Electrodeposition of Iron-Group Alloys into Nanostructured Oxide Membranes: Synthetic Challenges and Properties

Author(s): Henrikas Cesiulis*, Natalia Tsytsaru*, Elizabeth J. Podlaha, Deyang Li, Jordi Sort.

Journal Name: Current Nanoscience

Volume 15 , Issue 1 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Quasi-one dimensional nanostructures: nanowires, nanotubes, nanorods, nanobelts/nanoribbons and complex “nanowire-nanoparticle” composites have been synthesized over the years. These nanostructures are particularly appealing due to their specific properties defined by their high aspect ratio: two dimensions are in the nanoscale range and one dimension is in the microscale.

Methods: One of the well-designed approaches for the synthesis of such nanostructured materials is template-assisted fabrication combined with electrodeposition. The fabrication approaches for the growth of iron-group alloy nanostructures inside nanoporous oxide membranes by means of different electrodeposition techniques, and the resulting unique properties and potential applications of this type of materials are reviewed.

Results: Arrays of nanostructures can be obtained by filling a porous oxide template that contains a large number of straight cylindrical, nano-sized diameter holes. Generalities of metals electrodeposition into nanoporous oxide membranes are discussed. Measures to minimize the nonuniformity of deposits inside pores need to be addressed to thin the barrier layer, to control hydrogen evolution and to improve mass transport inside the pores. Examples of binary and ternary iron group alloys grown inside nanoporous oxide templates are provided. Catalytic hydrogen evolution and methanol oxidation on the nanowires arrays are described. The “sample size effect” on the magnetic properties of materials and the electrodeposition of multilayered structures necessary for giant magnetoresistance (GMR) are discussed in details.

Conclusion: Electrodeposition of binary and ternary iron-group alloys confirm that controlling alloy composition inside nanopores is still a challenge.

Keywords: Electrodeposition, barrier layer, iron-group alloys, nanowires, mass transport, catalytic properties, magnetic properties.

[1]
Martin, C.R. Nanomaterials: A membrane-based synthetic approach. Science, 1994, 266(5193), 1961-1966.
[2]
Penner, R.M.; Martin, C.R. Preparation and electrochemical characterization of ultramicroelectrode ensembles. Anal. Chem., 1987, 59(21), 2625-2630.
[3]
Iijima, S. Helical microtubules of graphitic carbon. Nature, 1991, 354(6348), 56-58.
[4]
Chopra, N.G.; Luyken, R.J.; Cherrey, K.; Crespi, V.H.; Cohen, M.L.; Louie, S.G.; Zettl, A. Boron nitride nanotubes. Science, 1995, 269(5226), 966-967.
[5]
Dai, H.; Wong, E.W.; Lu, Y.Z.; Fan, S.; Lieber, C.M. Synthesis and characterization of carbide nanorods. Nature, 1995, 375(6534), 769-772.
[6]
Wang, Y.; Zhang, L.; Meng, G.; Liang, C.; Wang, G.; Suna, S. Zn nanobelts: A new quasi one-dimensional metal nanostructure. Chem. Commun., 2001, (24), 2632-2633.
[7]
Vernickaite, E.; Bubniene, U.; Cesiulis, H.; Ramanavicius, A.; Podlaha, E.J. A hybrid approach to fabricated nanowire-nanoparticle composites of a Co-W alloy and Au nanoparticles. J. Electrochem. Soc., 2016, 163(7), D1-D5.
[8]
Possin, G.E. A method for forming very small diameters wires. Rev. Sci. Instrum., 1970, 41(5), 772-774.
[9]
Kline, T.R.; Tian, M.; Wang, J.; Sen, A.; Chan, M.W.H.; Mallouk, T.E. Template-grown metal nanowires. Inorg. Chem., 2006, 45(19), 7555-7565.
[10]
Hurst, S.J.; Payne, E.K.; Qin, L.; Mirkin, C.A. Multisegmented one-dimensional nanorods prepared by hard-template synthetic methods. Angew. Chem. Int. Ed., 2006, 45(17), 2672-2692.
[11]
Prida, V.M.; Hernandez-Velez, M.; Cervera, M.; Pirota, K.; Sanz, R.; Navas, D.; Asenjo, A.; Aranda, P.; Ruiz-Hitzky, E.; Batallan, F.; Vazquezb, M.; Hernando, B.; Menendez, A.; Bordel, N.; Pereiro, R. Magnetic behaviour of arrays of Ni nanowires by electrodeposition into self-aligned titania nanotubes. J. Magn. Magn. Mater., 2005, 294(2), e69-e72.
[12]
Schonenberger, C.; van der Zande, B.M.I.; Fokkink, L.G.J.; Henny, M.; Schmid, C.; Kruger, M.; Bachtold, A.; Huber, R.; Birk, H.; Staufer, U. Template synthesis of nanowires in porous polycarbonate membranes: Electrochemistry and morphology. J. Phys. Chem. B, 1997, 101(28), 5497-5505.
[13]
Gerngross, M-D.; Chemnitz, S.; Wagner, B.; Carstensen, J.; Föll, H. Ultra-high aspect ratio Ni nanowires in single-crystalline InP membranes as multiferroic composite. Phys. Status Solidi RRL., 2013, 7(5), 352-354.
[14]
Gerngross, M-D.; Carstensen, J.; Föll, H. Electrochemical growth of Co nanowires in ultra-high aspect ratio InP membranes: FFT-impedance spectroscopy of the growth process and magnetic properties. Nanoscale Res. Lett., 2014, 9(1), 316-325.
[15]
Chu, S-Z.; Wada, K.; Inoue, S.; Isogai, M.; Yasumori, A. Fabrication of ideally ordered nanoporous alumina films and integrated nanotubule arrays by high -field anodization. Adv. Mater., 2005, 17(17), 2115-2119.
[16]
Stępniowski, W.J.; Salerno, M. Fabrication of nanowires and nanotubes by anodic alumina template-assisted electrodeposition, In: Manufacturing Nanostructures., Ahmed, W.; Ali, N.; Eds.: One Central Press, 2014, pp. 321-357.
[17]
Tsyntsaru, N. Porous anodized aluminium oxide: Application outlooks. Chemija, 2016, 27(1), 17-23.
[18]
Sulka, G.D.; Zaraska, L.; Stepniowski, W.J. In: Encyclopedia of Nanoscience and Nanotechnology, 2nd ed; American Scientific Publishers, 2011, Vol. 11, pp. 261-349.
[19]
Asoh, H.; Ono, S. Fabrication of ordered anodic nanoporous alumina layers and their application to nanotechnology. In: Electrocrystallization in Nanotechnology., Georgi Staikov Ed.: WILEYVCH Verlag GmbH & Co. KGaA, Weinheim, 2007, pp. 138-165.
[20]
Davydov, A.D.; Volgin, V.M. Template electrodeposition of metals Review. Russ. J. Electrochem., 2016, 52(9), 806-831.
[21]
Tsyntsaru, N.; Kavas, B.; Sort, J.; Urgen, M.; Celis, J-P. Mechanical and frictional behaviour of nano-porous anodised aluminium. Mater. Chem. Phys., 2014, 148(3), 887-895.
[22]
Thompson, G.E. Porous anodic alumina: Fabrication, characterization and applications. Thin Solid Films, 1997, 297(1-2), 192-201.
[23]
Buijnsters, J.G.; Zhong, R.; Tsyntsaru, N.; Celis, J-P. Surface wettability of macroporous anodized aluminum oxide. ACS Appl. Mater. Interfaces, 2013, 5(8), 3224-3233.
[24]
Hu, J.; Zhang, F.; Wang, J.; Xiao, J.Q. Synthesis of single-crystalline Fe nanowires using catalyst-assisted chemical vapor deposition. Mater. Lett., 2015, 160, 529-532.
[25]
Sadki, E.S.; Ooi, S.; Hirata, K. Focused-ion-beam-induced deposition of superconducting nanowires. Appl. Phys. Lett., 2004, 85(25), 6206-6208.
[26]
Zettler, J.K.; Hauswald, C.; Corfdir, P.; Musolino, M.; Geelhaar, L.; Riechert, H.; Brandt, O.; Fernández-Garrido, S. High-temperature growth of GaN nanowires by molecular beam epitaxy: toward the material quality of bulk GaN. Cryst. Growth Des., 2015, 15(8), 4104-4109.
[27]
Vázquez, M. Ed. Magnetic nano- and microwires– design, synthesis, properties and applications. Cambridge, UK: Woodhead Publishing is an imprint of Elsevier, 2015.
[28]
Ricelli, L.A.; Bozzini, B.; Mele, C.; D’Uzo, L. A review of nanostructural aspects of metal electrodeposition. Int. J. Electrochem. Sci., 2008, 3(4), 356-408.
[29]
Erb, U. Electrodeposited vs. consolidated nanocrystals: Differences and similarities. Nanostruct. Mater., 1997, 9, 261-270.
[30]
McMahon, G.; Erb, U. Structural transitions in electroplated Ni-P alloys. J. Mater. Sci. Lett., 1989, 8(7), 865-868.
[31]
Grabchikov, S.S.; Potuzhnaya, O.I.; Sosnovskaya, L.B.; Sheleg, M.U. Microstructure of amorphous electrodeposited Co-Ni-W films. Russ. Metall-Metall-U, 2009, 2009(2), 164-171.
[32]
Alfantazi, A.M.; Erb, U. Synthesis of nanocrystalline Zn-Ni alloy coatings. J. Mater. Sci. Lett., 1996, 15(15), 1361-1363.
[33]
Ohgai, T.; Tanaka, Y.; Washio, R. Nanocrystalline structure and soft magnetic properties of nickel–molybdenum alloy thin films electrodeposited from acidic and alkaline aqueous solutions. J. Solid State Electr., 2013, 17(3), 743-750.
[34]
Doi, S.; Wang, F.; Hosoiri, K.; Watanabe, T. Preparation and characterization of electrodeposited Fe–Pd binary alloy film. Mater. Trans., 2003, 44(4), 649-652.
[35]
Juskenas, R.; Valsiunas, I.; Pakstas, V.; Selskis, A.; Jasulaitiene, V.; Karpaviciene, V.; Kapocius, V. XRD, XPS and AFM studies of the unknown phase formed on the surface during electrodeposition of Ni–W alloy. Appl. Surf. Sci., 2006, 253(3), 1435-1442.
[36]
Sun, L.; Hao, Y.; Chien, C-L.; Searson, P.C. Tuning the properties of magnetic nanowires. IBM J. Res. Dev., 2005, 49(1), 79-102.
[37]
Ramazani, A.; Asgari, V.; Montazer, A.H.; Kashi, M.A. Tuning magnetic fingerprints of FeNi nanowire arrays by varying length and diameter. Curr. Appl. Phys., 2015, 15(7), 819-828.
[38]
Samanifar, S.; Alikhani, M.; Almasi Kashi, M.; Ramazani, A.; Montazer, A.H. Magnetic alloy nanowire arrays with different lengths: Insights into the crossover angle of magnetization reversal process. J. Magn. Magn. Mater., 2017, 430, 6-15.
[39]
Méndez, M.; González, S.; Vega, V.; Teixeira, J.M.; Hernando, B.; Luna, C.; Prida, V.M. Ni-Co alloy and multisegmented Ni/Co nanowire arrays modulated in composition: Structural characterization and magnetic properties. Crystals., 2017, 7(3), 66.
[40]
Zeeshan, M.A.; Pané, S.; Youn, S.K.; Pellicer, E.; Schuerle, S.; Sort, J.; Fusco, S.; Lindo, A.M.; Park, H.G.; Nelson, B.J. Graphite coating of iron nanowires for nanorobotic applications: Synthesis, characterization and magnetic wireless manipulation. Adv. Funct. Mater., 2013, 23(7), 823-831.
[41]
Zhang, D.; Liu, Z.; Han, S.; Li, C.; Lei, B.; Stewart, M.P.; Tour, J.M.; Zhou, C. Magnetite (Fe3O4) core−shell nanowires: Synthesis and magnetoresistance. Nano Lett., 2004, 4(11), 2151-2155.
[42]
Piraux, L.; George, J.M.; Despres, J.F.; Leroy, C.; Ferain, E.; Legras, R.; Ounadjela, K.; Fert, A. Giant magnetoresistance in magnetic multilayered nanowires. Appl. Phys. Lett., 1994, 65(19), 2484-2486.
[43]
Blondel, A.; Meier, J.P.; Doudin, B.; Ansermet, J.P. Giant magnetoresistance of nanowires of multilayers. Appl. Phys. Lett., 1994, 65(23), 3019-3021.
[44]
Lee, J.K.; Yi, Y.; Lee, H.J.; Uhm, S.; Lee, J. Electrocatalytic activity of Ni nanowires prepared by galvanic electrodeposition for hydrogen evolution reaction. Catal. Today, 2009, 146(1-2), 188-191.
[45]
Pirota, K.R.; Béron, F.; Zanchet, D.; Rocha, T.C.R.; Navas, D.; Torrejón, J.; Vazquez, M.; Knobel, M. Magnetic and structural properties of fcc/hcp bi-crystalline multilayer Co nanowire arrays prepared by controlled electroplating. J. Appl. Phys., 2011, 109(8), 083919.
[46]
Kartopu, G.; Yalçın, O.; Es-Souni, M.; Başaran, A.C. Magnetization behavior of ordered and high-density Co nanowire arrays with varying aspect ratio. J. Appl. Phys., 2008, 103(9), 093915.
[47]
Whitney, T.M.; Jiang, J.S.; Searson, P.C.; Chien, C.L. Fabrication and magnetic properties of arrays of metallic nanowires. Science, 1993, 261(5126), 1316-1319.
[48]
Irshad, M.I.; Ahmad, F.; Mohamed, N.M. A review on nanowires as an alternative high density magnetic storage media. AIP Conf. Proc., 2012, 1482(1), 625-632.
[49]
Xu, C-L.; Li, H.; Zhao, G-Y.; Li, H-L. Electrodeposition of ferromagnetic nanowire arrays on AAO/Ti/Si substrate for ultrahigh-density magnetic storage devices. Mater. Lett., 2006, 60(19), 2335-2338.
[50]
Valentini, F.; Palleshi, G. Nanomaterials and analytical chemistry. Anal. Lett., 2008, 41(4), 479-520.
[51]
Schlorb, H.; Haehnel, V.; Khatri, M.S.; Srivastav, A.; Kumar, A.; Schultz, L.; Fahler, S. Magnetic nanowires by electrodeposition within templates. Phys. Status Solidi, B., 2010, 247(10), 2364-2379.
[52]
Wang, Y.; Liu, D.; Liu, Z.; Xie, C.; Huo, J.; Wang, S. Porous cobalt–iron nitride nanowires as excellent bifunctional electrocatalysts for overall water splitting. Chem. Commun., 2016, 52(85), 12614-12617.
[53]
Hsu, C.S.; Lee, H.B.; Lin, C.S.; Lee, C.Y. Study on the electrodeposition of Ni-P nanowires and their electrocatalytic properties. Metall. Mater. Trans., A., 2010, 41(3), 768-774.
[54]
Mátéfi-Tempfli, S.; Mátéfi-Tempfli, M.; Piraux, L. Fabrication of nanowires and nanostructures: combining template synthesis with patterning methods. App. Phys. A, 2009, 96(3), 603-608.
[55]
Reddy, S.M.; Park, J.J.; Na, S-M.; Maqableh, M.M.; Flatau, A.B.; Stadler, B.J.H. Electrochemical synthesis of magnetostrictive Fe–Ga/Cu multilayered nanowire arrays with tailored magnetic response. Adv. Funct. Mater., 2011, 21(24), 4677-4683.
[56]
Sharma, G.; Pishko, M.V.; Grimes, C.A. Fabrication of metallic nanowire arrays by electrodeposition into nanoporous alumina membranes: Effect of barrier layer. J. Mater. Sci., 2007, 42(13), 4738-4744.
[57]
Furneaux, R.C.; Rigby, W.R.; Davidson, A.P. The formation of controlled-porosity membranes from anodically oxidized aluminium. Nature, 1989, 337(6203), 147-149.
[58]
Santos, A.; Vojkuvka, L.; Pallarés, J.; Ferré-Borrull, J.; Marsal, L.F. In situ electrochemical dissolution of the oxide barrier layer of porous anodic alumina fabricated by hard anodization. J. Electroanal. Chem., 2009, 632(1-2), 139-142.
[59]
Jagminas, A.; Kurtinaitienė, M.; Angelucci, R.; Valinčius, G. Modification of alumina barrier-layer through re-anodization in an oxalic acid solution with fluoride additives. Appl. Surf. Sci., 2006, 252(6), 2360-2367.
[60]
Zhao, X.; Seo, S.K.; Lee, U.J.; Lee, K.H. Controlled electrochemical dissolution of anodic aluminium oxide for preparation of open-through pore structures. J. Electrochem. Soc., 2007, 154(10), C553-C557.
[61]
Park, S.H.; Kim, S.; Lee, D.J.; Yun, S.; Khim, Z.G. Selective wet-chemical etching of the barrier layer during formation of porous anodic aluminum oxide template. J. Electrochem. Soc., 2009, 156(11), K181-K185.
[62]
Tsyntsaru, N. In: IFMBE Proceedings of the 3rd International Conference on Nanotechnologies and Biomedical Engineering,, Chisinau, Republic of Moldova, September 23-26, 2015; Sontea, V.; Tiginyanu, I., Eds. Springer-Verlag: Singapore, 2016 vol. 55, pp.123-126.
[63]
Akinci, Z.B.; Urgen, M. A simple method for the production of aao templates for DC electrodeposition of nanostructures. ECS Electrochem. Lett, 2014, 3(10), D46-D49.
[64]
Ali, G.; Maqbool, M. Fabrication of cobalt-nickel binary nanowires in a highly ordered alumina template via AC electrodeposition. Nanoscale Res. Lett., 2013, 8(1), 352.
[65]
Hoare, J.P. On the role of boric acid in the Watts bath. J. Electrochem. Soc., 1986, 133(12), 2491-2494.
[66]
Cesiulis, H.; Podlaha-Murphy, E.J. Electrolyte considerations of electrodeposited Ni-W alloys for microdevice fabrication. Mater. Sci. Medzg, 2003, 9(4), 324-327.
[67]
Donten, M.; Stojek, Z.; Osteryoung, J.G. Voltammetric, optical, and spectroscopic examination of anodically forced passivation of cobalt‐tungsten amorphous alloys. J. Electrochem. Soc., 1993, 140(12), 3417-3424.
[68]
Cesiulis, H.; Baltutiene, A.; Donten, M.; Donten, M.L.; Stojek, Z. Increase in rate of electrodeposition and in Ni(II) concentration in the bath as a way to control grain size of amorphous / nanocrystalline Ni-W alloys. J. Solid State Electrochem., 2002, 6(4), 237-244.
[69]
Tsyntsaru, N.; Kaziukaitis, G.; Yang, C.; Cesiulis, H.; Philipsen, H.G.G.; Lelis, M.; Celis, J-P. Co-W nanocrystalline electrodeposits as barrier for interconnects. J. Solid State Electrochem., 2014, 18(11), 3057-3064.
[70]
Kim, H.; Soper, S.A.; Podlaha, E.J. Pulse electrodeposition of multi-segmented super Invar/Au nanowires. ECS Transactions., 2013, 53(11), 9-14.
[71]
Fukunaka, Y.; Motoyama, M.; Konishi, Y.; Ishii, R. Producing shape-controlled metal nanowires and nanotubes by an electrochemical method. Electrochem. Solid-State Lett., 2006, 9(3), C62-C64.
[72]
Cesiulis, H.; Xie, X.G.; Podlaha-Murphy, E. Electrodeposition of Co-W alloys with P and Ni. Mater. Sci. Medzg, 2009, 15(2), 115-122.
[73]
Motoyama, M.; Fukunaka, Y.; Ogata, Y.H.; Prinz, F.B. Impact of accompanying hydrogen generation on metal nanotube electrodeposition. J. Electrochem. Soc., 2010, 157(6), D357-D369.
[74]
Davis, D.; Podlaha, E.J. CoNiCu and Cu nanotube electrodeposition. Electrochem. Solid St, 2005, 8(2), D1-D4.
[75]
Wang, Y.; Ye, C.; Changhui, F.; Xiaosheng, Z.; Zhang, L. A simple method for synthesizing copper nanotube arrays. Chem. Lett., 2004, 33(2), 166-167.
[76]
Yoo, W-C.; Lee, J-K. Field-dependent growth patterns of metals electroplated in nanoporous alumina membranes. Adv. Mater., 2004, 16(13), 1097-1101.
[77]
Philippe, L.; Michler, J. A kinetic model enabling controlled electrosynthesis of stacked metallic nanotubes and nanowires. Small, 2008, 4(7), 904-907.
[78]
Song, C.; Wang, Z.; Chen, Q.; Cai, J.; Liu, L. High aspect ratio copper through-silicon-vias for 3D integration. Microelectron. Eng., 2008, 85(10), 1952-1956.
[79]
Shin, S.; Kong, B.H.; Kim, B.S.; Kim, K.M.; Cho, H.K.; Cho, H.H. Over 95% of large-scale length uniformity in template-assisted electrodeposited nanowires by subzero-temperature electrodeposition. Nanoscale Res. Lett., 2011, 6(1), 467-474.
[80]
Lopes, M.C.; de Oliveira, C.P.; Pereira, E.C. Computational modelling of the template-assisted deposition of nanowires. Electrochim. Acta, 2008, 53(13), 4359-4369.
[81]
Reddy, S.M.; Park, J.J.; Na, S.M.; Maqableh, M.M.; Flatau, A.F.; Stadler, B.J.H. Electrochemical synthesis of magnetostrictive Fe–Ga/Cu multilayered nanowire arrays with tailored magnetic response. Adv. Funct. Mater., 2011, 21(24), 4677-4683.
[82]
Hyde, M.E.; Compton, R.G. How ultrasound influences the electrodeposition of metals. J. Electroanal. Chem., 2002, 531(1), 19-24.
[83]
Hamid, Z.A. Electrodeposition of cobalt-tungsten alloys from acidic bath containing cationic surfactants. Mater. Lett., 2003, 57(16-17), 2558-2564.
[84]
Ramazani, A.; Almasi Kashi, M.; Alikhani, M.; Erfanifam, S. Fabrication of high aspect ratio Co nanowires with controlled magnetization direction using ac and pulse electrodeposition. Mater. Chem. Phys., 2008, 112(1), 285-289.
[85]
Bade, K.; Leyendecker, K.; Thommes, A.; Bacher, W. In: Magnetic Materials, Processes and Device: Applications to Storage and Microelectromechanical systems (MEMS), In. Proc. of the 4th Internat. Symp., Chicago, Ill., October 9-12, 1993. Romankiw, L.T., Ed.; Electrochemical Society: Pennington, N.J. 1996, 95, pp.697-708.
[86]
Amatore, C.; Szunerits, S.; Thouin, L.; Warkocz, J.S. The real meaning of Nernst’s steady diffusion layer concept under non-forced hydrodynamic conditions. A simple model based on Levich’s seminal view of convection. J. Electroanal. Chem., 2001, 500(1-2), 62-70.
[87]
Konishi, Y.; Motoyama, M.; Matsushima, H.; Fukunaka, Y.; Ishii, R.; Ito, Y. Electrodeposition of Cu nanowire arrays with a template. J. Electroanal. Chem., 2003, 559(15), 149-153.
[88]
Valizadeh, S.; George, J.M.; Leisner, P.; Hultman, L. Electrochemical deposition of Co nanowire arrays; quantitative consideration of concentration profiles. Electrochim. Acta, 2001, 47(6), 865-874.
[89]
Tsyntsaru, N.; Silkin, S.; Cesiulis, H.; Guerrero, M.; Pellicer, E.; Sort, J. Toward uniform electrodeposition of magnetic Co-W mesowires arrays: Direct versus pulse current deposition. Electrochim. Acta, 2016, 188, 589-601.
[90]
Belevskii, S.S.; Cesiulis, H.; Tsyntsaru, N.I.; Dikusar, A.I. The role of mass transfer in the formation of the composition and structure of CoW coatings electrodeposited from citrate solutions. Surf. Eng. Appl. Electrochem., 2010, 46(6), 570-578.
[91]
Blanco, S.; Vargas, R.; Mostany, J.; Borrás, C.; Scharifker, B.R. Modeling the growth of nanowire arrays in porous membrane. J. Electrochem. Soc., 2014, 161(8), E3341-E3347.
[92]
Philippe, L.; Kacem, N.; Michler, J. Electrochemical deposition of metals inside high aspect ratio nanoelectrode array: Analytical current expression and multidimensional kinetic model for cobalt nanostructure synthesis. J. Phys. Chem. C, 2007, 111(13), 5229-5235.
[93]
Mulukutla, M.; Kommineni, V.K.; Harimkar, S.P. Pulsed electrodeposition of Co-W amorphous and crystalline coatings. Appl. Surf. Sci., 2012, 258(7), 2886-2893.
[94]
Tsyntsaru, N.; Cesiulis, H.; Donten, M.; Sort, J.; Pellicer, E.; Podlaha-Murphy, E.J. Modern trends in tungsten alloys electrodeposition with iron group metals. Surf. Eng. Appl. Electrochem., 2012, 48(6), 491-520.
[95]
Ciureanu, M.; Beron, F.; Clime, L.; Ciureanu, P.; Yelon, A.; Ovari, T.A.; Cochrane, R.W.; Normandin, F.; Veres, T. Magnetic properties of electrodeposited CoFeB thin films and nanowire arrays. Electrochim. Acta, 2005, 50(22), 4487-4497.
[96]
Cesiulis, H.; Tsyntsaru, N.; Ramanavicius, A.; Ragoisha, G. In: Nanostructures and Thin Films for Multifunctional Applications; Tiginyanu, I.; Topala, P.; Ursaki, V., Eds.; Springer International Publishing Switzerland, 2016, pp. 3-42.
[97]
Brenner, A. Electrodeposition of Alloys ed.; Academic Press: New York, , 1963.
[98]
Landolt, D. Electrochemical and materials science aspects of alloy deposition. Electrochim. Acta, 1994, 39(8/9), 1075-1090.
[99]
Llavona, Á.; Pérez, L.; Sánchez, M.C.; de Manuel, V. Enhancement of anomalous codeposition in the synthesis of Fe–Ni alloys in nanopores. Electrochim. Acta, 2013, 106, 392-397.
[100]
Matlosz, M. Competitive adsorption effects in the electrodeposition of iron-nickel alloys. J. Electrochem. Soc., 1993, 140(8), 2272-2279.
[101]
Zech, N.; Podlaha, E.J.; Landolt, D. Anomalous codeposition of iron group metals: II. mathematical model. J. Electrochem. Soc., 1999, 146(8), 2892-2900.
[102]
Huang, Q.; Podlaha, E.J. Simulation of pulsed electrodeposition for GMR FeCoNiCu/Cu multilayers. J. Electrochem. Soc., 2004, 151(2), C119-C126.
[103]
Dragos, O.; Chiriac, H.; Lupu, N.; Grigoras, M.; Tabakovic, I. Anomalous codeposition of fcc NiFe nanowires with 5-55% Fe and their morphology, crystal structure and magnetic properties. J. Electrochem. Soc., 2016, 163(3), D83-D94.
[104]
Atalay, F.E.; Kaya, H.; Atalay, S.; Tari, S. Influences of deposition time and pH on magnetic NiFe nanowires fabrication. J. Alloys Compd., 2009, 469(1), 458-463.
[105]
Dahms, H.; Croll, I.M. The anomalous codeposition of iron-nickel alloys. J. Electrochem. Soc., 1965, 112(8), 771-775.
[106]
Zhu, H.; Yang, S.; Ni, G.; Yu, D.; Du, Y. Fabrication and magnetic properties of Co67Ni33 alloy nanowire array. Scripta. Mater., 2001, 44(8-9), 2291-2295.
[107]
Vilana, J.; Gómez, E.; Vallés, E. Electrochemical control of composition and crystalline structure of CoNi nanowires and films prepared potentiostatically from a single bath. J. Electroanal. Chem., 2013, 703, 88-96.
[108]
Zhan, Q.; Chen, Z.; Xue, D.; Li, F.; Kunkel, H.; Zhou, X.; Roshko, R.; Williams, G. Structure and magnetic properties of Fe-Co nanowires in self-assembled arrays. Phys. Rev. B, 2002, 66(13), 134436.
[109]
Elbaile, L.; Crespo, R.D.; Vega, V.; García, J.A.; Garcia, J.A. Magnetostatic interaction in Fe-Co nanowires. J. Nanomater., 2012, 2012, 1-6.
[110]
Khan, H.R.; Petrikowski, K. Magnetic and structural properties of the electrochemically deposited arrays of Co and CoFe nanowires. J. Magn. Magn. Mater., 2002, 249(3), 458-461.
[111]
Han, G.; Lu, J.; Gao, Y. FeCo nanowires deposited in a magnetic field. J. Magn. Magn. Mater., 2015, 393, 199-203.
[112]
Song, Y.; Lu, W.; Xu, Y.; Shi, J.; Fang, X. Growth of single-crystalline Co7Fe3 nanowires via electrochemical deposition and their magnetic properties. J. Alloys Compd., 2015, 652, 179-184.
[113]
Huang, Q.; Davis, D.; Podlaha, E.J. Electrodeposition of FeCoNiCu nanowires. J. Appl. Electrochem., 2006, 36(8), 871-882.
[114]
Geng, X.; Podlaha, E.J. Coupled, simultaneous displacement and dealloying reactions into Fe−Ni−Co nanowires for thinning nanowire segments. Nano Lett., 2016, 16(12), 7439-7445.
[115]
Li, D.; Podlaha, E.J. Template Fe-Ni-Co nanowire electrodeposition with H2 evolving side reactions. ECS Meeting Abstract,, 2016, MA2016-01(41), 2073.
[116]
Samanifar, S.; Almasi Kashi, M.; Ramazani, A.; Alikhani, M. Reversal modes in FeCoNi nanowire arrays: Correlation between magnetostatic interactions and nanowires length. J. Magn. Magn. Mater., 2015, 378, 73-83.
[117]
Saedi, A.; Ghorbani, M. Electrodeposition of Ni–Fe–Co alloy nanowire in modified AAO template. Mater. Chem. Phys., 2005, 91(2), 417-423.
[118]
Stojic, D.L.; Marceta, M.P.; Sovilj, S.P.; Miljanic, S.S. Hydrogen generation from water electrolysis—possibilities of energy saving. J. Power Sources, 2003, 118(1-2), 315-319.
[119]
Anantharaj, S.; Ede, S.R.; Sakthikumar, K.; Karthick, K.; Mishra, S.; Kundu, S. Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe, Co, and Ni: A review. ACS Catal., 2016, 6(12), 8069-8097.
[120]
Lee, H-B.; Tsau, J-C.; Lee, C-Y. HER catalytic activity of electrodeposited Ni-P nanowires under the influence of magnetic field. J. Nanomater., 2013, 2013, Article ID 191728.
[121]
Lu, G.; Evans, P.; Zangari, G. Electrocatalytic properties of Ni-based alloys toward hydrogen evolution reaction in acid media. J. Electrochem. Soc., 2003, 150(5), A551-A557.
[122]
Krolikowski, A.; Wiecko, A. Impedance studies of hydrogen evolution on Ni-P alloys. Electrochim. Acta, 2002, 47(13-14), 2065-2069.
[123]
Lee, H-B.; Hsu, C-H.; Wu, D-S. A study on the hydrogen evolving activity of electroplated Ni-P coating by using the taguchi method. J. New Mat. Electrochem. Syst., 2011, 14(4), 237-245.
[124]
Chen, P-C.; Chang, Y-M.; Wu, p.-W.; Chiu, Y-F. Fabrication of Ni nanowires for hydrogen evolution reaction in a neutral electrolyte. Int. J. Hydrogen Energy, 2009, 34(16), 6596-6602.
[125]
Iida, T.; Matsushima, H.; Fukunaka, Y. Water electrolysis under a magnetic field. J. Electrochem. Soc., 2007, 154(8), E112-E115.
[126]
Matsushima, H.; Kiuchi, D.; Fukunaka, Y. Measurement of dissolved hydrogen supersaturation during water electrolysis in a magnetic field. Electrochim. Acta, 2009, 54(24), 5858-5862.
[127]
Ezaki, H.; Morinaga, M.; Watanabe, S.; Saito, J. Hydrogen overpotential for intermetallic compounds, TiAl, FeAl and NiAl, containing 3d transitionmetals. Electrochim. Acta, 1994, 39(11-12), 1769-1773.
[128]
Burchardt, T.; Hansen, V.; Valand, T. Microstructure and catalytic activity towards the hydrogen evolution reaction of electrodeposited NiPx alloys. Electrochim. Acta, 2001, 46(18), 2761-2766.
[129]
Paseka, I. Evolution of hydrogen and its sorption on remarkable active amorphous smooth NiP(x) electrodes. Electrochim. Acta, 1995, 40(11), 1633-1640.
[130]
Shervedani, R.K.; Lasia, A. Studies of the hydrogen evolution reaction on Ni-P electrodes. J. Electrochem. Soc., 1997, 144(2), 511-519.
[131]
Hsu, S.; Lee, C.H.B.; Lin, C.S.; Lee, C.Y. The electrocatalytic activity of electrodeposited Ni-P micro-patterned structure in acidic solution. J. Chin. Soc. Mechan. Eng., 2011, 32, 103-109.
[132]
Liu, T.; Liu, Q.; Asiri, A.M.; Luo, Y.; Sun, X. An amorphous CoSe film behaves as an active and stable full water-splitting electrocatalyst under strongly alkaline conditions. Chem. Commun., 2015, 51(93), 16683-16686.
[133]
Carim, A.I.; Saadi, F.H.; Soriaga, M.P.; Lewis, N.S. Electrocatalysis of the hydrogen-evolution reaction by electrodeposited amorphous cobalt selenide films. J. Mater. Chem. A., 2014, 2(34), 13835-13839.
[134]
He, L.; Qin, L.; Zhao, J.; Yang, Y.; Yin, Y. Preparation of Pt/Ni multilayer nanowires with enhanced magnetic property and electrocatalytic activity. J. Nano Res., 2016, 40, 20-28.
[135]
Bertin, E.; Garbarino, S.; Ponrouch, A.; Guay, D. Synthesis and characterization of PtCo nanowires for the electro-oxidation of methanol. J. Power Sources, 2012, 206, 20-28.
[136]
Vernickaite, E.; Tsyntsaru, N.; Cesiulis, H. Electrochemical co-deposition of tungsten with cobalt and copper: Peculiarities of binary and ternary alloys coatings formation. Surf. Coat. Tech., 2016, 307(Part C), 1341-1349.
[137]
Piraux, L.; Dubois, S.; Duvail, J.L.; Ounadjela, K.; Fert, A. Arrays of nanowires of magnetic metals and multilayers: Perpendicular GMR and magnetic properties. J. Magn. Magn. Mater., 1997, 175(1-2), 127-136.
[138]
Özkale, B.; Shamsudhin, N.; Chatzipirpiridis, G.; Hoop, M.; Gramm, F.; Chen, X.; Martí, X.; Sort, J.; Pellicer, E.; Pané, S. Multisegmented FeCo/Cu nanowires: Electrosynthesis, characterization, and magnetic control of biomolecule desorption. ACS Appl. Mater. Interfaces, 2015, 7(13), 7389-7396.
[139]
Zhang, M.J.; Agramunt-Puig, S.; Del-Valle, N.; Navau, C.; Baró, M.D.; Estradé, S.; Peiró, F.; Pané, S.; Nelson, B.J.; Sanchez, A.; Nogués, J.; Pellicer, E.; Sort, J. Tailoring staircase-like hysteresis loops in electrodeposited trisegmented magnetic nanowires: A strategy toward minimization of interwire interactions. ACS Appl. Mater. Interfaces, 2016, 8(6), 4109-4117.
[140]
Zhang, J.; Pané, S.; Sort, J.; Pellicer, E. Toward robust segmented nanowires: Understanding the impact of crystallographic texture on the quality of segment interfaces in magnetic metallic nanowires. Adv. Mater. Interfaces, 2016, 3(18), 1600336.
[141]
Zeng, M.H.; Skomski, R.; Menon, L.; Liu, Y.; Bandyopadhyay, S.; Sellmyer, D.J. Structure and magnetic properties of ferromagnetic nanowires in self-assembled arrays. Phys. Rev. B, 2002, 65, 134426.
[142]
Cattaneo, L.; Franz, S.; Albertini, F.; Ranzieri, P.; Vicenzo, A.; Bestetti, M.; Cavallotti, P.L. Electrodeposition of hexagonal Co nanowires with large magnetocrystalline anisotropy. Electrochim. Acta, 2012, 85, 57-65.
[143]
Irshad, M.I.; Mohamed, N.M.; Abdullah, M.Z.; Saheed, M.S.M.; Mumtaz, A.; Yasar, M.; Yar, A.; Zeeshan, M.A.; Sort, J. Influence of the electrodeposition potential on the crystallographic structure and effective magnetic easy axis of cobalt nanowires. RSC Adv., 2016, 6, 14266.
[144]
Thongmee, S.; Pang, H.L.; Yi, J.B.; Ding, J.; Lin, J.Y.; Van, L.H. The structure and magnetic properties of metal and alloy nanowires via AAO template. Int. J. Nanosci., 2009, 8(1-2), 75-80.
[145]
Jo, C.; Lee, J.I.; Jang, Y. Electronic and magnetic properties of ultrathin Fe-Co alloy nanowires. Chem. Mater., 2005, 17(10), 2667-2671.
[146]
Zhang, X.; Zhang, H.; Wu, T.; Li, Z.; Zhang, Z.; Sun, H. Comparative study in fabrication and magnetic properties of FeNi alloy nanowires and nanotubes. J. Magn. Magn. Mater., 2013, 331, 162-167.
[147]
Almasi Kashi, M.; Ramazani, A.; Asgari, V.; Jafari-Khamse, E. Magnetic properties of Ni0.3Fe0.7 alloy nanowires. J. Nanostruct., 2013, 3(1), 11-15.
[148]
Wang, M.Y.W.; Zhang, L.D.; Meng, G.W.; Peng, X.S.; Jin, Y.X.; Zhang, J. Fabrication of ordered ferromagnetic-nonmagnetic alloy nanowire arrays and their magnetic property dependence on annealing temperature. J. Phys. Chem. B, 2002, 106(10), 2502-2507.
[149]
Hao, Z.; Shaoguang, Y.; Gang, N.; Dongliang, Y.; Youwei, D. Study on magnetic property of Fe14Ni86 alloy nanowire array. J. Magn. Magn. Mater., 2001, 234(3), 454-458.
[150]
Ghemes, A.; Dragos-Pinzaru, O.; Chiriac, H.; Lupu, N.; Grigoras, M.; Shore, D.; Stadler, B.; Tabakovic, I. Controlled electrodeposition and magnetic properties of Co35Fe65 nanowires with high saturation magnetization. J. Electrochem. Soc., 2017, 164(2), D13-D22.
[151]
Koohbor, M.; Soltanian, S.; Najafi, M.; Servati, P. Fabrication of CoZn alloy nanowire arrays: Significant improvement in magnetic properties by annealing process. Mater. Chem. Phys., 2012, 131(3), 728-734.
[152]
Qin, D.H.; Cao, L.; Sun, Q.Y.; Huang, Y.; Li, H.L. Fine magnetic properties obtained in FeCo alloy nanowire arrays. Chem. Phys. Lett., 2002, 358(5-6), 484-488.
[153]
Qin, D.H.; Zhang, H.L.; Xu, C.L.; Xu, T.; Li, H.L. Magnetic domain structure in small diameter magnetic nanowire arrays. Appl. Surf. Sci., 2005, 239(3-4), 279-284.
[154]
Najafi, M.; Rafati, A.A.; Fart, M.K.; Zare, A. Effect of the pH and electrodeposition frequency on magnetic properties of binary Co1-xSnx nanowire arrays. J. Mater. Res., 2014, 29(2), 190-196.
[155]
Yuan, X.Y.; Wu, G.S.; Xie, T.; Lin, Y.; Meng, G.W.; Zhang, L.D. Autocatalytic redox fabrication and magnetic studies of Co–Ni–P alloy nanowire arrays. Solid State Commun., 2004, 130(6), 429-432.
[156]
Salazar-Alvarez, G.; Geshev, J.; Agramunt-Puig, S.; Navau, C.; Sanchez, A.; Sort, J.; Nogués, J. Tunable high-field magnetization in strongly exchange-coupled freestanding Co/CoO Core/Shell Coaxial nanowires. ACS App. Mater. Interfaces, 2016, 8(34), 22477-22483.
[157]
Maurice, J-L.; Imhoff, D.; Etienne, P.; Durand, O.; Dubois, S.; Piraux, L.; George, J-M.; Galtier, P.; Fert, A. Microstructure of magnetic metallic superlattices grown by electrodeposition in membrane nanopores. J. Magn. Magn. Mater., 1998, 184(1), 1-18.
[158]
Serrà, A.; Alcobé, X.; Sort, J.; Nogués, J.; Vallés, E. Highly efficient electrochemical and chemical hydrogenation of 4-nitrophenol using recyclable narrow mesoporous magnetic CoPt nanowires. J. Mater. Chem. A., 2016, 4(40), 15676-15687.
[159]
Davis, D.M.; Moldovan, M.; Young, D.P.; Henk, M.; Xie, X.; Podlaha, E.J. Magnetoresistance in electrodeposited CoNiFeICu multilayered nanotubes. Electrochem. Solid-State Lett., 2006, 9(9), C153-C155.
[160]
Vázquez, M.; Pirota, K.; Torrejo, J.; Navas, D.; Hernandez-Velez, M. Magnetic behaviour of densely packed hexagonal arrays of Ni nanowires: Influence of geometric characteristics. J. Magn. Magn. Mater., 2005, 294(2), 174-181.
[161]
Ivanov, Y.P.; Vázquez, M.; Chubykalo-Fesenko, O. Magnetic reversal modes in cylindrical nanowires. J. Phys. D Appl. Phys., 2013, 46, Article No. 485001.
[162]
Vivas, G.L.; Vázquez, M.; Escrig, J.; Allende, S.; Altbir, D.; Leitao, D.C.; Araujo, J.P. Magnetic anisotropy in CoNi nanowire arrays: Analytical calculations and experiments. Phys. Rev. B, 2012, 85, 035439.
[163]
Sellmyer, D.J.; Zheng, M.; Skomski, R. Magnetism of Fe, Co and Ni nanowires in self-assembled arrays. J. Phys. Condens. Matter, 2001, 13, R433-R460.
[164]
Rivas, J.; Bantu, A.K.M.; Zaragoza, G.; Blanco, M.C.; López-Quintela, M.A. Preparation and magnetic behavior of arrays of electrodeposited Co nanowires. J. Magn. Magn. Mater., 2002, 249(1-2), 220-227.
[165]
Vázquez, M.; Vivas, L.G. Magnetization reversal in Co-base nanowire arrays. Phys. Status Solidi, B., 2011, 248(10), 2368-2381.
[166]
McGary, P.D.; Tan, L.W.; Zou, J.; Stadler, B.J.H.; Downey, P.R.; Flatau, A.B. Magnetic nanowires for acoustic sensors. J. Appl. Phys., 2006, 99(8), 308-310.
[167]
Kartopu, G.; Yalçın, O. Fabrication and applications of metal nanowire arrays electrodeposited in ordered porous templates. In: Electrodeposited Nanowires and their Applications, Ed. Lupu, N. Publisher InTech; 2010, pp.113-140.
[168]
Bakonyi, I.; Péter, L. Electrodeposited multilayer films with giant magnetoresistance (GMR): Progress and problems. Prog. Mater. Sci., 2010, 55(3), 107-245.
[169]
Alper, M.; Attenborough, K.; Hart, R.; Lane, S.J.; Lashmore, D.S.; Younes, C.; Schwarzacher, W. Giant magnetoresistance in electrodeposited superlattices. Appl. Phys. Lett., 1993, 63(15), 2144-2146.
[170]
Evans, P.R.; Yi, G.; Schwarzacher, W. Current perpendicular to plane giant magnetoresistance of multilayered nanowires electrodeposited in anodic aluminum oxide membranes. Appl. Phys. Lett., 2000, 76(4), 481-483.
[171]
Davis, D.; Zamanpour, M.; Moldovan, M.; Young, D.; Podlaha, E.J. Electrodeposited, GMR CoNiFeCu nanowires and nanotubes from electrolytes maintained at different temperatures. J. Electrochem. Soc., 2010, 157(6), D317-D322.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 15
ISSUE: 1
Year: 2019
Page: [84 - 99]
Pages: 16
DOI: 10.2174/1573413714666180410154104
Price: $58

Article Metrics

PDF: 15
HTML: 4