Cutaneous Application of Celecoxib for Inflammatory and Cancer Diseases

Author(s): Oliesia Gonzalez Quiñones , Maria Bernadete Riemma Pierre* .

Journal Name: Current Cancer Drug Targets

Volume 19 , Issue 1 , 2019

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer

Graphical Abstract:


Background: Nonsteroidal anti-inflammatory drugs (NSAIDs) and particularly selective cyclooxygenase-2 (COX-2) inhibitors such as celecoxib (Cxb) are considered promising cancer chemopreventive for colon, breast, prostate, lung, and skin cancers. However, the clinical application to the prevention is limited by concerns about safety, potential to serious toxicity (mainly for healthy individuals), efficacy and optimal treatment regimen. Cxb exhibits advantages as potent antiinflammatory and gastrointestinal tolerance compared with conventional NSAID’s. Recent researches suggest that dermatological formulations of Cxb are more suitable than oral administration in the treatment of cutaneous disease, including skin cancer. To date, optimism has been growing regarding the exploration of the topical application of Cxb (in the prevention of skin cancers and treatment of cutaneous inflammation) or transdermal route reducing risks of systemic side effects.

Objective: This paper briefly summarizes our current knowledge of the development of the cutaneous formulations or delivery systems for Cxb as anti-inflammatory drug (for topical or transdermal application) as well its chemopreventive properties focused on skin cancer.

Conclusion: New perspectives emerge from the growing knowledge, bringing innovative techniques combining the action of Cxb with other substances or agents which act in a different way, but complementary, increasing the efficacy and minimizing toxicity.

Keywords: Celecoxib, skin inflammation, UVB-induced cancer, chemoprevention, formulations, Nonsteroidal antiinflammatory drugs (NSAIDs).

Hilal-Dandan, R.; Brunton, L. Goodman and Gilman’s Manual of Pharmacology and Therapeutics, 2nd ed; Mc Graw Hill Education, 2014, pp. 879-913.
Sakamoto, C.; Soen, S. Efficacy and safety of the selective cyclooxygenase-2 inhibitor celecoxib in the treatment of rheumatoid arthritis and osteoarthritis in japan. Digestion, 2011, 83, 108-123.
Jarupongprapa, S.; Ussavasodhi, P.; Katchamart, W. Comparison of gastrointestinal adverse effects between cyclooxygenase-2 inhibitors and non- selective, non-steroidal anti-inflammatory drugs plus proton pump inhibitors: a systemic review and meta-analysis. J. Gastroenterol., 2013, 48(7), 830-838.
Chauhan, A.S.; Sridevi, S.; Chalsani, K.B.; Jain, A.K.; Jain, S.K.; Jain, N.K.; Diwan, P.V. Dendrimer-mediated transdermal delivery: enhanced bioavailability of indomethacin. J. Control. Release, 2003, 90(3), 335-343.
Lichtenberger, L.M. Where is the evidence that cyclooxigenase inhibition is the primary cause of nonsteroidal anti-inflammatory drug (NSAID)-induced gastrointestinal injury? Topical injury revisited. Biochem. Pharmacol., 2001, 61, 631-637.
Fischer, S.M.; Hawk, E.T.; Lubet, R.A. Coxibs and other nonsteroidal anti-inflammatory drugs in animal models of cancer chemoprevention. Cancer Prev. Res. (Phila.), 2011, 4, 1728-1735.
Mennini, N.; Furlanetto, S.; Cirri, M.; Mura, P. Quality by design approach for developing chitosan-Ca-alginate microspheres for colon delivery of celecoxib-hydroxypropyl-β-cyclodextrin-PVP complex. Eur. J. Pharm. Biopharm., 2011, 80(1), 67-75.
Margulis-Goshen, K.; Kesselman, E.; Danino, D.; Magdassi, S. Formation of celecoxib nanoparticles from volatile microemulsions. Int. J. Pharm., 2010, 393, 230-237.
Soliman, S.M.; Abdel-Malak, N.S.; El-Gazayerley, O.N.; Abdel Rehim, A.A. Formulation of microemulsion gel systems for transdermal delivery of celecoxib: In vitro permeation, anti-inflammatory activity and skin irritation test. Drug Discov. Ther., 2010, 4(6), 459-471.
Shakeel, F.; Baboota, S.; Ahuja, A.; Ali, J.; Shafiq, S. Celecoxib nanoemulsion: Skin permeation mechanism and biovailability assesment. J. Drug Target., 2008, 16(10), 733-740.
Shakeel, F.; Baboota, S.; Ahuja, A.; Ali, J.; Shafiq, S. Skin permeation mechanism and bioavailability enhancement of celecoxib from transdermally applied nanoemulsion. J. Nanobiotechnology, 2008, 6, 8.
Garti, N.; Avrahami, M.; Aserin, A. Improved solubilization of celecoxib in U-type nonionic microemulsions and their structural transitions with progressive aqueous dilution. J. Colloid Interface Sci., 2009, 299(1), 352-365.
Subramanian, N.; Ghosal, S.K.; Moulik, S.P. Topical delivery of celecoxib using microemulsion. Acta Pol. Pharm., 2004, 61(5), 335-341.
Margulis-Goshen. Weitman, M.; Major, D.T.; Magdassi, S. Inhibition of crystallization and growth of celecoxib nanoparticles formed from volatile microemulsions. J. Pharm. Sci., 2011, 100(10), 4390-4400.
Deniz, A.; Sade, A.; Severcan, F.; Keskin, D.; Tezcaner, A.; Banerjee, S. Celecoxib-loaded liposomes: effect of cholesterol on encapsulation and in vitro release characteristics. Biosci. Rep., 2010, 30(5), 365-373.
Nasr, M. In vitro and in vivo evaluation of proniosomes containing celecoxib for oral adminitration. AAPS PharmSciTech, 2010, 11(1), 85-89.
Paulson, S.K.; Hribar, J.D.; Liu, N.W.; Hajdu, E.; Bible, R.H.; Piergies, A.; Karim, A. Metabolism and excretion of [14C]celecoxib in healthy male volunteers. Drug Metab. Dispos., 2000, 28(3), 308-314.
Malik, P.; Kadam, R.S.; Cheruvu, N.P.; Kompella, U.B. Hidrophilic produg approach for reduced pigment binding and enhanced transscleral retinal delivery of celecoxib. Mol. Pharm., 2012, 9(3), 605-614.
Yener, G.; Gönüllü, U.; Uner, M.; Değim, T.; Araman, A. Effects of vehicles and penetration enhancers on the in vitro percutaneous absorption of celecoxib through human skin. Pharmazie, 2003, 58(5), 330-333.
Bachar, M.; Mandelbaum, A.; Portnaya, I.; Perlstein, H.; Even-Chen, S.; Barenholz, Y.; Danino, D. Development and characterization of a novel drug nanocarrier for oral delivery, based on self-assembled β-casein micelles. J. Control. Release, 2012, 160(2), 164-171.
Subramanian, N.; Ghosal, S.K.; Moulik, S.P. Enhanced in vitro percutaneous absorption and in vivo anti-inflamatory effect of a selective cyclooxygenase inhibitor using microemulsion. Drug Dev. Ind. Pharm., 2005, 31, 405-416.
Thakkar, H.; Kumar-Sharma, R.; Murthy, R.S. Enhanced retention of celecoxib-loaded solid lipid nanoparticles after intra-articular administration. Drugs R D., 2007, 8(5), 275-285.
Rao, C.V.; Reddy, B.S. NSAIDs and Chemoprevention. Curr. Cancer Drug Targets, 2004, 4(1), 29-42.
Haroutiunian, S.; Drennan, D.A.; Lipman, G.A. Topical NSAID therapy for musculoskeletal pain. Pain Med., 2010, 11, 535-549.
Okyar, A.; Ozsoy, Y.; Gungor, S. Novel formulation approaches for dermal and transdermal delivery of non-steroidal antiinflammatory drugs, rheumatoid arthritis - treatment, intech, 2012; available from.
Loh, T.Y.; Cohen, P.R. Ketoprofen-induced photoallergic dermatitis. Indian J. Med. Res., 2016, 144(6), 803-806.
Wu, X.; Patterson, S.; Hawk, E. Chemoprevention-history and general principles. Best Pract. Res. Clin. Gastroenterol., 2011, 25, 445-459.
Cahoon, E.K.; Rajaraman, P.; Alexander, B.H.; Doody, M.M.; Linet, M.S.; Freedman, D.M. Use of nonesteroidal anti-inflammatory drugs and risk of basal cell carcinoma in the united states radiologic technologist study. Int. J. Cancer, 2012, 130(12), 2939-2948.
Khan, Z.; Khan, N.; Tiwari, R.P.; Sah, N.K.; Prasad, G.B.; Bisen, P.S. Biology of COX-2: An application in cancer therapeutics. Curr. Drug Targets, 2011, 12(7), 1082-1093.
Kim, T.H.; Jeong, Y.I.; Jin, S.G.; Pei, J.; Jung, T.Y.; Moon, K.S.; Kim, I.Y.; Kang, S.S.; Jung, S. Preparation of polylactide-co-glycolide nanoparticles incorparating celecoxib and their antitumor activity against brain tumor cells. Int. J. Nanomedicine, 2011, 6, 2621-2631.
Shamsher, A.A.; Charoo, N.A.; Rahman, Z.; Pillai, K.K.; Kohli, K. Tulsi oil as a potencial penetration enhancer for celecoxib transdermal gel formulations. Pharm. Dev. Technol., 2014, 19(1), 21-30.
Zhao, P.; Jiang, H.; Jiang, T.; Zhi, Z.; Wu, C.; Sun, C.; Zhang, J.; Wang, S. Inclusion of celecoxib into fibrous ordered mesoporous carbon for enhanced oral bioavailability and reduced gastric irritancy. Eur. J. Pharm. Sci., 2012, 45(5), 639-647.
Wan, F.; Bohr, A.; Maltesen, M.J.; Bjerregaard, S.; Foged, C.; Rantanen, J.; Yang, M. Critical solvent properties affecting the particle formation process and characteristics of celecoxib-loaded PLGA microparticles via spray-drying. Pharm. Res., 2013, 30(4), 1065-1076.
Abu-Diak, O.A.; Jones, D.S.; Andrews, G.P. An investigation into the dissolution properties of celecoxib melt extrudates: understanding the role of polymer type and concentration in stabilizing supersaturated drug concentrations. Mol. Pharm., 2011, 8(4), 1362.
Cheng, S.Y.; Yuen, M.C.; Lam, P.L.; Gambari, R.; Wong, R.S.; Cheng, G.Y.; Lia, P.B.; Tong, S.W.; Chan, K.W.; Lau, F.Y.; Kok, S.H.; Lam, K.H.; Chui, C.H. Synthesis, characterization and preliminary analysis of in vivo biological activity of chitosan/celecoxib micropsules. Bioorg. Med. Chem. Lett., 2010, 20(14), 4147-4151.
Nasr, M. Influence of microcrystal formulation on in vivo absorption of celecoxib in rats. AAPS PharmSciTech, 2013, 14(2), 719-726.
Patlolla, R.R.; Chougule, M.; Patel, A.R.; Jackson, T.; Tata, P.N.; Singh, M. Formulation, characterization and pulmonary deposition of nebulized celecoxib encapsulated nanostructured lipid carriers. J. Control. Release, 2010, 144(2), 233-241.
Ibrahim, M.M.; Abd-Elgawad, A.E.; Soliman, O.A.; Jablonski, M.M. Nanoparticle-based topical ophthalmic formulations for sustained celecoxib release. J. Pharm. Sci., 2013, 102(3), 1036-1053.
Amrite, A.C.; Edelhauser, H.F.; Singh, S.R.; Kompella, U.B. Effect of circulation on the disposition and ocular tissue distribution of 20 nm nanoparticles after periocular administration. Mol. Vis., 2008, 14, 150-160.
Thakkar, H.P.; Murthy, R.R. Effect of cross-linking on the characteristics of the celecoxib loaded chitosan microspheres. Asian J. Pharm, 2008, 2, 246-251.
Quiñones, O.G.; Mata dos Santos, H.A.; Kibwila, D.M.; Leitão, A.; dos Santos Pyrrho, A.; Pádula, M.; Rosas, E.C.; Lara, M.G.; Pierre, M.B.R. In vitro and in vivo influence of penetration enhancers in the topical application of celecoxib. Drug Dev. Ind. Pharm., 2014, 40(9), 1180-1189.
Sharma, R.; Mehra, G.R. Preparation, characterization, in vitro and in vivo evaluation of transdermal matrix films of celecoxib. Acta Pharm. Sci, 2011, 53, 67-76.
Alam, M.I.; Baboota, S.; Kohli, K.; Ali, J.; Ahuja, A. Pharmacodymanic evaluation of proniosomal transdermal therapeutic gel containing celecoxib. Sci. Asia, 2010, 36, 305-311.
Joshi, M.; Patravale, V. Nanostructured lipid carrier (NLC) based gel of celecoxib. Int. J. Pharm., 2008, 346, 124-132.
Baboota, S.; Shakeel, F.; Ahuja, A.; Ali, J.; Shafiq, S. Design, devolepment and evaluation of novel nanoemulsion formulations for transdermal potencial of celecoxib. Acta Pharm., 2007, 57, 315-332.
Desai, P.R.; Shah, P.P.; Patlolla, R.R.; Singh, M. Dermal microdialysis technique to evaluate the trafficking of surface-modified lipid nanoparticles upon topical application. Pharm. Res., 2012, 29(9), 2587-2600.
Sharma, P.K.; Bajpai, M. Enhancement of solubility and stability of celecoxib using microemulsion based topical formulation. J. Pharm. Res., 2011, 4(7), 2216-2220.
Begum, M.Y.; Abbulu, K.; Sudhakar, M.; Jayaprakash, S. Studies on the development of celecoxib transdermal patches. Int. J. Pharm. Tech. Res., 2011, 3(3), 1609-1615.
Moreira, T.S.; de Sousa, V.P.; Pierre, M.B.R. A novel transdermal delivery system for the anti–inflamatory Lumiracoxib: Influence of Oleic Acid on in vitro percutaneous absorption and in vivo potencial cutaneous irritation. AAPS PharmSciTech, 2010, 11(2), 621-629.
Gibson, M. Pharmaceutical Preformulation and Formulation: A Practical Guide from Candidate Drug Selection to Comercial Dosage Form. Volume 199, 2nd ed; Drugs and the Pharmaceuticals Sciences, 2009.
Khurana, S.; Bedi, P.M.; Jain, N.K. Preparation and evaluation of solid lipid nanoparticles based nanogel for dermal delivery of meloxicam. Chem. Phys. Lipids, 2013, 176, 65-72.
Manconi, M.; Caddeo, C.; Sinico, C.; Valenti, D.; Mostallino, M.C.; Biggio, G.; Fadda, A.M. Ex vivo skin delivery of diclofenac by transcutol containing liposomes. Eur. J. Pharm. Biopharm., 2011, 78(1), 27-35.
Nokhodchi, A.; Sharabiani, K.; Rashidi, M.R.; Ghafourian, T. The effect of terpene concentrations on the skin penetration of diclofenac sodium. Int. J. Pharm., 2007, 335, 97-105.
Fetih, G.; Fathalla, D.; El-Badry, M. Liposomal gels for site-specific, sustained delivery of celecoxib: in vitro and in vivo evaluation. Drug Dev. Res., 2014, 75(4), 257-266.
Venkatesan, P.; Puwada, N.; Dash, R.; Prashanth Kumar, B.N.; Sarkar, D.; Azab, B.; Pathak, A.; Kundu, S.C.; Fisher, P.B.; Mandal, M. The potential of celecoxib-loaded hydroxyapatite-chitosan nanocomposite for the treatment of colon cancer. Biomaterials, 2011, 32(15), 3794-3806.
Bijman, M.N.; Hermelink, C.A.; van Berkel, P.A.; Laan, A.C.; Janmaat, M.L.; Peters, G.J.; Boven, E. Interaction between celecoxib and docetaxel or cisplatin in human cell lines of ovarian cancer and colon cancer is independent of COX-2 expression levels. Biochem. Pharmacol., 2008, 75(2), 427-437.
Steinbach, G.; Lynch, P.M.; Phillips, R.K.; Wallace, M.H.; Hawk, E.; Gordon, G.B.; Wakabayashi, N.; Saunders, B.; Shen, Y.; Fujimura, T.; Su, L.K.; Levin, B.; Godio, L.; Patterson, S.; Rodriguez-Bigas, M.A.; Jester, S.L.; King, K.L.; Schumacher, M.; Abbruzzese, J.; DuBois, R.N.; Hittelman, W.N.; Zimmerman, S.; Sherman, J.W.; Kelloff, G. The effect of celecoxib, a cyclooxigenase–2 inhibitors, in familial adenomatous polyposis. N. Engl. J. Med., 2000, 342(26), 1946-1952.
Kawamori, T.; Rao, C.V.; Seibert, K.; Reddy, B.S. Chemopreventive activity of celecoxib, a especific cyclooxygenase-2 inhibitor, against colon carcinogenesis. Cancer Res., 1998, 58(3), 409-412.
Saba, N.F.; Hurwitz, S.J.; Kono, S.A.; Yang, C.S.; Zhao, Y.; Chen, Z.; Sica, G.; Müller, S.; Moreno-Williams, R.; Lewis, M.; Grist, W.; Chen, A.Y.; Moore, C.E.; Owonikoko, T.K.; Ramalingam, S.; Beitler, J.J.; Nannapaneni, S.; Shin, H.J.; Grandis, J.R.; Khuri, F.R.; Chen, Z.G.; Shin, D.M. Chemoprevention of head and neck cancer with celecoxib and erlotinib: results of a phase ib and pharmacokinetic study. Cancer Prev. Res. (Phila.), 2014, 7(3), 283-291.
Abrahão, A.C.; Giudice, F.S.; Sperandio, F.F.; Pinto Junior Ddos, S. Effects of celecoxib treatment over the AKT pathway in head and neck squamous cell carcinoma. J. Oral Pathol. Med., 2013, 42(10), 793-798.
Kilic, A.; Schuchert, M.J.; Luketich, J.D.; Landreneau, R.J.; El-Hefnawy, T. Efficacy of signal pathway inhibitors alone and combination with cisplatin varies between human non–small cell lung cancer lines. J. Surg. Res., 2009, 154(1), 9-12.
Okada, T.; Takigawa, N.; Kishino, D.; Katayama, H.; Kuyama, S.; Sato, K.; Mimoto, J.; Ueoka, H.; Tanimoto, M.; Kiura, K. Selective cyclooxigenase-2 inhibitor prevents cisplatin-induced tmorigenesis in A/J Mice. Acta Med. Okayama, 2012, 66(3), 245-251.
Buckstein, R.; Kerbel, R.S.; Shaked, Y.; Nayar, R.; Foden, C.; Turner, R.; Lee, C.R.; Taylor, D.; Zhang, L.; Man, S.; Baruchel, S.; Stempak, D.; Bertolini, F.; Crump, M. High-dose celecoxib and metro- nomic “Low-dose” cyclophosphamide is an effective and safe therapy in patients with relapse and refractory agressive histology Non-Hodgkins lymphoma. Clin. Cancer Res., 2006, 12(17), 5190-5198.
Kim, S.H.; Kim, S.H.; Song, Y.C.; Song, Y.S. Celecoxib potentiates the anticancer effects of cisplastin on vulvar cancer cells independently of cyclooxigenase. Ann. N. Y. Acad. Sci., 2009, 1171, 635-641.
Chen, J.; Ran, Y.; Hong, C.; Chen, Z.; You, Y. Anti-cancer effects of celecoxib on nasopharyngeal carcinoma HNE-1 cells expression COX-2 oncoprotein. Cytotchenology, 2010, 62(5), 431-438.
Li, W.Z.; Wang, X.Y.; Li, Z.G.; Zhang, J.H.; Ding, Y.Q. Celecoxib enhances the inhibitory effect of cispalstin on Tca8113 cells in human tongue squamous cell carcinoma in vivo and in vitro. J. Oral Pathol. Med., 2010, 39(7), 579-584.
Yu, L.; Chen, M.; Li, Z.; Wen, J.; Fu, J.; Guo, D.; Jiang, Y.; Wu, S.; Cho, C.H.; Liu, S. Celecoxib antagonizes the cytotoxicity of cisplatin in human esophageal squamous cell carcinoma by reducing intracellular cisplatin accumulation. Mol. Pharmacol., 2011, 79(3), 608-617.
Mohammadianpanah, M.; Razmjou-Ghalaei, S.; Shafizad, A.; Ashouri-Taziani, Y.; Khademi, B.; Ahmadloo, N.; Ansari, M.; Omidvari, S.; Mosalaei, A.; Mosleh-Shirazi, M.A. Efficacy and safety of current chemoradiation with weekly cisplatin ± low–dose celecoxib in locally advanced un- differentiated nasopharygeal carcinoma: A phase II–III clinical trial. J. Cancer Res. Ther., 2011, 7(4), 442-447.
Cohen, S.; Efraim, A.N.; Levi-Schaffer, F.; Eliashar, R. The effect of hypoxia and cyclooxigenase inhibitors on nasal polyp derived fibroblasts. Am. J. Otolaryngol., 32, 564-573. 2011
Huang, K.H.; Kuo, K.L.; Chen, S.C.; Weng, T.I.; Chuang, Y.T.; Tsai, Y.C.; Pu, Y.S.; Chiang, C.K.; Liu, S.H. Down–regulation of glucose–regulated protein (GRP) 78 potentiates cytotoxic effects of celecoxib in human urothelial carcinoma cells. PLoS One, 2012, 7(3), e33615.
Sareddy, G.R.; Geeviman, K.; Ramulu, C.; Babu, P.P. The nonsteroidal anti-inflammatory drug celecoxib suppresses the growth and induces apoptosis of human glioblastoma cells via the NF-κB pathway. J. Neurooncol., 2012, 106(1), 99-109.
Chiu, L.C.; Tong, K.F.; Ooi, V.E. Cytostatic and cytotoxic effects of cyclooxigenase inhbitors and their synergy with docosahexaenoic acid on the growth of human skin melanoma A-375 cells. Biomed. Pharmacother., 2005, 59(Suppl. 2), S293-S297.
Gogas, H.; Polyzos, A.; Stavrinidis, I.; Frangia, K.; Tsoutsos, D.; Panagiotou, P.; Markopoulos, C.; Papadopoulos, O.; Pectasides, D.; Mantzourani, M.; Middleton, M.; Vaiopoulos, G.; Fountzilas, G. Temozolomide in combination with celecoxib in patients with advanced melanoma. a phase ii study of the Hellenic Cooperative Oncology Group. Ann. Oncol., 2006, 17(12), 1835-1841.
Pagliarulo, V.; Ancona, P.; Niso, M.; Colabufo, N.A.; Contino, M.; Cormio, L.; Azzariti, A.; Pagliarulo, A. The interaction of celecoxib with MDR transporters enhances the activity of mitomycin C in a bladder cancer cell line. Mol. Cancer, 2013, 12, 47.
Kim, C.H.; Chung, C.W.; Lee, H.M. Kim do, H.; Kwak, T.W.; Jeong, Y.I.; Kang, D.H. Synergistic effects of 5-aminolevulinic acid based photodynamic therapy and celecoxib via oxidative stress in human cholangiocarcinoma cells. Int. J. Nanomedicine, 2013, 8, 2173-2186.
Song, J.; Chen, Q.; Xing, D. Enhanced apoptotic effects by downregulating Mcl-1: Evidence for the improvement of photodynamic therapy with Celecoxib. Exp. Cell Res., 2013, 319(10), 1491-1504.
Hyter, S.; Indra, A.K. Nuclear hormone receptor functions in keratinocyte and melanocyte homeostasis, epidermal carcinogenesis and melanomagenesis. FEBS Lett., 2013, 587(6), 529-541.
Lee, J.L.; Mukhtar, H.; Bickers, D.R.; Kopelovich, L.; Athar, M. Cyclooxygenase in the skin: pharmacological and toxicological implications. Toxicol. Appl. Pharmacol., 2003, 192(3), 294-306.
Hatton, J.L.; Parent, A.; Tober, K.L.; Hoppes, T.; Wulff, B.C.; Duncan, F.J.; Kusewitt, D.F.; VanBuskirk, A.M.; Oberyszyn, T.M. Depletion of CD4+ cells exacerbates the cutaneous response to acute and chronic UVB exposure. J. Invest. Dermatol., 2007, 127(6), 1507-1515.
Wilgus, T.A.; Koki, A.T.; Zweifel, B.S.; Kusewitt, D.F.; Rubal, P.A.; Oberyszyn, T.M. Inhbition of cutaneous ultraviolet light B–mediated inflamation and tumor formation with topical celecoxib treatment. Mol. Carcinog., 2003, 38(2), 49-58.
Cocoş, R.; Schipor, S.; Nicolae, I.; Thomescu, C.; Raicu, F. Role of COX-2 activity and CRP levels in patients with non–melanoma skin cancer. –765GC PTGS2 polymorphism and NMSC risk. Arch. Dermatol. Res., 2012, 304(5), 335-342.
Chun, K.S.; Langenbach, R. The prostaglandin E2 receptor, EP2, regulates survivin expression via an EGFR/STAT3 pathway in UVB-exposed mouse skin. Mol. Carcinog., 2011, 5D(6), 439-448.
Buckman, S.Y.; Gresham, A.; Hale, P.; Hruza, G.; Anast, J.; Masferrer, J.; Pentland, A.P. COX-2 expression is induced by UVB exposure in human skin: Implications for the development of skin cancer. Carcinogenesis, 1998, 19(5), 723-729.
Tober, K.L.; Wilgus, T.A.; Kusewitt, D.F. Thomas-Ahner, J.M.; Maruyama, T.; Oberyszyn, T.M. Importance of the EP1 receptor in cutaneuos UVB–Induced inflamation and tumor development. J. Invest. Dermatol., 2006, 126(1), 205-211.
Singh, T.; Katiyar, S.K. Green tea catechins reduce invasive potencial of human melanoma cells by targeting COX-2, PGE2 Receptors and Epithelial to Mesenchymal Transition. PLoS One, 2011, 6(10), e25224.
Singh, T.; Vaid, M.; Katiyar, N.; Sharma, S.; Katiyar, S.K. Berberine, an isoquinoline alkaloid, inhibits melanoma cancer cell migration by reducing the espressions of cyclooxygenase-2, prostaglandin E2 and prostaglandin E2 receptors. Carcinogenesis, 2011, 32(1), 86-92.
Maglio, D.H.G.; Paz, M.L.; Cela, E.M.; Leoni, J. Cyclooxygenase-2 overexpression in non-melanoma skin cancer: molecular pathways involved as targets for prevention and treatment. skin cancers - risk factors, prevention and therapy, 2011, Prof. Caterina La Porta (Ed.), ISBN: 978- 953-307-722-2, InTech, Available from:.
Wilgus, T.A.; Ross, M.S.; Parrett, M.L.; Oberyszyn, T.M. Topical application of a selective cyclooxygenase inhibitor suppresses UVB mediated cutaneous inflammation. Prostaglandins Other Lipid, 2000, 62(4), 367-384.
Elmets, C.A.; Viner, J.L.; Pentland, A.P.; Cantrell, W.; Lin, H.Y.; Bailey, H.; Kang, S.; Linden, K.G.; Heffernan, M.; Duvic, M.; Richmond, E.; Elewski, B.E.; Umar, A.; Bell, W.; Gordon, G.B. Chemoprevention of nonmelanoma skin cancer with celecoxib: A randomized, double-blind, placebo-controlled trial. J. Natl. Cancer Inst., 2010, 102(24), 1835-1844.
Wulff, B.C.; Thomas-Ahner, J.M.; Schick, J.S.; Oberyszyn, T.M. Celecoxib reduces the effects of acute and chronic UVB exposure in mice treated with therapeutically relevant immunosupresive drugs. Int. J. Cancer, 2010, 126(1), 11-18.
Karagece Yalçin, U.; Seçkın, S. The expression of p53 and cox-2 in basal cell csarcinoma, squamous cell carcinoma and actinic keratosis cases. Turk Patoloji Derg., 2012, 28(2), 119-127.
Bundscherer, A.; Hafner, C.; Maisch, T.; Becker, B.; Landthaler, M.; Vogt, T. Antiproliferative and proapoptotic effect of rapamycin and celecoxib in malignant melanoma cell lines. Oncol. Rep., 2008, 19, 547-553.
Bhatt, R.S.; Merchan, J.; Parker, R.; Wu, H.K.; Zhang, L.; Seery, V.; Heymach, J.V.; Atkins, M.B.; McDermott, D.; Sukhatme, V.P. A phase 2 pilot trial of low-dose, continuos infusion, or “metronomic” paclitaxel and oral celecoxib in patients with metastatic melanoma. Cancer, 2010, 116(7), 1751-1756.
Fegn, L.; Wang, Z. Topical chemoprevention of skin cancer in mice, using combined inhibitors of 5-lipoxygenase and ciclo-oxygenase-2. J. Laryngol. Otol., 2009, 123(8), 880-884.
Amini, S.; Viera, M.H.; Valins, W.; Berman, B. Nonsurgical innovations in the treatment of nonmelanoma skin cancer. J. Clin. Aesthet. Dermatol., 2010, 3(6), 20-34.
Clarke, P. Nonmelanoma skin cancers – treatment options. Aust. Fam. Physician, 2012, 41(7), 476-480.
Feng, X.; Vyas, D.; Guan, B. Novel Target Therapy and Immunotherapy for Skin Cancer., US Pharm., 2012, 37(11) Suppl., 7-11.
Zanon, M.; Piris, A.; Bersani, I.; Vegetti, C.; Molla, A.; Scarito, A.; Anichini, A. Apoptosis protease activator protein-1 expression is dispensable for response of human cells to distinct proapoptotic agents. Cancer Res., 2004, 64(20), 7386-7394.
Simões, M.C.F.; Sousa, J.J.S.; Pais, A.A.C.C. Skin cancer and new treatment perspectives: A review. Cancer Lett., 2015, 357, 8-42.
Chakraborty, R.; Wieland, C.N.; Comfere, N.I. Molecular targeted therapies in metastatic melanoma. Pharm. Pers. Med., 2013, 6, 49-56.
Khan, M.H.; Alam, M.; Yoo, S. Epidermal growth factor receptor inhibitors in the treatment of nonmelanoma skin cancers. Dermatol. Surg., 2011, 37(9), 1199-1209.
Heath, C.H.; Deep, N.L. Nabell, l.; Carroll, W.R.; Desmond, R.; Clemons, L. Phase 1 study of erlotinib plus radiation therapy in patients with advanced cutaneous squamous cell carcinoma. Int. J. Radiat. Oncol. Biol. Phys., 2013, 85(5), 1275-1281.
Bahner, J.D.; Bordeaux, J.S. Non-melanoma skin cancers: photodynamic therapy, cryotherapy, 5-fluorouracil, imiquimod, diclofenac, or what? Facts and controversies. Clin. Dermatol., 2013, 31(6), 792-798.
Mandala, M.; Massi, D.; De Giorgi, V. Cutaneous toxicities of BRAF inhibitors: clinical and pathological challenges and call to action. Crit. Rev. Oncol. Hematol., 2013, 88(2), 318-337.
Kawczyk-Krupka, A.; Bugaj, A.M.; Latos, W.; Zaremba, K.; Sieron, A. Photodynamic therapy in treatment of cutaneous and choroidal melanoma. Photodiagn. Photodyn. Ther., 2013, 10(4), 503-509.
Rodust, P.M.; Fecker, L.F.; Stockfleth, E.; Eberle, J. Activation of mithocondrial apoptosis pathway in cutaneous squamous cell carcinoma cells by di- clofenac/hyaluronic acid is related to upregulation of Bad as well as downregulation of Mcl-1 and Bcl-w. Exp. Dermatol., 2012, 21(7), 520-525.
Kim, S.R.; Park, J.H.; Lee, M.E.; Park, J.S.; Park, S.C.; Han, J.A. Selective COX-2 inhibitors modulate cellular senescence in human dermal fibroblast in a catalytic activity-independent manner. Mech. Ageing Dev., 2008, 129(12), 706-713.
Li, F.; Liu, S.; Ouyang, Y.; Fan, C.; Wang, T.; Zhang, C.; Zeng, B.; Chai, Y.; Wang, X. Effect of celecoxib on proliferation, collagen expresion, ERK1/2 and SMAD2/3 phosphorylation in NIH/3T3 fibroblasts. Eur. J. Pharmacol., 2012, 678, 1-5.
DeCicco-Skinner, K.L.; Nolan, S.J.; Deshpande, M.M.; Trovato, E.L.; Dempsey, T.A.; Wiest, J.S. Altered prostanoid signaling contributes to increased skin tumorigenesis in Tpl2 knockout mice. PLoS One, 2013, 8(2), e56212.
Escuin-Ordinas, H.; Atefi, M.; Fu, Y.; Cass, A.; Ng, C.; Huang, R.R.; Yashar, S.; Comin-Anduix, B.; Avramis, E.; Cochran, A.J.; Marais, R.; Lo, R.S.; Graeber, T.G.; Herschman, H.R.; Ribas, A. COX-2 inhibition prevents the apparence of cutaneous squamous cell carcinoma acelerated by BRAF inhibitors. Mol. Oncol., 2014, 8(2), 250-260.
Tang, J.Y.; Aszterbaum, M.; Athar, M.; Barsanti, F.; Cappola, C.; Estevez, N.; Hebert, J.; Hwang, J.; Khaimskiy, Y.; Kim, A.; Lu, Y.; So, P.L.; Tang, X.; Kohn, M.A.; McCulloch, C.E.; Kopelovich, L.; Bickers, D.R.; Epstein, E.H., Jr Basal cell carcinoma chemoprevention with nonsteroidal anti-inflammatory drugs in genetically predisposed PTCH1*(+/−) humans and mice. Cancer Prev. Res. (Phila.), 2010, 3(1), 25-34.
Wilgus, T.A.; Koki, A.T.; Zweifel, B.S.; Rubal, P.A.; Oberyszyn, T.M. Chemotherapeutic efficacy of topical celecoxib in a murine model of Ultraviolet Light B-Induced skin cancer. Mol. Carcinog., 2003, 38(1), 33-39.
Pentland, A.P.; Schoggins, J.W.; Scott, G.A.; Khan, K.N.; Han, R. Reduction of UV-induced skin tumors in hairless mice by selective COX-2 inhibition. Carcinogenesis, 1999, 20(10), 1939-1944.
Fischer, S.M.; Conti, C.J.; Viner, J.; Aldaz, C.M.; Lubet, R.A. Celecoxib and difluoromethylornithine in combination have strong therapeutic activity against UV-induced skin tumors in mice. Carcinogenesis, 2003, 24(5), 945-952.
Bragagni, M.; Mennini, N.; Maestrelli, F.; Cirri, M.; Mura, P. Comparative study of liposomes, transfersomes and ethosomes as carriers for improving topical delivery of celecoxib. Drug Deliv., 2012, 19(7), 345-361.
Simonetti, L.D.; Gelfuso, G.M.; Barbosa, J.C.; Lopez, R.F. Assesment of the percutaneous penetration of cisplastin: The effect of monoolein and the drug skin penetration pathway. Eur. J. Pharm. Biopharm., 2009, 73(1), 90-94.
Tennenbaum, T.; Lowry, D.; Darwiche, N.; Morgan, D.L.; Gartsbein, M.; Hansen, L.; De Luca, L.M.; Hennings, H.; Yuspa, S.H. Topical retinoic acid reduces skin papilloma formation but resistant papillomas are at high risk for malignant conversion. Cancer Res., 1998, 58(7), 1435-1443.
Chun, K.S.; Kundu, J.K.; Park, K.K.; Chung, W.Y.; Surh, Y.J. Inhibition of phorbol ester–induced mouse skin tumor promotion and COX–2 expression by celecoxib: C/EPB as a potencial molecular target. Cancer Res. Treat., 2006, 38(3), 1252-1258.
Ochalek, M.; Podhaisky, H.; Ruettinger, H.H.; Neubert, R.H.; Wohlrab, J. SC lipid model membranes designed for studying impact of ceramides species on drug diffusion and permeation, part iii: influence of penetration enhancer on diffusion and permeation of models drugs. Int. J. Pharm., 2012, 436, 206-213.
Patlolla, R.R.; Desai, P.R.; Belay, K.; Singh, M.S. Translocation of cell penetrating peptide engrafted nanoparticles across skin layers. Biomaterials, 2010, 31(21), 5598-5607.
Ventura, C.A.; Tommasini, S.; Falcone, A.; Giannone, I.; Paolino, D.; Sdrafkakis, V.; Mondello, M.R.; Puglisi, G. Influence of modified cyclodextrins on solubility and percutaneous absorption of celecoxib through human skin. Int. J. Pharm., 2006, 314(1), 37-45.
Engelbrecht, T.N.; Schroeter, A.; Hauss, T.; Neubert, R.H. Lipophilic penetration enhancers and their impact to the bilayer structure of stratum corneum lipid model membranes: Neutron diffraction studies based on the example Oleic Acid. Biochim. Biophys. Acta, 2011, 1808(12), 2798-2806.
Mélot, M.; Pudney, P.D.; Williamson, A.M.; Caspers, P.J.; Van Der Pol, A.; Puppels, G.J. Studying the effectiveness of penetration enhancers to deliver retinol through the stratum corneum by in vivo confocal raman spectroscopy. J. Control. Release, 2009, 138(1), 32-39.
Herai, H.; Gratieri, T.; Thomazine, J.A.; Bentley, M.V.; Lopez, R.F. Doxorubicin skin penetration from monolein–containing propylene glycol formulations. Int. J. Pharm., 2007, 329, 88-93.
Kreilgaard, M. Influence of microemulsions on cutaneous drug delivery. Adv. Drug Deliv. Rev., 2002, 54(Suppl. 1), S77-S98.
Pierre, M.B.; Dos Santos Miranda Costa, I. Liposomal systems as drug delivery vehicles for dermal and transdermal applications. Arch. Dermatol. Res., 2011, 303, 607-621.
Srisuk, P.; Thongnopnua, P.; Raktanonchai, U.; Kanokpanont, S. Physico-chemical characteristics of methotrexate-entrapped oleic acid- containing deformable liposomes for in vitro transepidermal delivery targeting treatment. Int. J. Pharm., 2012, 427(2), 426-434.
Tan, A.; Simovic, S.; Davey, A.K.; Rades, T.; Boyd, B.J.; Prestidge, C.A. Silica nanoparticles to control the lipase-mediated digestion of lipid- based oral delivery systems. Mol. Pharm., 2010, 7(2), 522-532.
McCarron, P.A.; Marouf, W.M.; Donnelly, R.F.; Scott, C. Enhanced surface attachment of protein-type targeting ligands to poly(lactide-co-glycolide) nanoparticles using variable expression of polimeric acid functionality. J. Biomed. Mater. Res., 2008, 87(4), 873-884.
Schneider, M.; Stracke, F.; Hansen, S.; Schaefer, U.F. Nanoparticles and their interactions with the dermal barrier. Dermatoendocrinol, 2009, 1(4), 197-206.
Batheja, P.; Sheihet, L.; Kohn, J.; Singer, A.J.; Michniak-Kohn, B. Topical drug delivery by a polimeric nanosphere gel: formulation optimization and in vitro and in vivo skin distribution studies. J. Control. Release, 2011, 149(2), 159-167.
Mehnert, W.; Mäder, K. Solid lipid nanoparticles production, characterization and applications. Adv. Drug Deliv. Rev., 2001, 47, 165-196.
Hussain, Z.; Katas, H.; Mohd Amin, M.C.; Kumolosasi, E.; Buang, F.; Sahudin, S. Self-assembled polymeric nanoparticles for percutaneous co-delivery of hydrocortisone/hydroxytyrosol: An ex vivo and in vivo study using an NC/Nga mouse model. Int. J. Pharm., 2013, 444(1-2), 109-119.
Estracanholli, E.A.; Praça, F.S.G.; Cintra, A.B.; Pierre, M.B.R.; Lara, M.G. Liquid crystalline systems for transdermal delivery of celecoxib: in vitro drug release and skin permeation studies. AAPS PharmSciTech, 2014, 15(6), 1468-1475.
Dante, M.C.L.; Borgheti-Cardoso, L.N.; Fantini, M.C.A.; Praça, F.S.G.; Medina, W.S.G.; Pierre, M.B.R.; Lara, M.G. Liquid crystalline systems based on glyceryl monooleate and penetration enhancers for skin delivery of celecoxib: characterization, In Vitro drug release, and in vivo studies. J. Pharm. Sci., 2017, pii: S0022- 3549(17), 30778-30785

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Page: [5 - 16]
Pages: 12
DOI: 10.2174/1568009618666180430125201
Price: $58

Article Metrics

PDF: 31