One-step Solvothermal Synthesis of rGO/TiO2 Nanocomposite for Efficient Solar Photocatalytic Degradation of Methylene Blue Dye

Author(s): Valerie Ling Er Siong, Chin Wei Lai*, Joon Ching Juan, Kian Mun Lee, Bey Fen Leo, Cheng Seong Khe.

Journal Name: Current Nanoscience

Volume 15 , Issue 2 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: The discharge of effluents from the textile and dyeing industries has been a worldwide concern. Although reduced graphene oxide/titanium dioxide (rGO/TiO2) nanocomposite is a potential candidate for wastewater treatment, the influence of graphene oxide (GO) content on its physico-chemical characteristics and its subsequent photocatalytic capabilities in degrading the organic contaminants has not been well established.

Objective: The primary objective of this study was to assess the use of rGO/TiO2 nanocomposites with various GO contents for the removal of toxic methylene blue (MB) dye from aqueous solution.

Method: In the present study, rGO/TiO2 nanocomposites were fabricated using various GO contents through a one-step solvothermal method. The effect of GO content on the nanocomposite formation was investigated by using field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and Raman spectroscopy. The resulting nanocomposites were evaluated against MB degradation under artificial solar light illumination.

Results: Based on the photocatalytic results, the highest removal percentage of MB was achieved by 0.15rGO/TiO2, which was about 1.7 times higher than that of 0.01rGO/TiO2.

Conclusion: The enhanced removal efficiency of MB by the nanocomposite with the highest GO content (0.15 g) was attributed to the increased active adsorption sites, which greatly promoted the π- π interaction between the aromatic rings of MB dye and the graphitic skeleton of rGO, as well as the electrostatic interaction between the cationic center of MB molecules and the residual oxygen functionalities of rGO.

Keywords: rGO/TiO2 nanocomposite, GO content, one-step solvothermal, photocatalytic degradation, methylene blue, artificial solar light illumination.

[1]
Lam, S-M.; Sin, J-C.; Abdullah, A.Z.; Mohamed, A.R. Degradation of wastewaters containing organic dyes photocatalysed by zinc oxide: A review. Desalination Water Treat., 2012, 41(1), 131-169.
[2]
Zhang, W.; Wu, C.W. Dyeing of multiple types of fabrics with a single reactive azo disperse dye. Chem. Pap., 2014, 68(3), 330-335.
[3]
Mohamed, A.; El-Sayed, R.; Osman, T.A.; Toprak, M.S.; Muhammed, M.; Uheida, A. Composite nanofibers for highly efficient photocatalytic degradation of organic dyes from contaminated water. Environ. Res., 2016, 145, 18-25.
[4]
Padikkaparambil, S.; Narayanan, B.; Yaakob, Z.; Viswanathan, S.; Tasirin, S.M. Au/TiO2 reusable photocatalysts for dye degradation. Int. J. Photoenergy, 2013, 2013, Article ID 752605.
[5]
Giovannetti, R.; D’Amato, C.A.; Zannotti, M.; Rommozzi, E.; Gunnella, R.; Minicucci, M.; Di Cicco, A. Visible light photoactivity of polypropylene coated nano-TiO2 for dyes degradation in water. Sci. Rep., 2015, 5, 17801.
[6]
Thao, L.T.S.; Dang, T.T.T.; Khanitchaidecha, W.; Channei, D.; Nakaruk, A. Photocatalytic degradation of organic dye under UV-A irradiation using TiO2-vetiver multifunctional nano particles. Materials, 2017, 10(2), E122.
[7]
Julkapli, N.M.; Bagheri, S.; Hamid, S.B.A. Recent advances in heterogeneous photocatalytic decolorization of synthetic dyes. Sci. World J., 2014, 2014, Article ID 692307.
[8]
Kasinathan, K.; Kennedy, J.; Elayaperumal, M.; Henini, M.; Malik, M. Photodegradation of organic pollutants RhB dye using UV simulated sunlight on ceria based TiO2 nanomaterials for antibacterial applications. Sci. Rep., 2016, 6, 38064.
[9]
Mohammad, A.; Kapoor, K.; Mobin, S.M. Improved photocatalytic degradation of organic dyes by ZnO-nanoflowers. ChemistrySelect, 2016, 1(13), 3483-3490.
[10]
Chen, X.; Wu, Z.; Liu, D.; Gao, Z. Preparation of ZnO photocatalyst for the efficient and rapid photocatalytic degradation of azo dyes. Nanoscale Res. Lett., 2017, 12(1), 143.
[11]
Candal, R.; Martínez-de la Cruz, A. New visible-light active semiconductors. InPhotocatalytic Semiconductors; Hernández-Ramírez, A.; Medina-Ramírez, I., Eds.; Springer: Cham, 2015, pp. 41-67.
[12]
Ola, O.; Maroto-Valer, M.M. Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction. J. Photochem. Photobiol. Photochem. Rev., 2015, 24, 16-42.
[13]
Sun, Q.; Sun, X.; Dong, H.; Zhang, Q.; Dong, L. Copper quantum dots on TiO2: A high-performance, low-cost, and nontoxic photovoltaic material. J. Renew. Sustain. Energy, 2013, 5(2), 021413.
[14]
Ye, M.; Lv, M.; Chen, C.; Iocozzia, J.; Lin, C.; Lin, Z. Design, fabrication, and modification of cost-effective nanostructured TiO2 for solar energy applications. InLow-cost Nanomaterials: Toward Greener and More Efficient Energy Applications; Wang, J.; Lin, Z., Eds.; Springer: England, 2014, pp. 9-54.
[15]
Nosaka, Y.; Nosaka, A.Y. Reconsideration of intrinsic band alignments within anatase and rutile TiO2. J. Phys. Chem. Lett., 2016, 7(3), 431-434.
[16]
Zhang, J.; Zhou, P.; Liu, J.; Yu, J. New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2. Phys. Chem. Chem. Phys., 2014, 16(38), 20382-20386.
[17]
Tanaka, A.; Hashimoto, K.; Kominami, H. A very simple method for the preparation of Au/TiO2 plasmonic photocatalysts working under irradiation of visible light in the range of 600-700 nm. Chem. Commun., 2017, 53(35), 4759-4762.
[18]
Tan, L.L.; Chai, S.P.; Mohamed, A.R. Synthesis and applications of graphene-based TiO2 photocatalysts. ChemSusChem, 2012, 5(10), 1868-1882.
[19]
Dahl, M.; Liu, Y.; Yin, Y. Composite titanium dioxide nanomaterials. Chem. Rev., 2014, 114(19), 9853-9889.
[20]
Nguyen, B.H.; Nguyen, V.H.; Vu, D.L. Photocatalytic composites based on titania nanoparticles and carbon nanomaterials. Adv. Nat. Sci.: Nanosci. Nanotechnol., 2015, 6(3), 033001.
[21]
Morales-Torres, S.; Pastrana-Martínez, L.M.; Figueiredo, J.L.; Faria, J.L.; Silva, A.M.T. Design of graphene-based TiO2 photocatalysts—a review. Environ. Sci. Pollut. Res., 2012, 19(9), 3676-3687.
[22]
Low, J.; Yu, J.; Ho, W. Graphene-based photocatalysts for CO2 reduction to solar fuel. J. Phys. Chem. Lett., 2015, 6(21), 4244-4251.
[23]
Mali, K.S.; Greenwood, J.; Adisoejoso, J.; Phillipson, R.; Feyter, S.D. Nanostructuring graphene for controlled and reproducible functionalization. Nanoscale, 2015, 7(5), 1566-1585.
[24]
Noroozi, M.; Zakaria, A.; Radiman, S.; Wahab, Z.A. Environmental synthesis of few layers graphene sheets using ultrasonic exfoliation with enhanced electrical and thermal properties. PLoS One, 2016, 11(4), e0152699.
[25]
Sur, U.K. Graphene: A rising star on the horizon of materials science. Int. J. Electrochem., 2012, 2012, Article ID 237689.
[26]
Park, J.; Jin, T.; Liu, C.; Li, G.; Yan, M. Three-dimensional graphene-TiO2 nanocomposite photocatalyst synthesized by covalent attachment. ACS Omega, 2016, 1(3), 351-356.
[27]
Gu, L.; Zhang, H.; Jiao, Z.; Li, M.; Wu, M.; Lei, Y. Glucosamine-induced growth of highly distributed TiO2 nanoparticles on graphene nanosheets as high-performance photocatalysts. RSC Advances, 2016, 6(71), 67039-67048.
[28]
Zhang, N.; Yang, M-Q.; Liu, S.; Sun, Y.; Xu, Y-J. Waltzing with the versatile platform of graphene to synthesize composite photocatalysts. Chem. Rev., 2015, 115(18), 10307-10377.
[29]
Song, J.; Wang, X.; Chen, O-P.; Chen, C-K.; Chang, C-T. Photocatalytic degradation of reactive black-5 dye with novel graphene-titanium nanotube composite. Sep. Sci. Technol., 2015, 50(9), 1394-1402.
[30]
Gopalakrishnan, A.; Binitha, N.N.; Yaakob, Z.; Akbar, P.M.; Padikkaparambil, S. Excellent photocatalytic activity of titania-graphene nanocomposites prepared by a facile route. J. Sol-Gel Sci. Technol., 2016, 80(1), 189-200.
[31]
Posa, V.R.; Annavaram, V.; Koduru, J.R.; Bobbala, P.; Madhavi, V.; Somala, A.R. Preparation of graphene-TiO2 nanocomposite and photocatalytic degradation of Rhodamine-B under solar light irradiation. J. Exp. Nanosci., 2016, 11(9), 722-736.
[32]
Hummers, W.S.; Offeman, R.E. Preparation of graphitic oxide. J. Am. Chem. Soc., 1958, 80(6), 1339-1339.
[33]
Liu, B.; Huang, Y.; Wen, Y.; Du, L.; Zeng, W.; Shi, Y.; Zhang, F.; Zhu, G.; Xu, X. Highly dispersive 001 facets-exposed nanocrystalline TiO2 on high quality graphene as a high performance photocatalyst. J. Mater. Chem., 2012, 22(15), 7484-7491.
[34]
Bai, J.; Li, Y.; Li, X.; Liu, L. Facile preparation of 2D Bi2MoO6 nanosheets-RGO composites with enhanced photocatalytic activity. New J. Chem., 2017, 41(15), 7783-7790.
[35]
Štengl, V.; Henych, J.; Vomáčka, P.V.; Slušná, M. Doping of TiO2-GO and TiO2-rGO with noble metals: Synthesis, characterization and photocatalytic performance for azo dye discoloration. Photochem. Photobiol., 2013, 89(5), 1038-1046.
[36]
Ruan, P.; Qian, J.; Xu, Y.; Xie, H.; Shao, C.; Zhou, X. Mixed-phase TiO2 nanorods assembled microsphere: Crystal phase control and photovoltaic application. CrystEngComm, 2013, 15(25), 5093-5099.
[37]
Lee, S.; Lee, Y.; Kim, D.H.; Moon, J.H. Carbon-deposited TiO2 3D inverse opal photocatalysts: Visible-light photocatalytic activity and enhanced activity in a viscous solution. ACS Appl. Mater. Interfaces, 2013, 5(23), 12526-12532.
[38]
Choudhury, B.; Choudhury, A. Local structure modification and phase transformation of TiO2 nanoparticles initiated by oxygen defects, grain size, and annealing temperature. Int. Nano Lett., 2013, 3(1), 55.
[39]
Zhang, L.; Zhang, J.; Jiu, H.; Ni, C.; Zhang, X.; Xu, M. Graphene-based hollow TiO2 composites with enhanced photocatalytic activity for removal of pollutants. J. Phys. Chem. Solids, 2015, 86, 82-89.
[40]
Gu, L.; Wang, J.; Cheng, H.; Zhao, Y.; Liu, L.; Han, X. One-step preparation of graphene-supported anatase TiO2 with exposed 001 facets and mechanism of enhanced photocatalytic properties. ACS Appl. Mater. Interfaces, 2013, 5(8), 3085-3093.
[41]
Ali, A.; Oh, W-C. Preparation of nanowire like WSe2-graphene nanocomposite for photocatalytic reduction of CO2 into CH3OH with the presence of sacrificial agents. Sci. Rep., 2017, 7(1), 1867.
[42]
Wang, J.; Kondrat, S.A.; Wang, Y.; Brett, G.L.; Giles, C.; Bartley, J.K.; Lu, L.; Liu, Q.; Kiely, C.J.; Hutchings, G.J. Au-Pd nanoparticles dispersed on composite titania/graphene oxide-supports as a highly active oxidation catalyst. ACS Catal., 2015, 5(6), 3575-3587.
[43]
Vasilaki, E.; Georgaki, I.; Vernardou, D.; Vamvakaki, M.; Katsarakis, N. Ag-loaded TiO2/reduced graphene oxide nanocomposites for enhanced visible-light photocatalytic activity. Appl. Surf. Sci., 2015, 353, 865-872.
[44]
Qiu, B.; Li, Q.; Shen, B.; Xing, M.; Zhang, J. Stöber-like method to synthesize ultradispersed Fe3O4 nanoparticles on graphene with excellent Photo-Fenton reaction and high-performance lithium storage. Appl. Catal. B Environ., 2016, 183, 216-223.
[45]
Li, H.; Cui, X. A hydrothermal route for constructing reduced graphene oxide/TiO2 nanocomposites: Enhanced photocatalytic activity for hydrogen evolution. Int. J. Hydrogen Energy, 2014, 39(35), 19877-19886.
[46]
Tse, M.Y.; Wei, X.; Hao, J. High-performance colossal permittivity materials of (Nb + Er) co-doped TiO2 for large capacitors and high-energy-density storage devices. Phys. Chem. Chem. Phys., 2016, 18(35), 24270-24277.
[47]
Chanda, A.; Rout, K.; Vasundhara, M.; Joshi, S.R.; Singh, J. Structural and magnetic study of undoped and cobalt doped TiO2 nanoparticles. RSC Advances, 2018, 8(20), 10939-10947.
[48]
Vásquez, G.C.; Peche-Herrero, M.A.; Maestre, D.; Gianoncelli, A. Laser-induced anatase-to-rutile transition in TiO2 nanoparticles: Promotion and inhibition effects by Fe and Al doping and achievement of micropatterning. J. Phys. Chem. C, 2015, 119(21), 11965-11974.
[49]
Ding, H.; Zhang, S.; Juan, P-C.; Liu, T-Y.; Du, Z-F.; Zhao, D-L. Enhancing the photovoltaic performance of dye-sensitized solar cells by modifying TiO2 photoanodes with exfoliated graphene sheets. RSC Advances, 2016, 6(47), 41092-41102.
[50]
Khalid, N.R.; Ahmed, E.; Hong, Z.; Sana, L.; Ahmed, M. Enhanced photocatalytic activity of graphene-TiO2 composite under visible light irradiation. Curr. Appl. Phys., 2013, 13(4), 659-663.
[51]
Žerjav, G.; Arshad, M.S.; Djinović, P.; Junkar, I.; Kovač, J.; Zavašnik, J.; Pintar, A. Improved electron-hole separation and migration in anatase TiO2 nanorod/reduced graphene oxide composites and their influence on photocatalytic performance. Nanoscale, 2017, 9(13), 4578-4592.
[52]
Minella, M.; Sordello, F.; Minero, C. Photocatalytic process in TiO2/graphene hybrid materials. Evidence of charge separation by electron transfer from reduced graphene oxide to TiO2. Catal. Today, 2017, 281, 29-37.
[53]
Cheng, Z.; Liao, J.; He, B.; Zhang, F.; Zhang, F.; Huang, X.; Zhou, L. One-step fabrication of graphene oxide enhanced magnetic composite gel for highly efficient dye adsorption and catalysis. ACS Sustain. Chem.& Eng., 2015, 3(7), 1677-1685.
[54]
Yu, Y.; Murthy, B.N.; Shapter, J.G.; Constantopoulos, K.T.; Voelcker, N.H.; Ellis, A.V. Benzene carboxylic acid derivatized graphene oxide nanosheets on natural zeolites as effective adsorbents for cationic dye removal. J. Hazard. Mater., 2013, 260, 330-338.
[55]
Sharma, P.; Das, M.R. Removal of a cationic dye from aqueous solution using graphene oxide nanosheets: Investigation of adsorption parameters. J. Chem. Eng. Data, 2012, 58(1), 151-158.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 15
ISSUE: 2
Year: 2019
Page: [157 - 162]
Pages: 6
DOI: 10.2174/1573413714666180426092927
Price: $58

Article Metrics

PDF: 22
HTML: 4
PRC: 1