Fabrication and Characterization of Carbon Nanotube Channel on the Electrodes for the Development of Resonant Gate Transistor

Author(s): Muhtade M. Aqil*, Mohd. A. Azam, Rhonira Latif.

Journal Name: Nanoscience & Nanotechnology-Asia

Volume 9 , Issue 1 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: New application can be obtained by the integration between carbon nanotube technology Nano-Electro-Mechanical system (NEMs) and Micro-Electro-Mechanical system (MEMs). The new application is a transistor, which uses carbon nanotube as the channel between the source and drain, while MEMs resonator bridges are used as suspending gates.

Methods: preparation process of the electrodes (source/drain), carbon nanotube growth between electrodes and the characterization of carbon nanotube channel using Raman spectroscopy to study the time and temperature effect on the quality of Carbon Nanotube channel (CNT-channel), field emission scanning electron microscope/Energy Dispersive X-ray Analysis (FESEM) to study CNT structure.

Results: The result shows the increasing of quality with the increase of both temperature and time. Carbon nanotubes exist between electrodes, and the growth direction follow ethanol direction from source to drain. However, the carbon nanotube growth randomly not aligned. The channel between electrodes were well etched, this has been approved by EDX result.

Conclusion: The characterization confirmed the CNT presence between source and drain. Increasing the growth temperature from 700 to 725 °C enhanced the quality of growing CNTs, which is clearly shown from Raman information. While, increasing growth time decreased quality, but the effect not that significant. FESEM characterization shows that CNT growth follows the ethanol flow from source to drain randomly, while EDX result shows that the channel between the electrodes was well etched and clear.

Keywords: CNTFET, ACCVD, MEMs, FESEM, raman spectroscopy, resonant gate transistor, carbon nanotube.

[1]
Ngelayang, T.B.; Fen, L.Y.; Latif, R.; Majlis, B.Y. The evolution of research and development on cochlear biomodel. J. Teknol., 2015, 78(6-8), 83-92.
[2]
Bachman, M.; Zeng, F.G.; Xu, T.; Li, G.P. Micromechanical resonator array for an implantable bionic ear. Audiol. Neurotol., 2005, 11(2), 95-103.
[3]
Haronian, D. MacDonald. N.C. A Microelectromechanics based artificial cochlea (membac). Proc. Int. Solid-State Sensors Actuators Conf., 1995, 95(2), 0-3.
[4]
Ngelayang, T.B.A.; Latif, R.; Ramli, M.F.; Junoh, A.K.; Roslan, N.; Masnan, M.J.; Kharuddin, M.H. Development of Micro- Electromechanical System (MEMS) cochlear biomodel. In: AIP Conference Proceedings,, 2015, vol. 1660, no. 1, p. 70090.
[5]
Dai, C.; Gan, R.Z. Change in cochlear response in an animal model of otitis media with effusion. Neurotol. Audiol., 2010, 15(3), 155-167.
[6]
Ngelayang, T.B.A.; Majlis, B.Y.; Azam, M.A.; Arith, F.; Latif, R. Platinum and aluminium microresonator bridges for artificial basilar membrane. Appl. Mech. Mater., 2015, 761, 462-467.
[7]
White, R.D.; Grosh, K. Design and characterization of a MEMS piezoresistive cochlear-like acoustic sensor. In: ASME IMECE, , 2002, pp. 201-210.
[8]
Haronian, D.; MacDonald, N.C. A Microelectromechanics Based Artificial Cochlea (MEMBAC). In: Solid-State Sensors and Actuators, 1995 and Eurosensors IX. Transducers' 95. The 8th International Conference, , 1995, Vol. 2, pp. 708-711, IEEE.
[9]
Bachman, M.; Zeng, F.G.; Xu, T.; Li, G.P. Micromechanical resonator array for an implantable bionic ear. Audiol. Neurotol., 2005, 11(2), 95-103.
[10]
Latif, R.; Mastropaolo, E.; Bunting, A.; Cheung, R.; Koickal, T.; Hamilton, A.; Newton, M.; Smith, L. Microelectromechanical systems for biomimetical applications. J. Vacuum Sci. Technol. B Nanotechnol. Microelectron,, 2010, 28(6), C6N1-C6N6.
[11]
Ngelayang, T.B.; Majlis, B.Y.; Latif, R. Straight Bridge Beams with Centered Diaphragm ( SBBCD ) Design for MEMS Cochlear Biomodel,” In: Semiconductor Electronics (ICSE), 2016 IEEE International Conference,, , 2016, pp. 13-16.
[12]
Latif, R.; Majlis, B.Y.; Cheung, R. MEMS design and modelling based on resonant gate transistor for cochlear biomimetical application. Microsyst. Technol., 2017, 23(7), 2329-2342.
[13]
Latif, R. bin Jaafar, M.F.; Majlis, B.Y.; Aqil, M.M.; Estimation of thin film stress in buckled MEMS bridge from pull-in voltage. In Micro and Nanoelectronics (RSM), 2017 IEEE Regional Symposium, , on (pp. 1-4). IEEE.
[14]
Sinha, S.K.; Chaudhury, S. In: Advantage of CNTFET characteristics over MOSFET to reduce leakage power, 2nd International Conference on Devices, Circuits and Systems (ICDCS), Combiatore, India, 6-8 March 2014; IEEE, New Jersey, US,. 2014, pp. 1-5.
[15]
Belin, T.; Epron, F. Characterization methods of carbon nanotubes: A review. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., 2005, 119, 105-118.
[16]
Sinha, S.K.; Chaudhury, S. Comparative study of leakage power in CNTFET over MOSFET device. J. Semicond., 2014, 35(11), 114002.
[17]
Ohno, Y.; Iwatsuki, S.; Hiraoka, T.; Okazaki, T.; Kishimoto, S.; Maezawa, K.; Shinohara, H.; Mizutani, T. Position-controlled carbon nanotube field-effect transistors fabricated by chemical vapor deposition using patterned metal catalyst. Jpn. J. Appl. Phys., 2003, 42(1), 4116-4119.
[18]
Franklin, N.R.; Wang, Q.; Tombler, T.W.; Javey, A.; Shim, M.; Dai, H. Integration of suspended carbon nanotube arrays into electronic devices and electromechanical systems. Appl. Phys. Lett., 2002, 81(5), 913-915.
[19]
Mohamed, M.A.; Azam, M.A.; Shikoh, E.; Fujiwara, A. Fabrication and characterization of carbon nanotube field-effect transistors using ferromagnetic electrodes with different coercivities. Jpn. J. Appl. Phys., 2010, 49(2), 02BD08.
[20]
Aqil, M.M.; Azam, M.A.; Aziz, M.F.; Latif, R. Deposition and characterization of molybdenum thin film using direct current magnetron and atomic force microscopy. J. Nanotechnol., 2017, 4862087
[http://dx.doi.org/10.1155/2017/4862087]
[21]
Aqil, M.M.; Azam, M.A.; Latif, R.; Salehuddin, F. Time influence on thickness and grains for molybdenum thin film. JTEC, 2017, 9(2-13), 69-73.
[22]
Azam, M.A.; Mohamed, M.A.; Shikoh, E.; Fujiwara, A. Thermal degradation of single-walled carbon nanotubes during alcohol catalytic chemical vapor deposition process. Jpn. J. Appl. Phys., 2010, 49(2), 2-7.
[23]
Azam, M.A.; Fujiwara, A.; Shimoda, T. Direct growth of vertically-aligned single-walled carbon nanotubes on conducting substrates using ethanol for electrochemical capacitor. J. New Mater. Electrochem. Syst., 2011, 14(3), 173-178.
[24]
Azam, M.A.; Manaf, N.S.A.; Talib, E.; Bistamam, M.S.A. Aligned carbon nanotube from catalytic chemical vapor deposition technique for energy storage device: A review. Ionics (Kiel), 2013, 19(11), 1455-1476.
[25]
Kim, H.; Kang, J.; Kim, Y.; Hong, B.H.; Choi, J.; Iijima, S. Synthesis of ultra-long super-aligned double-walled carbon nanotube forests. J. Nanosci. Nanotechnol., 2011, 11(1), 4.
[26]
Barzegar, H.R.; Nitze, F.; Sharifi, T.; Ramstedt, M.; Tai, C.W.; Malolepszy, A.; Stobinski, L.; Wågberg, T. Simple dip-coating process for the synthesis of small diameter single-walled carbon nanotubes-effect of catalyst composition and catalyst particle size on chirality and diameter. J. Phys. Chem. C, 2012, 116(22), 12232-12239.
[27]
Mahmoodi, A.; Ghoranneviss, M.; Mojtahedzadeh, M.; Hosseini, S.H.H.; Eshghabadi, M. Various temperature effects on the growth of Carbon Nanotubes (CNTs) by Thermal Chemical Vapor Deposition (TCVD) method. Int. J. Phys. Sci., 2012, 7(6), 949-952.
[28]
Borisenko, V.E.; Gaponenko, S.V.; Gurin, V.S. Physics, chemistry and application of nanostructures., world Scientific,. 1999.
[29]
Suriani, A.B.; Muhamad, S.; Saad, M.; Sarah, P.; Md. Nor, R.; Mohd Siran, Y.; Rejab, S.A.M.; Asis, A.J.; Tahiruddin, S.; Abdullah, S.; Rusop, M.M. Effect of temperature on the growth of vertically aligned carbon nanotubes from palm oil. In: Defect and Diffusion Forum., , Trans Tech Publications, 2011, Vol. 312, pp. 900-905.
[30]
Suriani, A.B.; Azmina, M.S.; Salina, M.; Dalila, A.R.; Falina, A.N.; Rosly, J.; Rusop, M. In:. Effect of synthesis time on carbon nanotubes growth from palm oil as carbon source by thermal chemical vapor deposition method., , Electronics Design, Systems and Applications (ICEDSA), November 2012; IEEE, New Jersey, US, 2012, pp. 18-21.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 9
ISSUE: 1
Year: 2019
Page: [114 - 120]
Pages: 7
DOI: 10.2174/2210681208666180416152913
Price: $58

Article Metrics

PDF: 17
HTML: 1