxymatrine, vindoneline, evodiamine and neferine on insulin-signaling and related cascades in beta-cells, myocytes, adipocytes, hepatocytes and other cells. Associated receptors, kinases, hormones and cytokines, are affected in terms of gene transcription, protein expression, activity and/or phosphorylation. Pathophysiological processes associated with insulin resistance, beta-cell failure, oxidative stress and inflammation, as well as clinical phenotype are also influenced.

Discussion: Growing evidence suggests the ability of specific alkaloids to intervene in the insulin-signal transduction pathway, reverse molecular defects resulting in insulin resistance and glucose intolerance and improve disease complications, in-vitro and in-vivo. Future indepth molecular studies are expected to elucidate their exact mechanism of action, while large clinical trials are urgently needed to assess their potential as anti-diabetic agents.

Keywords: Alkaloids, natural products, diabetes mellitus (DM), insulin-signaling pathway, insulin resistance, inflammation, oxidative stress.

[1]
Gardner, D.; Shoback, D. Greenspan’s Basic and Clinical Endocrinology, 9th ed; McGraw-Hill Medical: China, 2011.
[2]
Pinhas-Hamiel, O.; Zeitler, P. Acute and chronic complications of type 2 diabetes mellitus in children and adolescents. Lancet, 2007, 369(9575), 1823-1831.
[http://dx.doi.org/10.1016/S0140-6736(07)60821-6] [PMID: 17531891]
[3]
International Diabetes Federation (IDF). 7th ed. International Diabetes Federation: Brussels, Belgium, 2015.
[4]
Shi, Y.; Hu, F.B. The global implications of diabetes and cancer. Lancet, 2014, 383(9933), 1947-1948.
[http://dx.doi.org/10.1016/S0140-6736(14)60886-2] [PMID: 24910221]
[5]
Centers for Disease Control and Prevention.. National Diabetes Statistics Report: Estimates of Diabetes and Its Burden in the United States, 2014. Atlanta, GA: U.S. Department of Health and Human Services;, 2014.
[6]
Fu, Z.; Gilbert, E.R.; Liu, D. Regulation of insulin synthesis and secretion and pancreatic Beta-cell dysfunction in diabetes. Curr. Diabetes Rev., 2013, 9(1), 25-53.
[http://dx.doi.org/10.2174/157339913804143225] [PMID: 22974359]
[7]
Del Prato, S.; Bonadonna, R.C.; Bonora, E.; Gulli, G.; Solini, A.; Shank, M.; DeFronzo, R.A. Characterization of cellular defects of insulin action in type 2 (non-insulin-dependent) diabetes mellitus. J. Clin. Invest., 1993, 91(2), 484-494.
[http://dx.doi.org/10.1172/JCI116226] [PMID: 8432857]
[8]
DeFronzo, R.A. Pathogenesis of type 2 diabetes mellitus. Med. Clin. North Am., 2004, 88(4), 787-835. [ix]
[http://dx.doi.org/10.1016/j.mcna.2004.04.013] [PMID: 15308380]
[9]
DeFronzo, R.A. Lilly lecture 1987. The triumvirate: beta-cell, muscle, liver. A collusion responsible for NIDDM. Diabetes, 1988, 37(6), 667-687.
[http://dx.doi.org/10.2337/diab.37.6.667] [PMID: 3289989]
[10]
Abdul-Ghani, M.A.; DeFronzo, R.A. Pathogenesis of insulin resistance in skeletal muscle. J. Biomed. Biotechnol., 2010, 2010476279
[http://dx.doi.org/10.1155/2010/476279] [PMID: 20445742]
[11]
Meshkani, R.; Adeli, K. Hepatic insulin resistance, metabolic syndrome and cardiovascular disease. Clin. Biochem., 2009, 42(13-14), 1331-1346.
[http://dx.doi.org/10.1016/j.clinbiochem.2009.05.018] [PMID: 19501581]
[12]
Guilherme, A.; Virbasius, J.V.; Puri, V.; Czech, M.P. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat. Rev. Mol. Cell Biol., 2008, 9(5), 367-377.
[http://dx.doi.org/10.1038/nrm2391] [PMID: 18401346]
[13]
Osborn, O.; Olefsky, J.M. The cellular and signaling networks linking the immune system and metabolism in disease. Nat. Med., 2012, 18(3), 363-374.
[http://dx.doi.org/10.1038/nm.2627] [PMID: 22395709]
[14]
Halban, P.A.; Polonsky, K.S.; Bowden, D.W.; Hawkins, M.A.; Ling, C.; Mather, K.J.; Powers, A.C.; Rhodes, C.J.; Sussel, L.; Weir, G.C. β-cell failure in type 2 diabetes: postulated mechanisms and prospects for prevention and treatment. J. Clin. Endocrinol. Metab., 2014, 99(6), 1983-1992.
[http://dx.doi.org/10.1210/jc.2014-1425] [PMID: 24712577]
[15]
Talchai, C.; Xuan, S.; Lin, H.V.; Sussel, L.; Accili, D. Pancreatic β cell dedifferentiation as a mechanism of diabetic β cell failure. Cell, 2012, 150(6), 1223-1234.
[http://dx.doi.org/10.1016/j.cell.2012.07.029] [PMID: 22980982]
[16]
Weir, G.C.; Bonner-Weir, S. Five stages of evolving beta-cell dysfunction during progression to diabetes. Diabetes, 2004, 53(Suppl. 3), S16-S21.
[http://dx.doi.org/10.2337/diabetes.53.suppl_3.S16] [PMID: 15561905]
[17]
Fontés, G.; Zarrouki, B.; Hagman, D.K.; Latour, M.G.; Semache, M.; Roskens, V.; Moore, P.C.; Prentki, M.; Rhodes, C.J.; Jetton, T.L.; Poitout, V. Glucolipotoxicity age-dependently impairs beta cell function in rats despite a marked increase in beta cell mass. Diabetologia, 2010, 53(11), 2369-2379.
[http://dx.doi.org/10.1007/s00125-010-1850-5] [PMID: 20628728]
[18]
Donath, M.Y.; Shoelson, S.E. Type 2 diabetes as an inflammatory disease. Nat. Rev. Immunol., 2011, 11(2), 98-107.
[http://dx.doi.org/10.1038/nri2925] [PMID: 21233852]
[19]
Hung, H.Y.; Qian, K.; Morris-Natschke, S.L.; Hsu, C.S.; Lee, K.H. Recent discovery of plant-derived anti-diabetic natural products. Nat. Prod. Rep., 2012, 29(5), 580-606.
[http://dx.doi.org/10.1039/c2np00074a] [PMID: 22491825]
[20]
Singh, R.; Kaur, N.; Kishore, L.; Gupta, G.K. Management of diabetic complications: a chemical constituents based approach. J. Ethnopharmacol., 2013, 150(1), 51-70.
[http://dx.doi.org/10.1016/j.jep.2013.08.051] [PMID: 24041460]
[21]
Vermaak, I.; Viljoen, A.M.; Hamman, J.H. Natural products in anti-obesity therapy. Nat. Prod. Rep., 2011, 28(9), 1493-1533.
[http://dx.doi.org/10.1039/c1np00035g] [PMID: 21738930]
[22]
Xia, X.; Weng, J. Targeting metabolic syndrome: candidate natural agents. J. Diabetes, 2010, 2(4), 243-249.
[http://dx.doi.org/10.1111/j.1753-0407.2010.00090.x] [PMID: 20923500]
[23]
Yun, J.W. Possible anti-obesity therapeutics from nature--a review. Phytochemistry, 2010, 71(14-15), 1625-1641.
[http://dx.doi.org/10.1016/j.phytochem.2010.07.011] [PMID: 20732701]
[24]
Fattorusso, E.; Taglialatela-Scafati, O. Modern Alkaloids: Structure, Isolation, Synthesis, and Biology; Wiley Editing Services, 2007.
[http://dx.doi.org/10.1002/9783527621071]
[25]
Knö lker, H. Jm. Topics in Current Chemistry 309: Alkaloids Synthesis.Springer Berlin Heidelberg, 2012.
[26]
Patnaik, P. A Comprehensive Guide to the Hazardous Properties of Chemical Substances.3rd ed. John Wiley & Sons, 2007.
[http://dx.doi.org/10.1002/9780470134955]
[27]
Skolik, J.J.; Zalewski, R.I. Natural Products Chemistry Kodansha, University Science Books., 1984, Vol. 3, . Kōji Nakanishi, Kodansha Ltd, Tokyo
[28]
Bruneton, J. Pharmacognosy, Phytochemistry, Medicinal Plants.2nd ed. Lavoisier Technique & Documentation: Paris, 1999.
[29]
John, W.D. Alkaloids. Nature’s curse or blessing by manfred hesse. J. Nat. Prod., 2003, 6(66), 901-902.
[30]
Amirkia, V.; Heinrich, M. Natural products and drug discovery: a survey of stakeholders in industry and academia. Front. Pharmacol., 2015, 6, 237.
[http://dx.doi.org/10.3389/fphar.2015.00237] [PMID: 26578954]
[31]
de Sousa Falcão, H.; Leite, J.A.; Barbosa-Filho, J.M.; de Athayde-Filho, P.F.; de Oliveira Chaves, M.C.; Moura, M.D.; Ferreira, A.L.; de Almeida, A.B.; Souza-Brito, A.R.; de Fátima Formiga Melo Diniz, M.; Batista, L.M. Gastric and duodenal antiulcer activity of alkaloids: a review. Molecules, 2008, 13(12), 3198-3223.
[http://dx.doi.org/10.3390/molecules13123198] [PMID: 19104486]
[32]
Shojaie, M.; Abbas, Z.; Luck, N.H.; Mubarak, M. Ampullary ganglioneuroma: an unusual feature of neurofibromatosis type 1--a case report. J. Pak. Med. Assoc., 2005, 55(7), 299-300.
[PMID: 16108515]
[33]
Atanasov, A.G.; Waltenberger, B.; Pferschy-Wenzig, E.M.; Linder, T.; Wawrosch, C.; Uhrin, P.; Temml, V.; Wang, L.; Schwaiger, S.; Heiss, E.H.; Rollinger, J.M.; Schuster, D.; Breuss, J.M.; Bochkov, V.; Mihovilovic, M.D.; Kopp, B.; Bauer, R.; Dirsch, V.M.; Stuppner, H. Discovery and resupply of pharmacologically active plant-derived natural products: a review. Biotechnol. Adv., 2015, 33(8), 1582-1614.
[http://dx.doi.org/10.1016/j.biotechadv.2015.08.001] [PMID: 26281720]
[34]
Cocco, G.; Chu, D.C.; Pandolfi, S. Colchicine in clinical medicine. a guide for internists. Eur. J. Intern. Med., 2010, 21(6), 503-508.
[http://dx.doi.org/10.1016/j.ejim.2010.09.010] [PMID: 21111934]
[35]
Vuddanda, P.R.; Chakraborty, S.; Singh, S. Berberine: a potential phytochemical with multispectrum therapeutic activities. Expert Opin. Investig. Drugs, 2010, 19(10), 1297-1307.
[http://dx.doi.org/10.1517/13543784.2010.517745] [PMID: 20836620]
[36]
Hsu, Y.Y.; Chen, C.S.; Wu, S.N.; Jong, Y.J.; Lo, Y.C. Berberine activates Nrf2 nuclear translocation and protects against oxidative damage via a phosphatidylinositol 3-kinase/Akt-dependent mechanism in NSC34 motor neuron-like cells. Eur. J. Pharm. Sci., 2012, 46(5), 415-425.
[http://dx.doi.org/10.1016/j.ejps.2012.03.004] [PMID: 22469516]
[37]
Hu, Y.; Ehli, E.A.; Kittelsrud, J.; Ronan, P.J.; Munger, K.; Downey, T.; Bohlen, K.; Callahan, L.; Munson, V.; Jahnke, M.; Marshall, L.L.; Nelson, K.; Huizenga, P.; Hansen, R.; Soundy, T.J.; Davies, G.E. Lipid-lowering effect of berberine in human subjects and rats. Phytomedicine, 2012, 19(10), 861-867.
[http://dx.doi.org/10.1016/j.phymed.2012.05.009] [PMID: 22739410]
[38]
Wu, D.; Wen, W.; Qi, C.L.; Zhao, R.X.; Lü, J.H.; Zhong, C.Y.; Chen, Y.Y. Ameliorative effect of berberine on renal damage in rats with diabetes induced by high-fat diet and streptozotocin. Phytomedicine, 2012, 19(8-9), 712-718.
[http://dx.doi.org/10.1016/j.phymed.2012.03.003] [PMID: 22483555]
[39]
Yin, J.; Gao, Z.; Liu, D.; Liu, Z.; Ye, J. Berberine improves glucose metabolism through induction of glycolysis. Am. J. Physiol. Endocrinol. Metab., 2008, 294(1), E148-E156.
[http://dx.doi.org/10.1152/ajpendo.00211.2007] [PMID: 17971514]
[40]
Derosa, G.; Maffioli, P. Alkaloids in the nature: pharmacological applications in clinical practice of berberine and mate tea. Curr. Top. Med. Chem., 2014, 14(2), 200-206.
[http://dx.doi.org/10.2174/1568026613666131213155252] [PMID: 24359201]
[41]
Chueh, W.H.; Lin, J.Y. Protective effect of berberine on serum glucose levels in non-obese diabetic mice. Int. Immunopharmacol., 2012, 12(3), 534-538.
[http://dx.doi.org/10.1016/j.intimp.2012.01.003] [PMID: 22266065]
[42]
Zhang, Y.; Ye, J. Mitochondrial inhibitor as a new class of insulin sensitizer. Acta Pharm. Sin. B, 2012, 2(4), 341-349.
[http://dx.doi.org/10.1016/j.apsb.2012.06.010] [PMID: 23710432]
[43]
Winder, W.W.; Hardie, D.G. AMP-activated protein kinase, a metabolic master switch: possible roles in type 2 diabetes. Am. J. Physiol., 1999, 277(1), E1-E10.
[PMID: 10409121]
[44]
Dong, Y.; Chen, Y.T.; Yang, Y.X.; Zhou, X.J.; Dai, S.J.; Tong, J.F.; Shou, D.; Li, C. Metabolomics study of type 2 diabetes mellitus and the antidiabetic effect of berberine in zucker diabetic fatty rats using uplc-esi-hdms. Phytother. Res., 2016, 30(5), 823-828.
[http://dx.doi.org/10.1002/ptr.5587] [PMID: 26888689]
[45]
Zhang, C.H.; Yu, R.Y.; Liu, Y.H.; Tu, X.Y.; Tu, J.; Wang, Y.S.; Xu, G.L. Interaction of baicalin with berberine for glucose uptake in 3T3-L1 adipocytes and HepG2 hepatocytes. J. Ethnopharmacol., 2014, 151(2), 864-872.
[http://dx.doi.org/10.1016/j.jep.2013.11.054] [PMID: 24361332]
[46]
Kim, S.H.; Shin, E.J.; Kim, E.D.; Bayaraa, T.; Frost, S.C.; Hyun, C.K. Berberine activates GLUT1-mediated glucose uptake in 3T3-L1 adipocytes. Biol. Pharm. Bull., 2007, 30(11), 2120-2125.
[http://dx.doi.org/10.1248/bpb.30.2120] [PMID: 17978486]
[47]
Wang, Y.; Campbell, T.; Perry, B.; Beaurepaire, C.; Qin, L. Hypoglycemic and insulin-sensitizing effects of berberine in high-fat diet- and streptozotocin-induced diabetic rats. Metabolism, 2011, 60(2), 298-305.
[http://dx.doi.org/10.1016/j.metabol.2010.02.005] [PMID: 20304443]
[48]
Xia, X.; Yan, J.; Shen, Y.; Tang, K.; Yin, J.; Zhang, Y.; Yang, D.; Liang, H.; Ye, J.; Weng, J. Berberine improves glucose metabolism in diabetic rats by inhibition of hepatic gluconeogenesis. PLoS One, 2011, 6(2)e16556
[http://dx.doi.org/10.1371/journal.pone.0016556] [PMID: 21304897]
[49]
Jiang, S.J.; Dong, H.; Li, J.B.; Xu, L.J.; Zou, X.; Wang, K.F.; Lu, F.E.; Yi, P. Berberine inhibits hepatic gluconeogenesis via the LKB1-AMPK-TORC2 signaling pathway in streptozotocin-induced diabetic rats. World J. Gastroenterol., 2015, 21(25), 7777-7785.
[http://dx.doi.org/10.3748/wjg.v21.i25.7777] [PMID: 26167077]
[50]
Xie, X.; Li, W.; Lan, T.; Liu, W.; Peng, J.; Huang, K.; Huang, J.; Shen, X.; Liu, P.; Huang, H. Berberine ameliorates hyperglycemia in alloxan-induced diabetic C57BL/6 mice through activation of Akt signaling pathway. Endocr. J., 2011, 58(9), 761-768.
[http://dx.doi.org/10.1507/endocrj.K11E-024] [PMID: 21705841]
[51]
Gu, J.J.; Gao, F.Y.; Zhao, T.Y. A preliminary investigation of the mechanisms underlying the effect of berberine in preventing high-fat diet-induced insulin resistance in rats. J. Physiol. Pharmacol., 2012, 63(5), 505-513.
[PMID: 23211304]
[52]
Kong, W.J.; Zhang, H.; Song, D.Q.; Xue, R.; Zhao, W.; Wei, J.; Wang, Y.M.; Shan, N.; Zhou, Z.X.; Yang, P.; You, X.F.; Li, Z.R.; Si, S.Y.; Zhao, L.X.; Pan, H.N.; Jiang, J.D. Berberine reduces insulin resistance through protein kinase C-dependent up-regulation of insulin receptor expression. Metabolism, 2009, 58(1), 109-119.
[http://dx.doi.org/10.1016/j.metabol.2008.08.013] [PMID: 19059538]
[53]
Zhang, H.; Wei, J.; Xue, R.; Wu, J.D.; Zhao, W.; Wang, Z.Z.; Wang, S.K.; Zhou, Z.X.; Song, D.Q.; Wang, Y.M.; Pan, H.N.; Kong, W.J.; Jiang, J.D. Berberine lowers blood glucose in type 2 diabetes mellitus patients through increasing insulin receptor expression. Metabolism, 2010, 59(2), 285-292.
[http://dx.doi.org/10.1016/j.metabol.2009.07.029] [PMID: 19800084]
[54]
Ni, Y.X. [Therapeutic effect of berberine on 60 patients with type II diabetes mellitus and experimental research]. Zhong Xi Yi Jie He Za Zhi, 1988, 8(12), 711-713.
[55]
Pérez-Rubio, K.G.; González-Ortiz, M.; Martínez-Abundis, E.; Robles-Cervantes, J.A.; Espinel-Bermúdez, M.C. Effect of berberine administration on metabolic syndrome, insulin sensitivity, and insulin secretion. Metab. Syndr. Relat. Disord., 2013, 11(5), 366-369.
[http://dx.doi.org/10.1089/met.2012.0183] [PMID: 23808999]
[56]
Li, Z.; Liu, L.H. Therapeutic efficacy of combined berberine and glipizide on type 2 diabetes mellitus. Yi Xue Lin Chuang Za Zhi, 2007, 24(1), 61-64.
[57]
Liu, X.; Li, G.; Zhu, H.; Huang, L.; Liu, Y.; Ma, C.; Qin, C. Beneficial effect of berberine on hepatic insulin resistance in diabetic hamsters possibly involves in SREBPs, LXRα and PPARα transcriptional programs. Endocr. J., 2010, 57(10), 881-893.
[http://dx.doi.org/10.1507/endocrj.K10E-043] [PMID: 20724798]
[58]
Li, G.S.; Liu, X.H.; Zhu, H.; Huang, L.; Liu, Y.L.; Ma, C.M.; Qin, C. Berberine-improved visceral white adipose tissue insulin resistance associated with altered sterol regulatory element-binding proteins, liver x receptors, and peroxisome proliferator-activated receptors transcriptional programs in diabetic hamsters. Biol. Pharm. Bull., 2011, 34(5), 644-654.
[http://dx.doi.org/10.1248/bpb.34.644] [PMID: 21532151]
[59]
Liu, L.; Liu, J.; Gao, Y.; Yu, X.; Xu, G.; Huang, Y. Uncoupling protein-2 mediates the protective action of berberine against oxidative stress in rat insulinoma INS-1E cells and in diabetic mouse islets. Br. J. Pharmacol., 2014, 171(13), 3246-3254.
[http://dx.doi.org/10.1111/bph.12666] [PMID: 24588674]
[60]
Arsenijevic, D.; Onuma, H.; Pecqueur, C.; Raimbault, S.; Manning, B.S.; Miroux, B.; Couplan, E.; Alves-Guerra, M.C.; Goubern, M.; Surwit, R.; Bouillaud, F.; Richard, D.; Collins, S.; Ricquier, D. Disruption of the uncoupling protein-2 gene in mice reveals a role in immunity and reactive oxygen species production. Nat. Genet., 2000, 26(4), 435-439.
[http://dx.doi.org/10.1038/82565] [PMID: 11101840]
[61]
Chatuphonprasert, W.; Lao-Ong, T.; Jarukamjorn, K. Improvement of superoxide dismutase and catalase in streptozotocin-nicotinamide-induced type 2-diabetes in mice by berberine and glibenclamide. Pharm. Biol., 2013, 52(4), 419-427.
[http://dx.doi.org/10.3109/13880209.2013.839714] [PMID: 24188560]
[62]
Liu, C.; Wang, Z.; Song, Y.; Wu, D.; Zheng, X.; Li, P.; Jin, J.; Xu, N.; Li, L. Effects of berberine on amelioration of hyperglycemia and oxidative stress in high glucose and high fat diet-induced diabetic hamsters in vivo. BioMed Res. Int., 2015, 2015313808
[http://dx.doi.org/10.1155/2015/313808] [PMID: 25705654]
[63]
Chandirasegaran, G.; Elanchezhiyan, C.; Ghosh, K.; Sethupathy, S. Berberine chloride ameliorates oxidative stress, inflammation and apoptosis in the pancreas of Streptozotocin induced diabetic rats. Biomed. Pharmacother., 2017, 95, 175-185.
[http://dx.doi.org/10.1016/j.biopha.2017.08.040] [PMID: 28843149]
[64]
Dong, S.F.; Yasui, N.; Negishb, H.; Kishimoto, A.; Sun, J.N.; Ikeda, K. Increased oxidative stress in cultured 3T3-L1 cells was attenuated by berberine treatment. Nat. Prod. Commun., 2015, 10(6), 895-897.
[http://dx.doi.org/10.1177/1934578X1501000626] [PMID: 26197511]
[65]
Wang, Y. Attenuation of berberine on lipopolysaccharide-induced inflammatory and apoptosis responses in β-cells via TLR4-independent JNK/NF-κB pathway. Pharm. Biol., 2013. [Epub ahead of Print]
[http://dx.doi.org/10.3109/13880209.2013.840851] [PMID: 24188583]
[66]
Lou, T.; Zhang, Z.; Xi, Z.; Liu, K.; Li, L.; Liu, B.; Huang, F. Berberine inhibits inflammatory response and ameliorates insulin resistance in hepatocytes. Inflammation, 2011, 34(6), 659-667.
[http://dx.doi.org/10.1007/s10753-010-9276-2] [PMID: 21110076]
[67]
Li, F.; Zhao, Y.B.; Wang, D.K.; Zou, X.; Fang, K.; Wang, K.F. Berberine relieves insulin resistance via the cholinergic anti-inflammatory pathway in HepG2 cells. J. Huazhong Univ. Sci. Technolog. Med. Sci., 2016, 36(1), 64-69.
[http://dx.doi.org/10.1007/s11596-016-1543-5] [PMID: 26838742]
[68]
Bencherif, M.; Lippiello, P.M.; Lucas, R.; Marrero, M.B. Alpha7 nicotinic receptors as novel therapeutic targets for inflammation-based diseases. Cell. Mol. Life Sci., 2011, 68(6), 931-949.
[http://dx.doi.org/10.1007/s00018-010-0525-1] [PMID: 20953658]
[69]
Rosas-Ballina, M.; Tracey, K.J. The neurology of the immune system: neural reflexes regulate immunity. Neuron, 2009, 64(1), 28-32.
[http://dx.doi.org/10.1016/j.neuron.2009.09.039] [PMID: 19840545]
[70]
Wang, H.; Yu, M.; Ochani, M.; Amella, C.A.; Tanovic, M.; Susarla, S.; Li, J.H.; Wang, H.; Yang, H.; Ulloa, L.; Al-Abed, Y.; Czura, C.J.; Tracey, K.J. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature, 2003, 421(6921), 384-388.
[http://dx.doi.org/10.1038/nature01339] [PMID: 12508119]
[71]
Kim, D.K.; Lee, K.T.; Baek, N.I.; Kim, S.H.; Park, H.W.; Lim, J.P.; Shin, T.Y.; Eom, D.O.; Yang, J.H.; Eun, J.S. Acetylcholinesterase inhibitors from the aerial parts of Corydalis speciosa. Arch. Pharm. Res., 2004, 27(11), 1127-1131.
[http://dx.doi.org/10.1007/BF02975117] [PMID: 15595415]
[72]
Zhou, H.; Feng, L.; Xu, F.; Sun, Y.; Ma, Y.; Zhang, X.; Liu, H.; Xu, G.; Wu, X.; Shen, Y.; Sun, Y.; Wu, X.; Xu, Q. Berberine inhibits palmitate-induced NLRP3 inflammasome activation by triggering autophagy in macrophages: a new mechanism linking berberine to insulin resistance improvement. Biomed. Pharmacother., 2017, 89, 864-874.
[http://dx.doi.org/10.1016/j.biopha.2017.03.003] [PMID: 28282788]
[73]
Sheng, Z.X.; Xie, D.H. Therapeutic effect of berberine on the levels of inflammatory factors in type 2 diabetic patients. Nat. Med., 2010, 41(3), 177-180.
[74]
Tagougui, S.; Fontaine, P.; Leclair, E.; Aucouturier, J.; Matran, R.; Oussaidene, K.; Descatoire, A.; Prieur, F.; Mucci, P.; Vambergue, A.; Baquet, G.; Heyman, E. Regional cerebral hemodynamic response to incremental exercise is blunted in poorly controlled patients with uncomplicated type 1 diabetes. Diabetes Care, 2015, 38(5), 858-867.
[http://dx.doi.org/10.2337/dc14-1792] [PMID: 25665816]
[75]
Chen, Q.; Mo, R.; Wu, N.; Zou, X.; Shi, C.; Gong, J.; Li, J.; Fang, K.; Wang, D.; Yang, D.; Wang, K.; Chen, J. Berberine ameliorates diabetes-associated cognitive decline through modulation of aberrant inflammation response and insulin signaling pathway in DM rats. Front. Pharmacol., 2017, 8, 334.
[http://dx.doi.org/10.3389/fphar.2017.00334] [PMID: 28634451]
[76]
Shen, N.; Huan, Y.; Shen, Z.F. Berberine inhibits mouse insulin gene promoter through activation of AMP activated protein kinase and may exert beneficial effect on pancreatic β-cell. Eur. J. Pharmacol., 2012, 694(1-3), 120-126.
[http://dx.doi.org/10.1016/j.ejphar.2012.07.052] [PMID: 22955013]
[77]
Chueh, W.H.; Lin, J.Y. Berberine, an isoquinoline alkaloid in herbal plants, protects pancreatic islets and serum lipids in nonobese diabetic mice. J. Agric. Food Chem., 2011, 59(14), 8021-8027.
[http://dx.doi.org/10.1021/jf201627w] [PMID: 21696141]
[78]
Jiang, Y.Y.; Cui, H.M.; Wang, J.L.; Liu, H.; Dang, M.M.; Zhang, Q.Y.; Yang, F.; Kou, J.T.; Tong, X.L. Protective role of berberine and Coptischinensis extract on T2MD rats and associated islet Rin5f cells. Mol. Med. Rep., 2017, 16(5), 6981-6991.
[http://dx.doi.org/10.3892/mmr.2017.7467] [PMID: 28901416]
[79]
Kim, J.K.; Fillmore, J.J.; Chen, Y.; Yu, C.; Moore, I.K.; Pypaert, M.; Lutz, E.P.; Kako, Y.; Velez-Carrasco, W.; Goldberg, I.J.; Breslow, J.L.; Shulman, G.I. Tissue-specific overexpression of lipoprotein lipase causes tissue-specific insulin resistance. Proc. Natl. Acad. Sci. USA, 2001, 98(13), 7522-7527.
[http://dx.doi.org/10.1073/pnas.121164498] [PMID: 11390966]
[80]
Unger, R.H. Lipotoxicity in the pathogenesis of obesity-dependent NIDDM. Genetic and clinical implications. Diabetes, 1995, 44(8), 863-870.
[http://dx.doi.org/10.2337/diab.44.8.863] [PMID: 7621989]
[81]
Claus, T.H.; Lowe, D.B.; Liang, Y.; Salhanick, A.I.; Lubeski, C.K.; Yang, L.; Lemoine, L.; Zhu, J.; Clairmont, K.B. Specific inhibition of hormone-sensitive lipase improves lipid profile while reducing plasma glucose. J. Pharmacol. Exp. Ther., 2005, 315(3), 1396-1402.
[http://dx.doi.org/10.1124/jpet.105.086926] [PMID: 16162821]
[82]
Zhou, L.; Wang, X.; Yang, Y.; Wu, L.; Li, F.; Zhang, R.; Yuan, G.; Wang, N.; Chen, M.; Ning, G. Berberine attenuates cAMP-induced lipolysis via reducing the inhibition of phosphodiesterase in 3T3-L1 adipocytes. Biochim. Biophys. Acta, 2011, 1812(4), 527-535.
[http://dx.doi.org/10.1016/j.bbadis.2010.10.001] [PMID: 20969954]
[83]
Li, Y.; Wang, P.; Zhuang, Y.; Lin, H.; Li, Y.; Liu, L.; Meng, Q.; Cui, T.; Liu, J.; Li, Z. Activation of AMPK by berberine promotes adiponectin multimerization in 3T3-L1 adipocytes. FEBS Lett., 2011, 585(12), 1735-1740.
[http://dx.doi.org/10.1016/j.febslet.2011.04.051] [PMID: 21536037]
[84]
Yang, J.; Yin, J.; Gao, H.; Xu, L.; Wang, Y.; Xu, L.; Li, M. Berberine improves insulin sensitivity by inhibiting fat store and adjusting adipokines profile in human preadipocytes and metabolic syndrome patients. Evid. Based Complement. Alternat. Med., 2012, 2012363845
[http://dx.doi.org/10.1155/2012/363845] [PMID: 22474499]
[85]
Shimabukuro, M.; Zhou, Y.T.; Levi, M.; Unger, R.H. Fatty acid-induced beta cell apoptosis: a link between obesity and diabetes. Proc. Natl. Acad. Sci. USA, 1998, 95(5), 2498-2502.
[http://dx.doi.org/10.1073/pnas.95.5.2498] [PMID: 9482914]
[86]
Unger, R.H.; Orci, L. Lipoapoptosis: its mechanism and its diseases. Biochim. Biophys. Acta, 2002, 1585(2-3), 202-212.
[http://dx.doi.org/10.1016/S1388-1981(02)00342-6] [PMID: 12531555]
[87]
Gao, N.; Zhao, T.Y.; Li, X.J. The protective effect of berberine on β-cell lipoapoptosis. J. Endocrinol. Invest., 2011, 34(2), 124-130.
[http://dx.doi.org/10.1007/BF03347042] [PMID: 20414047]
[88]
Hsu, Y.Y.; Tseng, Y.T.; Lo, Y.C. Berberine, a natural antidiabetes drug, attenuates glucose neurotoxicity and promotes Nrf2-related neurite outgrowth. Toxicol. Appl. Pharmacol., 2013, 272(3), 787-796.
[http://dx.doi.org/10.1016/j.taap.2013.08.008] [PMID: 23954465]
[89]
Morse, D.; Choi, A.M. Heme oxygenase-1: from bench to bedside. Am. J. Respir. Crit. Care Med., 2005, 172(6), 660-670.
[http://dx.doi.org/10.1164/rccm.200404-465SO] [PMID: 15901614]
[90]
Chang, W.; Zhang, M.; Li, J.; Meng, Z.; Wei, S.; Du, H.; Chen, L.; Hatch, G.M. Berberine improves insulin resistance in cardiomyocytes via activation of 5′-adenosine monophosphate-activated protein kinase. Metabolism, 2013, 62(8), 1159-1167.
[http://dx.doi.org/10.1016/j.metabol.2013.02.007] [PMID: 23537779]
[91]
Wang, M.; Wang, J.; Tan, R.; Wu, Q.; Qiu, H.; Yang, J.; Jiang, Q. Effect of berberine on PPAR α/NO activation in high glucose- and insulin-induced cardiomyocyte hypertrophy. Evid. Based Complement. Alternat. Med., 2013, 2013285489
[PMID: 23573121]
[92]
Chang, W.; Chen, L.; Hatch, G.M. Berberine treatment attenuates the palmitate-mediated inhibition of glucose uptake and consumption through increased 1,2,3-triacyl-sn-glycerol synthesis and accumulation in H9c2 cardiomyocytes. Biochim. Biophys. Acta, 2016, 1861(4), 352-362.
[http://dx.doi.org/10.1016/j.bbalip.2015.12.017] [PMID: 26774040]
[93]
Chang, W.; Zhang, M.; Meng, Z.; Yu, Y.; Yao, F.; Hatch, G.M.; Chen, L. Berberine treatment prevents cardiac dysfunction and remodeling through activation of 5′-adenosine monophosphate-activated protein kinase in type 2 diabetic rats and in palmitate-induced hypertrophic H9c2 cells. Eur. J. Pharmacol., 2015, 769, 55-63.
[http://dx.doi.org/10.1016/j.ejphar.2015.10.043] [PMID: 26522928]
[94]
Cobos, A.R.; Segade, L.A.; Fuentes, I. Muscle fibre types in the suprahyoid muscles of the rat. J. Anat., 2001, 198(Pt 3), 283-294.
[http://dx.doi.org/10.1046/j.1469-7580.2001.19830283.x] [PMID: 11322721]
[95]
Chen, K.; Li, G.; Geng, F.; Zhang, Z.; Li, J.; Yang, M.; Dong, L.; Gao, F. Berberine reduces ischemia/reperfusion-induced myocardial apoptosis via activating AMPK and PI3K-Akt signaling in diabetic rats. Apoptosis, 2014, 19(6), 946-957.
[http://dx.doi.org/10.1007/s10495-014-0977-0] [PMID: 24664781]
[96]
Geng, F.H.; Li, G.H.; Zhang, X.; Zhang, P.; Dong, M.Q.; Zhao, Z.J.; Zhang, Y.; Dong, L.; Gao, F. Berberine improves mesenteric artery insulin sensitivity through up-regulating insulin receptor-mediated signalling in diabetic rats. Br. J. Pharmacol., 2016, 173(10), 1569-1579.
[http://dx.doi.org/10.1111/bph.13466] [PMID: 26914282]
[97]
Zhang, X.; Liang, D.; Lian, X.; Jiang, Y.; He, H.; Liang, W.; Zhao, Y.; Chi, Z.H. Berberine activates Nrf2 nuclear translocation and inhibits apoptosis induced by high glucose in renal tubular epithelial cells through a phosphatidylinositol 3-kinase/Akt-dependent mechanism. Apoptosis, 2016, 21(6), 721-736.
[http://dx.doi.org/10.1007/s10495-016-1234-5] [PMID: 26979714]
[98]
Wu, U.; Cha, Y.; Huang, X.; Liu, J.; Chen, Z.; Wang, F.; Xu, J.; Sheng, L.; Ding, H. Protective effects of berberine on high fat-induced kidney damage by increasing serum adiponectin and promoting insulin sensitivity. Int. J. Clin. Exp. Pathol., 2015, 8(11), 14486-14492.
[PMID: 26823767]
[99]
Wu, Y.Y.; Zha, Y.; Liu, J.; Wang, F.; Xu, J.; Chen, Z.P.; Ding, H.Y.; Sheng, L.; Han, X.J. Effect of berberine on the ratio of high-molecular weight adiponectin to total adiponectin and adiponectin receptors expressions in high-fat diet fed rats. Chin. J. Integr. Med., 2016. Epub ahead of print
[http://dx.doi.org/10.1007/s11655-016-2518-x] [PMID: 27896586]
[100]
Shan, C.Y.; Yang, J.H.; Kong, Y.; Wang, X.Y.; Zheng, M.Y.; Xu, Y.G.; Wang, Y.; Ren, H.Z.; Chang, B.C.; Chen, L.M. Alteration of the intestinal barrier and GLP2 secretion in berberine-treated type 2 diabetic rats. J. Endocrinol., 2013, 218(3), 255-262.
[http://dx.doi.org/10.1530/JOE-13-0184] [PMID: 23757509]
[101]
Burrin, D.G.; Petersen, Y.; Stoll, B.; Sangild, P. Glucagon-like peptide 2: a nutrient-responsive gut growth factor. J. Nutr., 2001, 131(3), 709-712.
[http://dx.doi.org/10.1093/jn/131.3.709] [PMID: 11238747]
[102]
Tsai, C.H.; Hill, M.; Asa, S.L.; Brubaker, P.L.; Drucker, D.J. Intestinal growth-promoting properties of glucagon-like peptide-2 in mice. Am. J. Physiol., 1997, 273(1 Pt 1), E77-E84.
[PMID: 9252482]
[103]
Rouillé, Y.; Martin, S.; Steiner, D.F. Differential processing of proglucagon by the subtilisin-like prohormone convertases PC2 and PC3 to generate either glucagon or glucagon-like peptide. J. Biol. Chem., 1995, 270(44), 26488-26496.
[http://dx.doi.org/10.1074/jbc.270.44.26488] [PMID: 7592866]
[104]
Ranganath, L.R. Incretins: pathophysiological and therapeutic implications of glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1. J. Clin. Pathol., 2008, 61(4), 401-409.
[http://dx.doi.org/10.1136/jcp.2006.043232] [PMID: 18375745]
[105]
Lu, S.S.; Yu, Y.L.; Zhu, H.J.; Liu, X.D.; Liu, L.; Liu, Y.W.; Wang, P.; Xie, L.; Wang, G.J. Berberine promotes glucagon-like peptide-1 (7-36) amide secretion in streptozotocin-induced diabetic rats. J. Endocrinol., 2009, 200(2), 159-165.
[http://dx.doi.org/10.1677/JOE-08-0419] [PMID: 18996945]
[106]
Yu, Y.; Liu, L.; Wang, X.; Liu, X.; Liu, X.; Xie, L.; Wang, G. Modulation of glucagon-like peptide-1 release by berberine: in vivo and in vitro studies. Biochem. Pharmacol., 2010, 79(7), 1000-1006.
[http://dx.doi.org/10.1016/j.bcp.2009.11.017] [PMID: 19945441]
[107]
Zhang, Q.; Xiao, X.; Li, M.; Li, W.; Yu, M.; Zhang, H.; Ping, F.; Wang, Z.; Zheng, J. Berberine moderates glucose metabolism through the GnRH-GLP-1 and MAPK pathways in the intestine. BMC Complement. Altern. Med., 2014, 14, 188.
[http://dx.doi.org/10.1186/1472-6882-14-188] [PMID: 24912407]
[108]
Zhang, X.; Zhao, Y.; Zhang, M.; Pang, X.; Xu, J.; Kang, C.; Li, M.; Zhang, C.; Zhang, Z.; Zhang, Y.; Li, X.; Ning, G.; Zhao, L. Structural changes of gut microbiota during berberine-mediated prevention of obesity and insulin resistance in high-fat diet-fed rats. PLoS One, 2012, 7(8)e42529
[http://dx.doi.org/10.1371/journal.pone.0042529] [PMID: 22880019]
[109]
Cani, P.D.; Amar, J.; Iglesias, M.A.; Poggi, M.; Knauf, C.; Bastelica, D.; Neyrinck, A.M.; Fava, F.; Tuohy, K.M.; Chabo, C.; Waget, A.; Delmée, E.; Cousin, B.; Sulpice, T.; Chamontin, B.; Ferrières, J.; Tanti, J.F.; Gibson, G.R.; Casteilla, L.; Delzenne, N.M.; Alessi, M.C.; Burcelin, R. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes, 2007, 56(7), 1761-1772.
[http://dx.doi.org/10.2337/db06-1491] [PMID: 17456850]
[110]
Tanti, J.F.; Ceppo, F.; Jager, J.; Berthou, F. Implication of inflammatory signaling pathways in obesity-induced insulin resistance. Front. Endocrinol. (Lausanne), 2013, 3, 181.
[http://dx.doi.org/10.3389/fendo.2012.00181] [PMID: 23316186]
[111]
Sohail, M.U.; Althani, A.; Anwar, H.; Rizzi, R.; Marei, H.E. Role of the gastrointestinal tract microbiome in the pathophysiology of Diabetes Mellitus. J. Diabetes Res., 2017, 20179631435
[http://dx.doi.org/10.1155/2017/9631435] [PMID: 29082264]
[112]
Xu, J.H.; Liu, X.Z.; Pan, W.; Zou, D.J. Berberine protects against diet-induced obesity through regulating metabolic endotoxemia and gut hormone levels. Mol. Med. Rep., 2017, 15(5), 2765-2787.
[http://dx.doi.org/10.3892/mmr.2017.6321] [PMID: 28447763]
[113]
Chang, W. Non-coding RNAs and Berberine: A new mechanism of its anti-diabetic activities. Eur. J. Pharmacol., 2017, 795, 8-12.
[http://dx.doi.org/10.1016/j.ejphar.2016.11.055] [PMID: 27915042]
[114]
Dong, H.; Wang, N.; Zhao, L.; Lu, F. Berberine in the treatment of type 2 diabetes mellitus: a systemic review and meta-analysis. Evid. Based Complement. Alternat. Med., 2012, 2012591654
[http://dx.doi.org/10.1155/2012/591654] [PMID: 23118793]
[115]
Pang, B.; Zhao, L.H.; Zhou, Q.; Zhao, T.Y.; Wang, H.; Gu, C.J.; Tong, X.L. Application of berberine on treating type 2 diabetes mellitus. Int. J. Endocrinol., 2015, 2015905749
[http://dx.doi.org/10.1155/2015/905749] [PMID: 25861268]
[116]
Kwon, M.; Choi, Y.A.; Choi, M.K.; Song, I.S. Organic cation transporter-mediated drug-drug interaction potential between berberine and metformin. Arch. Pharm. Res., 2015, 38(5), 849-856.
[http://dx.doi.org/10.1007/s12272-014-0510-6] [PMID: 25359200]
[117]
Xue, M.; Yang, M.X.; Zhang, W.; Li, X.M.; Gao, D.H.; Ou, Z.M.; Li, Z.P.; Liu, S.H.; Li, X.J.; Yang, S.Y. Characterization, pharmacokinetics, and hypoglycemic effect of berberine loaded solid lipid nanoparticles. Int. J. Nanomedicine, 2013, 8, 4677-4687.
[http://dx.doi.org/10.2147/IJN.S51262] [PMID: 24353417]
[118]
Zhou, J.; Chan, L.; Zhou, S. Trigonelline: a plant alkaloid with therapeutic potential for diabetes and central nervous system disease. Curr. Med. Chem., 2012, 19(21), 3523-3531.
[http://dx.doi.org/10.2174/092986712801323171] [PMID: 22680628]
[119]
Hamden, K.; Bengara, A.; Amri, Z.; Elfeki, A. Experimental diabetes treated with trigonelline: effect on key enzymes related to diabetes and hypertension, β-cell and liver function. Mol. Cell. Biochem., 2013, 381(1-2), 85-94.
[http://dx.doi.org/10.1007/s11010-013-1690-y] [PMID: 23754616]
[120]
Yoshinari, O.; Igarashi, K. Anti-diabetic effect of trigonelline and nicotinic acid, on KK-A(y) mice. Curr. Med. Chem., 2010, 17(20), 2196-2202.
[http://dx.doi.org/10.2174/092986710791299902] [PMID: 20423301]
[121]
Yoshinari, O.; Sato, H.; Igarashi, K. Anti-diabetic effects of pumpkin and its components, trigonelline and nicotinic acid, on Goto-Kakizaki rats. Biosci. Biotechnol. Biochem., 2009, 73(5), 1033-1041.
[http://dx.doi.org/10.1271/bbb.80805] [PMID: 19420712]
[122]
Zhou, J.; Zhou, S.; Zeng, S. Experimental diabetes treated with trigonelline: effect on β cell and pancreatic oxidative parameters. Fundam. Clin. Pharmacol., 2013, 27(3), 279-287.
[http://dx.doi.org/10.1111/j.1472-8206.2011.01022.x] [PMID: 22172053]
[123]
Hamden, K.; Mnafgui, K.; Amri, Z.; Aloulou, A.; Elfeki, A. Inhibition of key digestive enzymes related to diabetes and hyperlipidemia and protection of liver-kidney functions by trigonelline in diabetic rats. Sci. Pharm., 2013, 81(1), 233-246.
[http://dx.doi.org/10.3797/scipharm.1211-14] [PMID: 23641341]
[124]
Sedighi, O.; Makhlough, A.; Shokrzadeh, M.; Hoorshad, S. Association between plasma selenium and glutathione peroxidase levels and severity of diabetic nephropathy in patients with type two diabetes mellitus. Nephrourol. Mon., 2014, 6(5)e21355
[http://dx.doi.org/10.5812/numonthly.21355] [PMID: 25695036]
[125]
Góth, L. Catalase deficiency and type 2 diabetes. Diabetes Care, 2008, 31(12)e93
[http://dx.doi.org/10.2337/dc08-1607] [PMID: 19033415]
[126]
Góth, L.; Lenkey, A.; Bigler, W.N. Blood catalase deficiency and diabetes in Hungary. Diabetes Care, 2001, 24(10), 1839-1840.
[http://dx.doi.org/10.2337/diacare.24.10.1839] [PMID: 11574451]
[127]
Tharaheswari, M.; Jayachandra Reddy, N.; Kumar, R.; Varshney, K.C.; Kannan, M.; Sudha Rani, S. Trigonelline and diosgenin attenuate ER stress, oxidative stress-mediated damage in pancreas and enhance adipose tissue PPARγ activity in type 2 diabetic rats. Mol. Cell. Biochem., 2014, 396(1-2), 161-174.
[http://dx.doi.org/10.1007/s11010-014-2152-x] [PMID: 25070833]
[128]
Afifi, N.A.; Ramadan, A.; Erian, E.Y.; Saleh, D.O.; Sedik, A.A.; Badawi, M.; El Hotaby, W. Trigonelline attenuates hepatic complications and molecular alterations in high-fat high-fructose diet-induced insulin resistance in rats. Can. J. Physiol. Pharmacol., 2017, 95(4), 427-436.
[http://dx.doi.org/10.1139/cjpp-2016-0269] [PMID: 28157387]
[129]
Zhou, J.Y.; Zhou, S.W. Protection of trigonelline on experimental diabetic peripheral neuropathy. Evid. Based Complement. Alternat. Med., 2012. 2012164219
[http://dx.doi.org/10.1155/2012/164219] [PMID: 23304193]
[130]
Ghule, A.E.; Jadhav, S.S.; Bodhankar, S.L. Trigonelline ameliorates diabetic hypertensive nephropathy by suppression of oxidative stress in kidney and reduction in renal cell apoptosis and fibrosis in streptozotocin induced neonatal diabetic (nSTZ) rats. Int. Immunopharmacol., 2012, 14(4), 740-748.
[http://dx.doi.org/10.1016/j.intimp.2012.10.004] [PMID: 23102665]
[131]
van Dijk, A.E.; Olthof, M.R.; Meeuse, J.C.; Seebus, E.; Heine, R.J.; van Dam, R.M. Acute effects of decaffeinated coffee and the major coffee components chlorogenic acid and trigonelline on glucose tolerance. Diabetes Care, 2009, 32(6), 1023-1025.
[http://dx.doi.org/10.2337/dc09-0207] [PMID: 19324944]
[132]
Gutierrez, R.M.; Gonzalez, A.M.; Hoyo-Vadillo, C. Alkaloids from piper: a review of its phytochemistry and pharmacology. Mini Rev. Med. Chem., 2013, 13(2), 163-193.
[PMID: 23279257]
[133]
BrahmaNaidu, P.; Nemani, H.; Meriga, B.; Mehar, S.K.; Potana, S.; Ramgopalrao, S. Mitigating efficacy of piperine in the physiological derangements of high fat diet induced obesity in Sprague Dawley rats. Chem. Biol. Interact., 2014, 221, 42-51.
[http://dx.doi.org/10.1016/j.cbi.2014.07.008] [PMID: 25087745]
[134]
Choi, S.; Choi, Y.; Choi, Y.; Kim, S.; Jang, J.; Park, T. Piperine reverses high fat diet-induced hepatic steatosis and insulin resistance in mice. Food Chem., 2013, 141(4), 3627-3635.
[http://dx.doi.org/10.1016/j.foodchem.2013.06.028] [PMID: 23993530]
[135]
Jwa, H.; Choi, Y.; Park, U.H.; Um, S.J.; Yoon, S.K.; Park, T. Piperine, an LXRα antagonist, protects against hepatic steatosis and improves insulin signaling in mice fed a high-fat diet. Biochem. Pharmacol., 2012, 84(11), 1501-1510.
[http://dx.doi.org/10.1016/j.bcp.2012.09.009] [PMID: 23000915]
[136]
Woo, H.M.; Kang, J.H.; Kawada, T.; Yoo, H.; Sung, M.K.; Yu, R. Active spice-derived components can inhibit inflammatory responses of adipose tissue in obesity by suppressing inflammatory actions of macrophages and release of monocyte chemoattractant protein-1 from adipocytes. Life Sci., 2007, 80(10), 926-931.
[http://dx.doi.org/10.1016/j.lfs.2006.11.030] [PMID: 17196622]
[137]
Sama, V.; Nadipelli, M.; Yenumula, P.; Bommineni, M.R.; Mullangi, R. Effect of piperine on antihyperglycemic activity and pharmacokinetic profile of nateglinide. Arzneimittelforschung, 2012, 62(8), 384-388.
[http://dx.doi.org/10.1055/s-0032-1314849] [PMID: 22753154]
[138]
Rondanelli, M.; Opizzi, A.; Perna, S.; Faliva, M.; Solerte, S.B.; Fioravanti, M.; Klersy, C.; Cava, E.; Paolini, M.; Scavone, L.; Ceccarelli, P.; Castellaneta, E.; Savina, C.; Donini, L.M. Improvement in insulin resistance and favourable changes in plasma inflammatory adipokines after weight loss associated with two months’ consumption of a combination of bioactive food ingredients in overweight subjects. Endocrine, 2013, 44(2), 391-401.
[http://dx.doi.org/10.1007/s12020-012-9863-0] [PMID: 23271695]
[139]
Atal, S.; Agrawal, R.P.; Vyas, S.; Phadnis, P.; Rai, N. Evaluation of the effect of piperine per se on blood glucose level in alloxan-induced diabetic mice. Acta Pol. Pharm., 2012, 69(5), 965-969.
[PMID: 23061294]
[140]
Wang, J.; Vanegas, S.M.; Du, X.; Noble, T.; Zingg, J.M.; Meydani, M.; Meydani, S.N.; Wu, D. Caloric restriction favorably impacts metabolic and immune/inflammatory profiles in obese mice but curcumin/piperine consumption adds no further benefit. Nutr. Metab. (Lond.), 2013, 10(1), 29.
[http://dx.doi.org/10.1186/1743-7075-10-29] [PMID: 23531279]
[141]
Rauscher, F.M.; Sanders, R.A.; Watkins, J.B., III Effects of piperine on antioxidant pathways in tissues from normal and streptozotocin-induced diabetic rats. J. Biochem. Mol. Toxicol., 2000, 14(6), 329-334.
[http://dx.doi.org/10.1002/1099-0461(2000)14:6<329:AID-JBT5>3.0.CO;2-G] [PMID: 11083086]
[142]
Liu, X.J.; Cao, M.A.; Li, W.H.; Shen, C.S.; Yan, S.Q.; Yuan, C.S. Alkaloids from Sophora flavescens Aition. Fitoterapia, 2010, 81(6), 524-527.
[http://dx.doi.org/10.1016/j.fitote.2010.01.008] [PMID: 20079811]
[143]
Liu, B.; Shi, R.B. [Constituents in the alkaloid fraction of Kushen decoction]. Zhongguo Zhongyao Zazhi, 2006, 31(7), 557-560.
[PMID: 16780157]
[144]
Ling, J.Y.; Zhang, G.Y.; Cui, Z.J.; Zhang, C.K. Supercritical fluid extraction of quinolizidine alkaloids from Sophora flavescens Ait. and purification by high-speed counter-current chromatography. J. Chromatogr. A, 2007, 1145(1-2), 123-127.
[http://dx.doi.org/10.1016/j.chroma.2007.01.080] [PMID: 17289059]
[145]
Chen, Y.; Chen, H.X.; Du, P.; Han, F.M. [HPLC-electrospray ionization ion trap tandem mass spectrometry analysis of oxymatrine and its metabolites in rat urine]. Yao Xue Xue Bao, 2005, 40(8), 740-745.
[PMID: 16268510]
[146]
Wang, S.J.; Wang, G.J.; Li, X.T.; Ma, R.L.; Sun, J.G.; Sheng, L.S. [Pharmacokinetics of oxymatrine and its metabolite in beagle dogs by LC-MS]. Zhongguo Zhongyao Zazhi, 2005, 30(2), 133-136.
[PMID: 15714819]
[147]
Zhang, L.; Wang, Z.W.; Lian, J.W.; Zhou, H.; Chen, X.H.; Bi, K.S. [Simultaneous determination of matrine, oxysophocarpin and oxymatrine in rat plasma by HPLC-MS and its application in the pharmacokinetic study]. Yao Xue Xue Bao, 2008, 43(8), 843-847.
[PMID: 18956778]
[148]
Guo, C.; Zhang, C.; Li, L.; Wang, Z.; Xiao, W.; Yang, Z. Hypoglycemic and hypolipidemic effects of oxymatrine in high-fat diet and streptozotocin-induced diabetic rats. Phytomedicine, 2014, 21(6), 807-814.
[http://dx.doi.org/10.1016/j.phymed.2014.02.007] [PMID: 24680614]
[149]
Zeng, X.Y.; Zhou, X.; Xu, J.; Chan, S.M.; Xue, C.L.; Molero, J.C.; Ye, J.M. Screening for the efficacy on lipid accumulation in 3T3-L1 cells is an effective tool for the identification of new anti-diabetic compounds. Biochem. Pharmacol., 2012, 84(6), 830-837.
[http://dx.doi.org/10.1016/j.bcp.2012.07.003] [PMID: 22820245]
[150]
Guo, C.; Han, F.; Zhang, C.; Xiao, W.; Yang, Z. Protective effects of oxymatrine on experimental diabetic nephropathy. Planta Med., 2014, 80(4), 269-276.
[http://dx.doi.org/10.1055/s-0033-1360369] [PMID: 24535719]
[151]
Wang, S.B.; Jia, J.P. Oxymatrine attenuates diabetes-associated cognitive deficits in rats. Acta Pharmacol. Sin., 2014, 35(3), 331-338.
[http://dx.doi.org/10.1038/aps.2013.158] [PMID: 24442148]
[152]
Wang, C.H.; Wang, G.C.; Wang, Y.; Zhang, X.Q.; Huang, X.J.; Ye, W.C. Three new monomeric indole alkaloids from the roots of Catharanthus roseus. J. Asian Nat. Prod. Res., 2012, 14(3), 249-255.
[http://dx.doi.org/10.1080/10286020.2011.649728] [PMID: 22332772]
[153]
Yang, L.; Wang, H.; Yuan-Gang, Z.; Zhao, C.; Zhang, L.; Chen, X.; Zhang, Z. Ultrasound-assisted extraction of the three terpenoid indole alkaloids vindoline, catharanthine and vinblastine from Catharanthus roseus using ionic liquid aqueous solutions. Chem. Eng. J., 2011, 172(2-3), 705-712.
[http://dx.doi.org/10.1016/j.cej.2011.06.039]
[154]
Chattopadhyay, R.R. A comparative evaluation of some blood sugar lowering agents of plant origin. J. Ethnopharmacol., 1999, 67(3), 367-372.
[http://dx.doi.org/10.1016/S0378-8741(99)00095-1] [PMID: 10617074]
[155]
Islam, M.A.; Khan, M.R.; Hossain, M.S.; Alam, A.H.; Ibne-Wahed, M.I.; Rahman, B.M.; Zaman, A.A.; Shaheen, S.M.; Ahmed, M. Antidiabetic and hypolipidemic effects of different fractions of Coccinia cordifolia L. on normal and streptozotocin-induced diabetic rats. Pak. J. Pharm. Sci., 2011, 24(3), 331-338.
[PMID: 21715266]
[156]
Nammi, S.; Boini, M.K.; Lodagala, S.D.; Behara, R.B. The juice of fresh leaves of Catharanthus roseus Linn. reduces blood glucose in normal and alloxan diabetic rabbits. BMC Complement. Altern. Med., 2003, 3, 4.
[http://dx.doi.org/10.1186/1472-6882-3-4] [PMID: 12950994]
[157]
Rasineni, K.; Bellamkonda, R.; Singareddy, S.R.; Desireddy, S. Antihyperglycemic activity of Catharanthus roseus leaf powder in streptozotocin-induced diabetic rats. Pharmacognosy Res., 2010, 2(3), 195-201.
[http://dx.doi.org/10.4103/0974-8490.65523] [PMID: 21808566]
[158]
Tiong, S.H.; Looi, C.Y.; Hazni, H.; Arya, A.; Paydar, M.; Wong, W.F.; Cheah, S.C.; Mustafa, M.R.; Awang, K. Antidiabetic and antioxidant properties of alkaloids from Catharanthus roseus (L.) G. Don. Molecules, 2013, 18(8), 9770-9784.
[http://dx.doi.org/10.3390/molecules18089770] [PMID: 23955322]
[159]
Yao, X.G.; Chen, F.; Li, P.; Quan, L.; Chen, J.; Yu, L.; Ding, H.; Li, C.; Chen, L.; Gao, Z.; Wan, P.; Hu, L.; Jiang, H.; Shen, X. Natural product vindoline stimulates insulin secretion and efficiently ameliorates glucose homeostasis in diabetic murine models. J. Ethnopharmacol., 2013, 150(1), 285-297.
[http://dx.doi.org/10.1016/j.jep.2013.08.043] [PMID: 24012527]
[160]
Xiao, C.; Tian, Y.; Lei, M.; Chen, F.; Gan, X.; Yao, X.; Shen, X.; Chen, J.; Hu, L. Synthesis and glucose-stimulate insulin secretion (GSIS) evaluation of vindoline derivatives. Bioorg. Med. Chem. Lett., 2017, 27(5), 1316-1318.
[http://dx.doi.org/10.1016/j.bmcl.2016.09.064] [PMID: 28162858]
[161]
Kobayashi, Y.; Nakano, Y.; Kizaki, M.; Hoshikuma, K.; Yokoo, Y.; Kamiya, T. Capsaicin-like anti-obese activities of evodiamine from fruits of Evodia rutaecarpa, a vanilloid receptor agonist. Planta Med., 2001, 67(7), 628-633.
[http://dx.doi.org/10.1055/s-2001-17353] [PMID: 11582540]
[162]
Tang, X.; Huang, Z.; Chen, Y.; Liu, Y.; Liu, Y.; Zhao, J.; Yi, J. Simultaneous determination of six bioactive compounds in Evodiae Fructus by high-performance liquid chromatography with diode array detection. J. Chromatogr. Sci., 2014, 52(2), 149-156.
[http://dx.doi.org/10.1093/chromsci/bms261] [PMID: 23377650]
[163]
Nguyen, N.V.; Lee, K.R.; Lee, Y.J.; Choi, S.; Kang, J.S.; Mar, W.; Kim, K.H. Chiral high-performance liquid chromatographic separation of evodiamine enantiomers and rutaecarpine, isolated from Evodiae fructus. J. Pharm. Biomed. Anal., 2013, 81-82, 151-159.
[http://dx.doi.org/10.1016/j.jpba.2013.04.018] [PMID: 23666252]
[164]
Xu, H.; Li, Q.; Yin, Y.; Lv, C.; Sun, W.; He, B.; Liu, R.; Chen, X.; Bi, K. Simultaneous determination of three alkaloids, four ginsenosides and limonin in the plasma of normal and headache rats after oral administration of Wu-Zhu-Yu decoction by a novel ultra fast liquid chromatography-tandem mass spectrometry method: application to a comparative pharmacokinetics and ethological study. J. Mass Spectrom., 2013, 48(4), 519-532.
[http://dx.doi.org/10.1002/jms.3183] [PMID: 23584945]
[165]
Yuan, X.; Zhang, B.; Wang, Y. An online coupled breast cancer cell membrane chromatography with HPLC/MS for screening active compounds from Fructus evodiae. Analytical Methods, 2013, 20(5), 5769-5774.
[166]
Yu, H.; Jin, H.; Gong, W.; Wang, Z.; Liang, H. Pharmacological actions of multi-target-directed evodiamine. Molecules, 2013, 18(2), 1826-1843.
[http://dx.doi.org/10.3390/molecules18021826] [PMID: 23434865]
[167]
Wang, T.; Kusudo, T.; Takeuchi, T.; Yamashita, Y.; Kontani, Y.; Okamatsu, Y.; Saito, M.; Mori, N.; Yamashita, H. Evodiamine inhibits insulin-stimulated mTOR-S6K activation and IRS1 serine phosphorylation in adipocytes and improves glucose tolerance in obese/diabetic mice. PLoS One, 2013, 8(12) e83264
[http://dx.doi.org/10.1371/journal.pone.0083264] [PMID: 24391749]
[168]
Bak, E.J.; Park, H.G.; Kim, J.M.; Kim, J.M.; Yoo, Y.J.; Cha, J.H. Inhibitory effect of evodiamine alone and in combination with rosiglitazone on in vitro adipocyte differentiation and in vivo obesity related to diabetes. Int. J. Obes., 2010, 34(2), 250-260.
[http://dx.doi.org/10.1038/ijo.2009.223] [PMID: 19859078]
[169]
Wang, T.; Wang, Y.; Kontani, Y.; Kobayashi, Y.; Sato, Y.; Mori, N.; Yamashita, H. Evodiamine improves diet-induced obesity in a uncoupling protein-1-independent manner: involvement of antiadipogenic mechanism and extracellularly regulated kinase/mitogen-activated protein kinase signaling. Endocrinology, 2008, 149(1), 358-366.
[http://dx.doi.org/10.1210/en.2007-0467] [PMID: 17884939]
[170]
Liu, L.H.; Xie, J.Y.; Guo, W.W.; Wu, G.Y.; Chen, Z.F.; Yi, J.Y.; Zhang, L.; Zhang, Z.J.; Li, Z. Evodiamine activates AMPK and promotes adiponectin multimerization in 3T3-L1 adipocytes. J. Asian Nat. Prod. Res., 2014, 16(11), 1074-1083.
[http://dx.doi.org/10.1080/10286020.2014.939071] [PMID: 25082563]
[171]
Wang, X.; Liu, J.; Geng, Y.; Wang, D.; Dong, H.; Zhang, T. Preparative separation of alkaloids from Nelumbo nucifera Gaertn by pH-zone-refining counter-current chromatography. J. Sep. Sci., 2010, 33(4-5), 539-544.
[http://dx.doi.org/10.1002/jssc.200900561] [PMID: 20063354]
[172]
Pan, Y.; Cai, B.; Wang, K.; Wang, S.; Zhou, S.; Yu, X.; Xu, B.; Chen, L. Neferine enhances insulin sensitivity in insulin resistant rats. J. Ethnopharmacol., 2009, 124(1), 98-102.
[http://dx.doi.org/10.1016/j.jep.2009.04.008] [PMID: 19527823]
[173]
Li, G.; Xu, H.; Zhu, S.; Xu, W.; Qin, S.; Liu, S.; Tu, G.; Peng, H.; Qiu, S.; Yu, S.; Zhu, Q.; Fan, B.; Zheng, C.; Li, G.; Liang, S. Effects of neferine on CCL5 and CCR5 expression in SCG of type 2 diabetic rats. Brain Res. Bull., 2013, 90, 79-87.
[http://dx.doi.org/10.1016/j.brainresbull.2012.10.002] [PMID: 23063706]
[174]
Boulangé, C.L.; Neves, A.L.; Chilloux, J.; Nicholson, J.K.; Dumas, M.E. Impact of the gut microbiota on inflammation, obesity, and metabolic disease. Genome Med., 2016, 8(1), 42.
[http://dx.doi.org/10.1186/s13073-016-0303-2] [PMID: 27098727]
[175]
Montandon, S.A.; Jornayvaz, F.R. Effects of Antidiabetic drugs on gut microbiota composition. Genes (Basel), 2017, 8(10)E250
[http://dx.doi.org/10.3390/genes8100250] [PMID: 28973971]
[176]
Xiao, S.; Fei, N.; Pang, X.; Shen, J.; Wang, L.; Zhang, B.; Zhang, M.; Zhang, X.; Zhang, C.; Li, M.; Sun, L.; Xue, Z.; Wang, J.; Feng, J.; Yan, F.; Zhao, N.; Liu, J.; Long, W.; Zhao, L. A gut microbiota-targeted dietary intervention for amelioration of chronic inflammation underlying metabolic syndrome. FEMS Microbiol. Ecol., 2014, 87(2), 357-367.
[http://dx.doi.org/10.1111/1574-6941.12228] [PMID: 24117923]
[177]
Delzenne, N.M.; Neyrinck, A.M.; Bäckhed, F.; Cani, P.D. Targeting gut microbiota in obesity: effects of prebiotics and probiotics. Nat. Rev. Endocrinol., 2011, 7(11), 639-646.
[http://dx.doi.org/10.1038/nrendo.2011.126] [PMID: 21826100]


Rights & PermissionsPrintExport Cite as


Article Details

VOLUME: 26
ISSUE: 32
Year: 2019
Page: [5982 - 6015]
Pages: 34
DOI: 10.2174/0929867325666180430152618
Price: $65

Article Metrics

PDF: 34
HTML: 2