Synthesis and Modifications of Electron-withdrawing Groups Based on Multi-cyano Heterocyclics

Author(s): Guowei Deng, Qihui Wang, Min Yang, Bingke Li, Tao Han, Bo Chang, Xianghui Li, Xiaoling Zhang*, Zhonghui Li*.

Journal Name: Mini-Reviews in Organic Chemistry

Volume 16 , Issue 3 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Electron deficient compounds are extensively studied in the field of molecular materials. Compared to the simplest electron acceptors, multi-cyano heterocyclics performed excellent properties in electron-withdrawing ability, thermal stability, etc. This review provides a survey of the synthesis and modifications of two kinds of multi-cyano heterocyclics and their applications.

Keywords: Electron-withdrawing, heterocyclic, multi-cyano, chromophore, modification, tricyanofuran, tricyanopyrroline.

[1]
De Silva, A.P.; Gunaratne, H.Q.N.; Gunnlaugsson, T.; Huxley, A.J.M.; McCoy, C.P.; Rademacher, J.T.; Rice, T.E. Signaling recognition events with fluorescent sensors and switches. Chem. Rev., 1997, 97(5), 1515-1566.
[2]
Lv, X.; Yu, Y.; Zhou, M.; Hu, C.; Gao, F.; Li, J.; Liu, X.; Deng, K.; Zheng, P.; Gong, W.; Xia, A.; Wang, J. Ultrafast photo-induced electron transfer in green fluorescent protein bearing a genetically encoded electron acceptor. J. Am. Chem. Soc., 2015, 137(23), 7270-7273.
[3]
Cho, M.J.; Choi, D.H.; Sullivan, P.A.; Akelaitis, A.J.P.; Dalton, L.R. Recent progress in second-order nonlinear optical polymers and dendrimers. Prog. Polym. Sci., 2008, 33(11), 1013-1058.
[4]
Melikian, G.; Rouessac, F.P.; Alexandre, C. Synthesis of substituted dicyano-methylen-dihydro-furans. Synth. Commun., 1995, 25(19), 3045-3051.
[5]
He, M.; Leslie, T.M.; Sinicropi, J.A. Synthesis of chromophores with extremely high electro-optic activity. 1. Thiophene-bridge-based chromophores. Chem. Mater., 2002, 14(11), 4662-4668.
[6]
Liu, S.; Haller, M.A.; Ma, H.; Dalton, L.R.; Jang, S.H.; Jen, A.K.Y. Focused microwave-assisted synthesis of 2,5-dihydrofuran derivatives as electron acceptors for highly efficient nonlinear optical chromophores. Adv. Mater., 2003, 15(7-8), 603-607.
[7]
He, M.; Leslie, T.M.; Sinicropi, J.A.; Garner, S.M.; Reed, L.D. Synthesis of chromophores with extremely high electro-optic activities. 2. Isophorone- and combined isophorone-thiophene-based chromophores. Chem. Mater., 2002, 14(11), 4669-4675.
[8]
Dalton, L.R. Rational design of organic electro-optic materials. J. Phys. Condens. Matter, 2003, 15(20), R897-R934.
[9]
Qiu, L.; Shen, Y.Q.; Hao, J.M.; Zhai, J.F.; Zu, F.H.; Zhang, T.; Zhao, Y.X.; Clays, K.; Persoons, A. Study on novel second-order NLO azo-based chromophores containing strong electron-withdrawing groups and different conjugated bridges. J. Mater. Sci., 2004, 39(7), 2335-2340.
[10]
Gao, J.; Cui, Y.; Yu, J.C.; Lin, W.X.; Wang, Z.Y.; Qian, G.D. A 3-phenoxypropane-1, 2-diol based bichromophore for enhanced nonlinear optical properties. Dyes. Pigm, 2010, 87(3), 204-208.
[11]
Liu, J.; Gao, W.; Kityk, I.V.; Liu, X.; Zhen, Z. Optimization of polycyclic electron-donors based on julolidinyl structure in push-pull chromophores for second order NLO effects. Dyes. Pigm., 2015, 122, 74-84.
[12]
Wu, J.; Liu, J.; Zhou, T.; Bo, S.; Qiu, L.; Zhen, Z.; Liu, X. Enhanced electro-optic coefficient (R(33)) in nonlinear optical chromospheres with novel donor structure. RSC Advances, 2012, 2(4), 1416-1423.
[13]
Chen, Z.; Gao, W.; Li, X.; Zhen, Z.; Liu, X. Synthesis of dendronized NLO chromophores and research on electro-optic properties of its polymer systems. Chem. J. Chin. Univ., 2010, 31(7), 1369-1374.
[14]
Wu, J.; Peng, C.; Xiao, H.; Bo, S.; Qiu, L.; Zhen, Z.; Liu, X. Donor modification of nonlinear optical chromophores: Synthesis, characterization, and fine-tuning of chromophores’ mobility and steric hindrance to achieve ultra large electro-optic coefficients in guest-host electro-optic materials. Dyes. Pigm., 2014, 104, 15-23.
[15]
Zhang, A.; Xiao, H.; Cong, S.; Zhang, M.; Zhang, H.; Bo, S.; Wang, Q.; Zhen, Z.; Liu, X. A systematic study of the structure-property relationship of a series of nonlinear optical (NLO) julolidinyl-based chromophores with a thieno[3,2-b]thiophene moiety. J. Mater. Chem. C, 2015, 3(2), 370-381.
[16]
Liu, F.; Wang, H.; Yang, Y.; Xu, H.; Zhang, M.; Zhang, A.; Bo, S.; Zhen, Z.; Liu, X.; Qiu, L. Nonlinear optical chromophores containing a novel pyrrole-based bridge: optimization of electro-optic activity and thermal stability by modifying the bridge. J. Mater. Chem. C, 2014, 2(37), 7785-7795.
[17]
Wu, J.; Bo, S.; Wang, W.; Deng, G.; Zhen, Z.; Liu, X.; Chiang, K-S. Facile bromine-termination of nonlinear optical chromophore: remarkable optimization in photophysical properties, surface morphology and electro-optic activity. RSC Advances, 2015, 5(123), 102108-102114.
[18]
Wu, J.; Wang, W.; Wang, L.; Liu, J.; Chen, K.; Bo, S. Introduction of fluorine to change the dielectric environment of nonlinear optical chromophores for improved electro-optic activities. Mater. Lett., 2016, 164, 636-639.
[19]
Wu, J.; Xiao, H.; Qiu, L.; Zhen, Z.; Liu, X.; Bo, S. Comparison of nonlinear optical chromophores containing different conjugated electron-bridges: The relationship between molecular structure-properties and macroscopic electro-optic activities of materials. RSC Advances, 2014, 4(91), 49737-49744.
[20]
Wu, J.; Bo, S.; Liu, J.; Zhou, T.; Xiao, H.; Qiu, L.; Zhen, Z.; Liu, X. Synthesis of novel nonlinear optical chromophore to achieve ultrahigh electro-optic activity. Chem. Commun., 2012, 48(77), 9637-9639.
[21]
Dalton, L.R.; Sullivan, P.A.; Bale, D.H. Electric field poled organic electro-optic materials: State of the art and future prospects. Chem. Rev., 2010, 110(1), 25-55.
[22]
Kim, T-D.; Luo, J.; Ka, J-W.; Hau, S.; Tian, Y.; Shi, Z.; Tucker, N.M.; Jang, S-H.; Kang, J-W.; Jen, A.K.Y. Ultralarge and thermally stable electro-optic activities from Diels-Alder crosslinkable polymers containing binary chromophore systems. Adv. Mater., 2006, 18(22), 3038-3042.
[23]
Zhang, A.; Xiao, H.; Peng, C.; Bo, S.; Xu, H.; Zhang, M.; Deng, G.; Zhen, Z.; Liu, X. Microwave-assisted synthesis of novel julolidinyl-based nonlinear optical chromophores with enhanced electro-optic activity. RSC Advances, 2014, 4(110), 65088-65097.
[24]
Deng, G.; Bo, S.; Zhou, T.; Huang, H.; Wu, J.; Liu, J.; Liu, X.; Zhen, Z.; Qiu, L. Facile synthesis and electro-optic activities of new polycarbonates containing tricyanofuran-based nonlinear optical chromophores. J. Polym. Sci. Part A Polym. Chem., 2013, 51(13), 2841-2849.
[25]
Kim, S-H.; Lee, S-Y.; Gwon, S-Y.; Son, Y-A.; Bae, J-S. D–π–A solvatochromic charge transfer dyes containing a 2-cyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran acceptor. Dyes. Pigm., 2010, 84(2), 169-175.
[26]
Son, Y-A.; Gwon, S-Y.; Lee, S-Y.; Kim, S-H. Synthesis and property of solvatochromic fluorophore based on D-π-A molecular system: 2-[3-Cyano-4-(N-ethyl-N-(2-hydroxyethyl)amino)styryl]-5,5-dimethylfuran-2(5H)-ylidenemalononitrile dye. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2010, 75(1), 225-229.
[27]
Gwon, S-Y.; Kim, S-H. Anion sensing and F-induced reversible photoreaction of D-π-A type dye containing imidazole moiety as donor. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 117, 810-813.
[28]
Kim, S-H.; Lee, S-Y.; Gwon, S-Y.; Bae, J-S.; Son, Y-A. The synthesis and spectral properties of a stimuli-responsive D–π–A charge transfer dye based on indole donor and 2-cyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran acceptor moieties. J. Photochem. Photobiol. Chem., 2011, 217(1), 224-227.
[29]
Atta, A.K.; Kim, S-B.; Heo, J.; Cho, D-G. Hg(II)-mediated intramolecular cyclization reaction in aqueous media and its application as Hg(II) selective indicator. Org. Lett., 2013, 15(5), 1072-1075.
[30]
Lord, S.J.; Conley, N.R.; Lee, H-I.D.; Samuel, R.; Liu, N.; Twieg, R.J.; Moerner, W.E. A photoactivatable push-pull fluorophore for single-molecule imaging in live cells. J. Am. Chem. Soc., 2008, 130(29), 9204-9205.
[31]
Chen, T.; Zheng, Y.; Xu, Z.; Zhao, M.; Xu, Y.; Cui, J. A red emission fluorescent probe for hydrogen sulfide and its application in living cells imaging. Tetrahedron Lett., 2013, 54(23), 2980-2982.
[32]
Bouffard, J.; Kim, Y.; Swager, T.M.; Weissleder, R.; Hilderbrand, S.A. A highly selective fluorescent probe for thiol bioimaging. Org. Lett., 2008, 10(1), 37-40.
[33]
Wu, M-Y.; Li, K.; Li, C-Y.; Hou, J-T.; Yu, X-Q. A water-soluble near-infrared probe for colorimetric and ratiometric sensing of SO2 derivatives in living cells. Chem. Commun., 2014, 50(2), 183-185.
[34]
Park, J.; Kim, H.; Choi, Y.; Kim, Y. A ratiometric fluorescent probe based on a BODIPY-DCDHF conjugate for the detection of hypochlorous acid in living cells. Analyst, 2013, 138(12), 3368-3371.
[35]
Gubler, U.; He, M.; Wright, D.; Roh, Y.; Twieg, R.; Moerner, W.E. Monolithic photorefractive organic glasses with large coupling gain and strong beam fanning. Adv. Mater., 2002, 14(4), 313-317.
[36]
You, W.; Hou, Z.; Yu, L. Dramatic enhancement of photorefractive properties by controlling electron trap density in a monolithic material. Adv. Mater., 2004, 16(4), 356-360.
[37]
Deng, H.; Hu, H.; He, M.; Hu, J.; Niu, W.; Ferrie, A.M.; Fang, Y. Discovery of 2-(4-methylfuran-2(5H)-ylidene)malononitrile and thieno[3,2-b]thiophene-2-carboxylic acid derivatives as G Protein-coupled Receptor 35 (GPR35) agonists. J. Med. Chem., 2011, 54(20), 7385-7396.
[38]
Peng, P.; Strohecker, D.; Liao, Y. Negative photochromism of a TCF chromophore. Chem. Commun., 2011, 47(30), 8575-8577.
[39]
Schmidt, K.; Leclercq, A.; Zojer, E.; Lawson, P.V.; Jang, S-H.; Barlow, S.; Jen, A.K.Y.; Marder, S.R.; Brédas, J-L. Order of magnitude effects of thiazole regioisomerism on the Near-IR Two-photon cross-sections of dipolar chromophores. Adv. Funct. Mater., 2008, 18(5), 794-801.
[40]
Li, Z.A.; Mukhopadhyay, S.; Jang, S-H.; Brédas, J-L.; Jen, A.K.Y. Supramolecular assembly of complementary cyanine salt J-aggregates. J. Am. Chem. Soc., 2015, 137(37), 11920-11923.
[41]
Jang, S.H.; Luo, J.D.; Tucker, N.M.; Leclercq, A.; Zojer, E.; Haller, M.A.; Kim, T.D.; Kang, J.W.; Firestone, K.; Bale, D.; Lao, D.; Benedict, J.B.; Cohen, D.; Kaminsky, W.; Kahr, B.; Bredas, J.L.; Reid, P.; Dalton, L.R.; Jen, A.K.Y. Pyrroline chromophores for electro-optics. Chem. Mater., 2006, 18(13), 2982-2988.
[42]
Gao, W.; Liu, J.L.; Chen, Z.; Hou, W.J.; Bo, S.H.; Liu, X.H.; Zhen, Z. Synthesis of branched aniline-pyrroline chromophores and the research on their electro-optical properties. Acta Chimi. Sin., 2011, 69(10), 1225-1231.
[43]
Wang, L.; Bo, S.; Liu, J.; Zhen, Z.; Liu, X. Preparation and characterization of the soluble NLO polyarylates with enhanced electro-optic properties. Polym. Sci. Ser. B, 2012, 54(5), 297-305.
[44]
Deng, G.; Huang, H.; Si, P.; Xu, H.; Liu, J.; Bo, S.; Liu, X.; Zhen, Z.; Qiu, L. Synthesis and electro-optic activities of novel polycarbonates bearing tricyanopyrroline-based nonlinear optical chromophores with excellent thermal stability of dipole alignment. Polymer, 2013, 54(23), 6349-6356.
[45]
Zhang, R.; Liu, J.; Bo, S.; Deng, G.; Peng, C.; Liu, X.; Zhen, Z. Synthesis and electro-optical features of a high T (g) polymer system with excellent electro-optic activity and thermal stability. Colloid Polym. Sci., 2012, 290(17), 1819-1823.
[46]
Liu, J.; Bo, S.; Liu, X.; Zhen, Z. Enhanced poling efficiency in rigid-flexible dendritic nonlinear optical chromophores. J. Incl. Phenom. Macrocycl. Chem., 2010, 68(3), 253-260.
[47]
Cho, M.J.; Lim, J.H.; Hong, C.S.; Kim, J.H.; Lee, H.S.; Choi, D.H. A tricyanopyrroline-based nonlinear optical chromophore bearing a lateral moiety: A novel steric technique for enhancing the electro-optic effect. Dyes. Pigm., 2008, 79(2), 193-199.
[48]
Hoang, M.H.; Kim, M.H.; Cho, M.J.; Kim, K.H.; Kim, K.N.; Jin, J-I.; Choi, D.H. Dendronized tricyanopyrroline-based chromophores in nonlinear optical active host polymer. J. Polym. Sci. Part A Polym. Chem., 2008, 46(15), 5064-5076.
[49]
Liu, J.; Hou, W.; Feng, S.W.; Qiu, L.; Liu, X.H.; Zhen, Z. Synthesis and nonlinear optical properties of branched pyrroline chromophores. J. Phys. Org. Chem., 2011, 24(6), 439-444.
[50]
Jun, W.G.; Cho, M.J.; Choi, D.H. Photorefractive polyvinylcarbazole composite bearing the tricyanopyrrolidene chromophore operating at 830 nm. J. Korean Phys. Soc., 2005, 47, 620-624.
[51]
Jung, K.M.; Cho, M.J.; Jin, J-I.; Choi, D.H. Photorefractive star-shaped molecular glassy materials containing tricyanopyrroline-based chromophore. Appl. Phys. Lett., 2007, 90(18), 181123.
[52]
Bürckstümmer, H.; Kronenberg, N.M.; Meerholz, K.; Würthner, F. Near-infrared absorbing merocyanine dyes for bulk heterojunction solar cells. Org. Lett., 2010, 12(16), 3666-3669.
[53]
Li, H.E.; Bo, L.; Yu, C.; Zhu, W.H. Synthesis and photovoltaic performances of dye-sensitized solar cells based on novel NIR dyes containing multi-cyano acceptor. Imag. Sci. Photochem., 2010, 28(2), 137-146.
[54]
Yoon, C.; Choi, J-H. Synthesis of tricyanopyrrolidone derivatives as synergists for improving contrast ratio of liquid crystal displays. Dyes. Pigm., 2014, 101, 344-350.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 3
Year: 2019
Page: [208 - 215]
Pages: 8
DOI: 10.2174/1570193X15666180412151523
Price: $65

Article Metrics

PDF: 39
HTML: 4
EPUB: 1