Stored Charge and its Influence on Properties of Anodic Alumina Films

Author(s): Igor Vrublevsky*, Katsiaryna Chernyakova, Renata Karpicz, Arunas Jagminas.

Journal Name: Current Nanoscience

Volume 15 , Issue 1 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

In porous and barrier-type anodic alumina films, the stored charge has electronic nature and it plays a significant role in the process of aluminum anodizing. The charge stored can modify the distribution of local field generated by a voltage applied and thus it can affect the oxide growth. The method for the investigation of thermally activated defects in anodic alumina films by reanodizing technique was also described. It was applied for computation of activation energy of electron traps in barrier layer for sulfuric and oxalic acid alumina films and concentration of the traps.

Keywords: Stored charge, anodic alumina, electron injection, electron traps, activation energy, amorphous structure.

[1]
Sulka, G.D. Highly Ordered Anodic Porous Alumina Formation by Self-Organized Anodizing. In: Nanostructured Materials in Electrochemistry.; A. Eftekhari, Ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2008, 1, 1-116.
[2]
Vrublevsky, I.; Jagminas, A.; Chernyakova, K. Re-anodizing technique as a method of investigation of thermally activated defects in anodic alumina films. J. Electrochem. Soc., 2013, 160, C285-C290.
[3]
Lambert, J.; Guthmann, C.; Ortega, C.; Saint-Jean, M. Permanent polarization and charge injection in thin anodic alumina layers studied by electrostatic force microscopy. J. Appl. Phys., 2002, 91, 9161-9169.
[4]
Chernyakova, K.V.; Vrublevsky, I.A.; Ivanovskaya, M.I.; Kotsikau, D.A. Impurity-defect structure of anodic aluminum oxide produced by two-sided anodizing in tartaric acid. J. Appl. Spectr., 2012, 79, 76-82.
[5]
Morgan, D.V.; Guile, A.E.; Bektore, Y. Stored charge in anodic aluminum oxide films. J. Phys. D Appl. Phys., 1980, 13, 307-312.
[6]
Bernstein, J.J.; White, R.M. Piezo-electrocapillary effect: A new effect observed in porous anodic oxide films. J. Electrochem. Soc., 1984, 131, 1050-1053.
[7]
Belov, V.T.; Zudov, A.I.; Zudova, I.A. Symbiosis of concepts of structural anion, crucial current-density, and negative bulk charge as applied to anode aluminum-oxide. Russ. J. Electrochem., 1993, 29, 1022-1026.
[8]
Fromhold, Jr., A.T. In: Oxides and Oxide Films; J.W. Diggle, A.K. Vijh Dekker, Eds; Marcel Dekker Inc.: New York, 1976, Vol. 3, pp. 1 271.
[9]
Despic, A.; Parkhutik, V.P. In: Modern Aspects of Electrochemistry; J.O, Bockris.; R.E, White.; B.E, Conway., Eds.; Plenum: New York, 1989, Vol. 20, pp. 401-503.
[10]
Ispas, A.; Bund, A.; Vrublevsky, I. Investigations on current transients in porous alumina films during reanodizing using the electrochemical quartz crystal microbalance. J. Solid State Electrochem., 2010, 14, 2121-2128.
[11]
Vrublevsky, I.; Jagminas, A.; Schreckenbach, J.; Goedel, W.A. Electronic properties of electrolyte/anodic alumina junction during porous anodizing. Appl. Surf. Sci., 2007, 253, 4680-4687.
[12]
Hickmott, T.W. Electrolyte effects on charge, polarization, and conduction in thin anodic Al2O3 films. I. Initial charge and temperature-dependent polarization. J. Appl. Phys., 2007, 102, 093706.
[13]
Diggle, J.W.; Downie, T.C.; Goulding, C.W. Anodic oxide films on aluminum. Chem. Rev., 1969, 69, 365-405.
[14]
Thompson, G.E.; Xu, Y.; Skeldon, P.; Shimizu, K.; Han, S.H.; Wood, G.C. Anodic oxidation of aluminium. Phil. Mag., 1987, B55, 651-667.
[15]
Patermarakis, G.; Karayianni, H.; Masavetas, K.; Chandrinos, J. Oxide density distribution across the barrier layer during the steady state growth of porous anodic alumina films. Choronopotensiometry, kinetics of film mass and thickness evolution and a high field ionic migration model. J. Solid State Electrochem., 2009, 13, 1831-1847.
[16]
Vrublevsky, I.; Jagminas, A.; Schreckenbach, J.; Goedel, W.A. Embedded space charge in porous alumina films formed in phosphoric acid. Electrochim. Acta, 2007, 53, 300-304.
[17]
Hickmott, T.W. Polarization and Fowler-Nordheim tunneling in anodized Al-Al2O3-Au diodes. J. Appl. Phys., 2000, 87, 7903-7912.
[18]
Bessone, J.; Mayer, C.; Jüttner, K. AC impedance measurements of aluminum barrier type oxide films. Electrochim. Acta, 1983, 28, 171-175.
[19]
Akolkar, R.; Landau, U.; Kuo, H.; Wang, Y-M. Modeling of the current distribution in aluminum anodization. J. Appl. Electrochem., 2004, 34, 807-813.
[20]
Thompson, G.E.; Wood, G.C. Treatise on materials and technology. Corrosion: Aqueous Processed and Passive Films. Herman, H. Eds.; Academic Press, 1983, 23, 205-329.
[21]
Vrublevsky, I.; Jagminas, A.; Schreckenbach, J.; Goedel, W.A. Potentiodynamic behavior of as-grown and annealed porous anodic alumina films: Current overshoots and oscillations in transients. Solid State Sci., 2008, 10, 1605-1611.
[22]
Maissel, L. In: Handbook of Thin Film Technology; L, Maissel.; R, Glang., Eds.; McGraw-Hill: New York, 1970, pp. 14-35.
[23]
Chao, C.Y.; Lin, L.F.; Macdonald, D.D. A point defect model for anodic passive films: I. Film growth kinetics. J. Electrochem. Soc., 1981, 128, 1187-1194.
[24]
Lin, L.F.; Chao, C.Y.; Macdonald, D.D. A point defect model for anodic passive films II. Chemical breakdown and pit initiation. J. Electrochem. Soc., 1981, 128, 1194-1198.
[25]
Macdonald, D.D.; Urquidi-Macdonald, M. Theory of steady-state passive films. J. Electrochem. Soc., 1990, 137, 2395-2402.
[26]
Belca, I.; Kasalica, B.; Zekovic, L.J.; Jovanic, B.; Vasilic, R. Galvanoluminescence spectra of porous oxide layers formed by aluminum anodization in oxalic acid. Electrochim. Acta, 1999, 45, 993-996.
[27]
Stojadinovic, S.; Tadic, M.; Belca, I.; Kasalica, B.; Zekovic, L.J. The galvanoluminescence spectra of barrier oxide films on aluminum formed in organic electrolytes. Electrochim. Acta, 2007, 52, 7166-7170.
[28]
Stojadinovic, S.; Belca, I.; Kasalica, B.; Zekovic, L.J.; Tadic, M. The galvanoluminescence spectra of barrier oxide films on aluminum formed in inorganic electrolytes. Electrochem. Commun., 2006, 8, 1621-1624.
[29]
Güntherschulze, A.; Betz, H. Elektrolytkondensatoren, 2nd ed; Herbert Cram: Berlin, 1952.
[30]
Wood, G.C.; Pearson, C. Dielectric breakdown of anodic oxide films on valve metals. Corros. Sci., 1967, 7, 119-125.
[31]
Vijh, A.K. Sparking voltage and side reactions during anodization of valve metals in terms of electron tunneling. Corros. Sci., 1971, 11, 411-417.
[32]
Albella, J.M.; Montero, I.; Martinez-Duart, J.M. Electron injection and avalanche during the anodic oxidation of tantalum. J. Electrochem. Soc., 1984, 131, 1101-1104.
[33]
Montero, I.; Albella, J.M.; Martinez-Duart, J.M. Influence of electrolyte concentration on the anodization and breakdown characteristics of Ta2O5 films. J. Electrochem. Soc., 1985, 132, 814-818.
[34]
Albella, J.M.; Montero, I.; Martinez-Duart, J.M. A theory of avalanche breaakdown during anodic-oxidation. Electrochim. Acta, 1987, 32, 255-258.
[35]
Ikonopisov, S. Theory of electrical breakdown during formation of barrier anodic films. Electrochim. Acta, 1977, 22, 1077-1082.
[36]
Kodary, V.; Klein, N. Electrical breakdown. I. During the anodic growth of tantalum. J. Electrochem. Soc., 1980, 127, 139-151.
[37]
Thompson, G.E.; Furneaux, R.C.; Wood, G.C. Electron microscopy of ion beam thinned porous anodic films formed on aluminium. Corros. Sci., 1978, 18, 481-498.
[38]
Vrublevsky, I.; Parkoun, V.; Sokol, V.; Schreckenbach, J. Study of chemical dissolution of the barrier oxide layer of porous alumina films formed in oxalic acid using a re-anodizing technique. Appl. Surf. Sci., 2004, 236, 270-277.
[39]
Fukuda, Y.; Fukushima, T. Behavior of sulfate ions during formation of anodic oxide film on aluminium. Bull. Chem. Soc. Jpn., 1980, 53, 3125-3130.
[40]
Vrublevsky, I.; Parkoun, V.; Schreckenbach, J.; Goedel, W.A. Dissolution behaviour of the barrier layer of porous oxide films on aluminum formed in phosphoric acid studied by a re-anodizing technique. Appl. Surf. Sci., 2006, 252, 5100-5108.
[41]
Diggle, J.W. In: Oxides and oxide films; J.W, Diggle., Ed.; Marcel Dekker Inc.: New York, 1972, Vol. 1, pp. 92-281.
[42]
Vrublevsky, I.; Ispas, A.; Chernyakova, K.; Bund, A. Effect of continuous magnetic field on the growth mechanism of nanoporous anodic alumina films on different substrates. J. Solid State Electrochem., 2016, 20, 2765-2772.
[43]
Zaraska, L.; Sulka, G.D.; Jaskuła, M. Anodic alumina membranes with defined pore diameters and thicknesses obtained by adjusting the anodizing duration and pore opening/widening time. J. Solid State Electrochem., 2011, 15, 2427-2436.
[44]
Hassel, A.W.; Lohrengel, M.M. Initial stages of cathodic breakdown of thin anodic aluminium oxide films. Electrochim. Acta, 1995, 40, 433-437.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 15
ISSUE: 1
Year: 2019
Page: [100 - 109]
Pages: 10
DOI: 10.2174/1573413714666180430140039
Price: $58

Article Metrics

PDF: 17
HTML: 3