Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Review Article

Optoelectronic Properties and Structural Modification of Conjugated Polymers Based on Benzodithiophene Groups

Author(s): Jieyun Wu*, Qing Li, Wen Wang and Kaixin Chen*

Volume 16, Issue 3, 2019

Page: [253 - 260] Pages: 8

DOI: 10.2174/1570193X15666180406144851

Price: $65

Abstract

Organic conjugated materials have shown attractive applications due to their good optoelectronic properties, which enable them solution processing techniques in organic optoelectronic devices. Many conjugated materials have been investigated in polymer solar cells and organic field-effect transistors. Among those conjugated materials, Benzo[1,2-b:4,5-b′]dithiophene (BDT) is one of the most employed fused-ring building groups for the synthesis of conjugated materials. The symmetric and planar conjugated structure, tight and regular stacking of BDT can be expected to exhibit the excellent carrier transfer for optoelectronics. In this review, we summarize the recent progress of BDT-based conjugated polymers in optoelectronic devices. BDT-based conjugated materials are classified into onedimensional (1D) and two-dimensional (2D) BDT-based conjugated polymers. Firstly, we introduce the fundamental information of BDT-based conjugated materials and their application in optoelectronic devices. Secondly, the design and synthesis of alkyl, alkoxy and aryl-substituted BDT-based conjugated polymers are discussed, which enables the construction of one-dimensional and two-dimensional BDTbased conjugated system. In the third part, the structure modification, energy level tuning and morphology control and their influences on optoelectronic properties are discussed in detail to reveal the structure- property relationship. Overall, we hope this review can be a good reference for the molecular design of BDT-based semiconductor materials in optoelectronic devices.

Keywords: Organic semiconducting materials, benzodithiophene, two-dimensional, organic photovoltaic device, conjugated polymers, structural modification.

Graphical Abstract
[1]
(a)Yu, G.G.J.; Hummelen, J.; Wudl, F.; Heeger, A.J. Polymer photovoltaic cells: Enhanced efficiency via a network of internal donor-acceptor heterojunctions. Science, 1995, 270, 1789-1791.
(b)Huo, L.; Hou, J. Benzo[1,2-b:4,5-b′]dithiophene-based conjugated polymers: Band gap and energy level control and their application in polymer solar cells. Polym. Chem., 2011, 2(11), 2453.
[2]
Ye, L.; Zhang, S.; Huo, L.; Zhang, M.; Hou, J. Molecular design toward highly efficient photovoltaic polymers based on two-dimensional conjugated benzodithiophene. Acc. Chem. Res., 2014, 47(5), 1595-1603.
[3]
Sista, P.; Biewer, M.C.; Stefan, M.C. Benzo 1,2-b:4,5-b′ dithiophene building block for the synthesis of semiconducting polymers. Macromol. Rapid Commun., 2012, 33(1), 9-20.
[4]
(a)Zhao, W.; Qian, D.; Zhang, S.; Li, S.; Inganas, O.; Gao, F.; Hou, J. Fullerene-free polymer solar cells with over 11% efficiency and excellent thermal stability. Adv. Mater., 2016, 28(23), 4734-4739.
(b)Zheng, Z.; Zhang, S.; Zhang, J.; Qin, Y.; Li, W.; Yu, R.; Wei, Z.; Hou, J. Over 11% efficiency in tandem polymer solar cells featured by a low-band-gap polymer with fine-tuned properties. Adv. Mater., 2016, 28(25), 5133-5138.
[5]
Li, Y. Molecular design of photovoltaic materials for polymer solar cells: Toward suitable electronic energy levels and broad absorption. Acc. Chem. Res., 2012, 45(5), 723-733.
[6]
Yao, H.; Ye, L.; Zhang, H.; Li, S.; Zhang, S.; Hou, J. Molecular design of benzodithiophene-based organic photovoltaic materials. Chem. Rev., 2016, 116(12), 7397-7457.
[7]
Pan, H.; Li, Y.; Wu, Y.; Liu, P.; Ong, B.S.; Zhu, S.; Xu, G. Low-temperature, solution-processed, high-mobility polymer semiconductors for thin-film transistors. J. Am. Chem. Soc., 2007, 129(14), 4112.
[8]
Hou, J.; Park, M-H.; Zhang, S.; Yao, Y.; Chen, L-M.; Li, J-H.; Yang, Y. Bandgap and molecular energy level control of conjugated polymer photovoltaic materials based on benzo 1,2-b: 4,5-b′ dithiophene. Macromolecules, 2008, 41(16), 6012-6018.
[9]
(a)Li, M.; Ni, W.; Wan, X.; Zhang, Q.; Kan, B.; Chen, Y. Benzo 1,2-b: 4,5-b ' dithiophene (BDT)-based small molecules for solution processed organic solar cells. J. Mater. Chem. A, 2015, 3(9), 4765-4776.
(b)Fan, H.; Zhu, X. Development of small-molecule materials for high-performance organic solar cells. Sci. China Chem., 2015, 58(6), 922-936.
[10]
Pan, H.L.; Li, Y.N.; Wu, Y.L.; Liu, P.; Ong, B.S.; Zhu, S.; Xu, G. Synthesis and thin-film transistor performance of poly(4,8-didodcylenzo 1,2-b: 4,5-b ' dithiophene). Chem. Mater., 2006, 18(14), 3237-3241.
[11]
Huo, L.J.; Hou, J.H.; Zhang, S.Q.; Chen, H.Y.; Yang, Y. A polybenzo 1,2-b:4,5-b ' dithiophene derivative with deep HOMO level and its application in high-performance polymer solar cells. Angew. Chem. Int. Ed., 2010, 49(8), 1500-1503.
[12]
Huo, L.J.; Zhang, S.Q.; Guo, X.; Xu, F.; Li, Y.F.; Hou, J.H. Replacing alkoxy groups with alkylthienyl groups: A feasible approach to improve the properties of photovoltaic polymers. Angew. Chem. Int. Ed., 2011, 50(41), 9697-9702.
[13]
(a)Zou, Y.P.; Najari, A.; Berrouard, P.; Beaupre, S.; Aich, B.R.; Tao, Y.; Leclerc, M. A thieno 3,4-c pyrrole-4,6-dione-based copolymer for efficient solar cells. J. Am. Chem. Soc., 2010, 132(15), 5330-5331.
(b)Najari, A.; Beaupre, S.; Berrouard, P.; Zou, Y.P.; Pouliot, J.R.; Lepage-Perusse, C.; Leclerc, M. Synthesis and characterization of new thieno 3,4-c pyrrole-4,6-dione derivatives for photovoltaic applications. Adv. Funct. Mater., 2011, 21(4), 718-728.
[14]
Kim, B.G.; Ma, X.; Chen, C.; Ie, Y.; Coir, E.W.; Hashemi, H.; Aso, Y.; Green, P.F.; Kieffer, J.; Kim, J. Energy level modulation of HOMO, LUMO, and band-gap in conjugated polymers for organic photovoltaic applications. Adv. Funct. Mater., 2013, 23(4), 439-445.
[15]
Cabanetos, C.; El Labban, A.; Bartelt, J.A.; Douglas, J.D.; Mateker, W.R.; Frechet, J.M.J.; McGehee, M.D.; Beaujuge, P.M. Linear side chains in benzo 1,2-b:4,5-b′ dithiophene-thieno 3,4-c pyrrole-4,6-dione polymers direct self-assembly and solar cell performance. J. Am. Chem. Soc., 2013, 135(12), 4656-4659.
[16]
Kim, S.O.; Kim, Y.S.; Yun, H.J.; Kang, I.; Yoon, Y.; Shin, N.; Son, H.J.; Kim, H.; Ko, M.J.; Kim, B.; Kim, K.; Kim, Y.H.; Kwon, S.K. N-octyl-2,7-dithia-5-azacyclopenta a pentalene-4,6-dione-based low band gap polymers for efficient solar cells. Macromolecules, 2013, 46(10), 3861-3869.
[17]
(a)Douglas, J.D.; Griffini, G.; Holcombe, T.W.; Young, E.P.; Lee, O.P.; Chen, M.S.; Frechet, J.M.J. Functionalized isothianaphthene monomers that promote quinoidal character in donor-acceptor copolymers for organic photovoltaics. Macromolecules, 2012, 45(10), 4069-4074.
(b)Braunecker, W.A.; Owczarczyk, Z.R.; Garcia, A.; Kopidakis, N.; Larsen, R.E.; Hammond, S.R.; Ginley, D.S.; Olson, D.C. Benzodithiophene and imide-based copolymers for photovoltaic applications. Chem. Mater., 2012, 24(7), 1346-1356.
(c)Wu, Y.; Jing, Y.; Guo, X.; Zhang, S.Q.; Zhang, M.J.; Huo, L.J.; Hou, J.H. A thieno 3,4-f isoindole-5,7-dione based copolymer for polymer solar cells. Polym. Chem., 2013, 4(3), 536-541.
[18]
Zhou, N.J.; Guo, X.G.; Ortiz, R.P.; Li, S.Q.; Zhang, S.M.; Chang, R.P.H.; Facchetti, A.; Marks, T.J. Bithiophene imide and benzodithiophene copolymers for efficient inverted polymer solar cells. Adv. Mater., 2012, 24(17), 2242-2248.
[19]
Kanimozhi, C.; Yaacobi-Gross, N.; Chou, K.W.; Amassian, A.; Anthopoulos, T.D.; Patil, S. Diketopyrrolopyrrole-based conjugated copolymer for high-mobility organic field-effect transistors. J. Am. Chem. Soc., 2012, 134(40), 16532-16535.
[20]
Li, Z.; Zhang, Y.G.; Tsang, S.W.; Du, X.M.; Zhou, J.Y.; Tao, Y.; Ding, J.F. Alkyl side chain impact on the charge transport and photovoltaic properties of benzodithiophene and diketopyrrolo-pyrrole-based copolymers. J. Phys. Chem. C, 2011, 115(36), 18002-18009.
[21]
Tan, H.; Deng, X.P.; Yu, J.T.; Zhao, B.F.; Wang, Y.F.; Liu, Y.; Zhu, W.G.; Wu, H.B.; Cao, Y. A novel benzo 1,2-b:4,5-b ' dithiophene-based conjugated polymer with a pendant diketopyrrolopyrrole unit for high-performance solar cells. Macromolecules, 2013, 46(1), 113-118.
[22]
Carsten, B.; Szarko, J.M.; Lu, L.Y.; Son, H.J.; He, F.; Botros, Y.Y.; Chen, L.X.; Yu, L.P. Mediating solar cell performance by controlling the internal dipole change in organic photovoltaic polymers. Macromolecules, 2012, 45(16), 6390-6395.
[23]
Li, Y.W.; Chen, Y.J.; Liu, X.; Wang, Z.; Yang, X.M.; Tu, Y.F.; Zhu, X.L. Controlling blend film morphology by varying alkyl side chain in highly coplanar donor-acceptor copolymers for photovoltaic application. Macromolecules, 2011, 44(16), 6370-6381.
[24]
Nie, W.Y.; MacNeill, C.M.; Li, Y.; Noftle, R.E.; Carroll, D.L.; Coffin, R.C. A soluble high molecular weight copolymer of benzo 1,2-b:4,5-b ' dithiophene and benzoxadiazole for efficient organic photovoltaics. Macromol. Rapid Commun., 2011, 32(15), 1163-1168.
[25]
Wang, X.C.; Sun, Y.P.; Chen, S.; Guo, X.; Zhang, M.J.; Li, X.Y.; Li, Y.F.; Wang, H.Q. Effects of pi-conjugated bridges on photovoltaic properties of donor-pi-acceptor conjugated copolymers. Macromolecules, 2012, 45(3), 1208-1216.
[26]
Liu, B.; Chen, X.W.; Zou, Y.P.; Xiao, L.; Xu, X.J.; He, Y.H.; Li, L.D.; Li, Y.F. Benzo 1,2-b:4,5-b′ difuran-based donor-acceptor copolymers for polymer solar cells. Macromolecules, 2012, 45(17), 6898-6905.
[27]
Wang, X.C.; Jiang, P.; Chen, Y.; Luo, H.; Zhang, Z.G.; Wang, H.Q.; Li, X. Yu, G.; Li, Y.F. Thieno 3,2-b thiophene-bridged D-pi-a polymer semiconductor based on benzo 1,2-b:4,5-b ' dithiophene and benzoxadiazole. Macromolecules, 2013, 46(12), 4805-4812.
[28]
Chen, H.Y.; Hou, J.H.; Zhang, S.Q.; Liang, Y.Y.; Yang, G.W.; Yang, Y.; Yu, L.P.; Wu, Y.; Li, G. Polymer solar cells with enhanced open-circuit voltage and efficiency. Nat. Photonics, 2009, 3(11), 649-653.
[29]
Son, H.J.; Wang, W.; Xu, T.; Liang, Y.Y.; Wu, Y.E.; Li, G.; Yu, L.P. Synthesis of fluorinated polythienothiophene-co-benzodithio-phenes and effect of fluorination on the photovoltaic properties. J. Am. Chem. Soc., 2011, 133(6), 1885-1894.
[30]
Carsten, B.; Szarko, J.M.; Son, H.J.; Wang, W.; Lu, L.Y.; He, F.; Rolczynski, B.S.; Lou, S.J.; Chen, L.X.; Yu, L.P. Examining the effect of the dipole moment on charge separation in donor-acceptor polymers for organic photovoltaic applications. J. Am. Chem. Soc., 2011, 133(50), 20468-20475.
[31]
(a)Duan, R.M.; Ye, L.; Guo, X.; Huang, Y.; Wang, P.; Zhang, S.Q.; Zhang, J.P.; Huo, L.J.; Hou, J.H. Application of two-dimensional conjugated benzo 1,2-b:4,5-b′ dithiophene in quino-xaline-based photovoltaic polymers. Macromolecules, 2012, 45(7), 3032-3038.
(b)Zhang, S.Q.; Ye, L.; Wang, Q.; Li, Z.J.; Guo, X.; Huo, L.J.; Fan, H.L.; Hou, J.H. Enhanced photovoltaic performance of diketopyrrolopyrrole (DPP)-based polymers with extended pi conjugation. J. Phys. Chem. C, 2013, 117(19), 9550-9557.
(c)Ye, L.; Zhang, S.Q.; Huo, L.J.; Zhang, M.J.; Hou, J.H. Molecular design toward highly efficient photovoltaic polymers based on two-dimensional conjugated benzodithiophene. Acc. Chem. Res., 2014, 47(5), 1595-1603.
[32]
Warnan, J.; El Labban, A.; Cabanetos, C.; Hoke, E.T.; Shukla, P.K.; Risko, C.; Bredas, J.L.; McGehee, M.D.; Beaujuge, P.M. Ring substituents mediate the morphology of PBDTTPD-PCBM bulk-heterojunction solar cells. Chem. Mater., 2014, 26(7), 2299-2306.
[33]
Warnan, J.; Cabanetos, C.; Bude, R.; El Labban, A.; Li, L.; Eaujuge, P.M. Electron-deficient n-alkyloyl derivatives of thieno 3,4-c pyrrole-4,6-dione yield efficient polymer solar cells with open-circuit voltages > 1 V. Chem. Mater., 2014, 26(9), 2829-2835.
[34]
Chakravarthi, N.; Kranthiraja, K.; Song, M.; Gunasekar, K.; Jeong, P.; Moon, S.J.; Shin, W.S.; Kang, I.N.; Lee, J.W.; Jin, S.H. New alkylselenyl substituted benzodithiophene-based solution-processable 2D pi-conjugated polymers for bulk heterojunction polymer solar cell applications. Sol. Energy Mater. Sol. Cells, 2014, 122, 136-145.
[35]
(a)Zhang, M.J.; Gu, Y.; Guo, X.; Liu, F.; Zhang, S.Q.; Huo, L.J.; Russell, T.P.; Hou, J.H. Efficient polymer solar cells based on benzothiadiazole and alkylphenyl substituted benzodithiophene with a power conversion efficiency over 8%. Adv. Mater., 2013, 25(35), 4944-4949.
(b)Hwang, M.C.; Kang, H.; Yu, K.; Yun, H.J.; Kwon, S.K.; Lee, K.; Kim, Y.H. New polybenzo 1,2-b:4,5-b′ dithiophene derivative with an alkoxyphenyl side chain: Applica-tions in organic photovoltaic cells and organic semiconductors. Sol. Energy Mater. Sol. Cells, 2014, 125, 39-46.
[36]
Zhang, M.J.; Guo, X.; Ma, W.; Zhang, S.Q.; Huo, L.J.; Ade, H.; Hou, J.H. An easy and effective method to modulate molecular energy level of the polymer based on benzodithiophene for the application in polymer solar cells. Adv. Mater., 2014, 26(13), 2089-2095.
[37]
(a)Shi, Q.Q.; Fan, H.J.; Liu, Y.; Hu, W.P.; Li, Y.F.; Zhan, X.W. A copolymer of benzodithiophene with TIPS side chains for enhanced photovoltaic performance. Macromolecules, 2011, 44(23), 9173-9179.
(b)Kim, J.H.; Song, C.E.; Kim, H.U.; Grimsdale, A.C.; Moon, S.J.; Shin, W.S.; Choi, S.K.; Hwang, D.H. High open circuit voltage solution-processed tandem organic photovoltaic cells employing a bottom cell using a new medium band gap semiconducting polymer. Chem. Mater., 2013, 25(13), 2722-2732.
(c)Kim, J.H.; Lee, M.; Yang, H.; Hwang, D.H. A high molecular weight triisopropylsilylethynyl (TIPS)-benzodithiophene and diketopyrrolopyrrole-based copolymer for high performance organic photovoltaic cells. J. Mater. Chem. A, 2014, 2(18), 6348-6352.
(d)Kim, J.H.; Song, C.E.; Shin, N.; Kang, H.; Wood, S.; Kang, I.N.; Kim, B.J.; Kim, B.; Kim, J.S.; Shin, W.S.; Hwang, D.H. High-crystalline medium-band-gap polymers consisting of benzodithiophene and benzotriazole derivatives for organic photovoltaic cells. ACS Appl. Mater. Interfaces, 2013, 5(24), 12820-12831.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy