Visible Light Detection of Dopamine Enhanced by Cloud Point Extraction

Author(s): Asiye Aslıhan Avan, Hayati Filik*.

Journal Name: Current Pharmaceutical Analysis

Volume 15 , Issue 5 , 2019

Submit Manuscript
Submit Proposal

Graphical Abstract:


Background: Monitoring of DA, in the presence of other chemical analogues such as epinephrine, norepinephrine, serotonin, ascorbic acid, uric acid, catechol, phenethylamine, tyramine, and tyrosine, is crucial in the diagnosis and mechanistic understanding of human neuropathology. Therefore, the determination of DA at trace levels has become a very important analytical task, as part of health safety and forensic analysis.

Introduction: A cloud point extraction (CPE) process was developed for the isolation and detection of dopamine in food, urine, and pharmaceutical samples.

Methods: In this procedure, dopamine was derivatized with o-phthalaldehyde (OPA) and sodium sulphite in aqueous solution. The isoindole derivative was synthesized by the reaction of OPA and sodium sulphite with the amino group of dopamine and the resulted isoindole derivatives were extracted by cloud point extraction. After extraction process, the concentration of enriched analyte was measured by UV-VIS spectrophotometry. The parameters affecting the CPE such as concentration of surfactant and electrolyte, equilibration temperature and time and pH of sample solution were investigated.

Results: After optimization of the CPE conditions, the linear range of 8-80 µM (without extraction 100- 1000 µM) was established for dopamine with detection limit at 2.6 µM.

Conclusion: The developed extraction procedure was applied to the quantification of dopamine in chocolate, urine, and pharmaceutical samples. The study ensures a promising strategy for the detection of dopamine in the presence of biological constituents, e.g. ascorbic acid, uric acid, and serotonin.

Keywords: Dopamine, cloud point extraction, spectrophotometry, food, urine, pharmaceutical, analysis.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Page: [528 - 534]
Pages: 7
DOI: 10.2174/1573412914666180427152544
Price: $58

Article Metrics

PDF: 8