Inhibitors of Selected Bacterial Metalloenzymes

Author(s): Raivis Žalubovskis*, Jean-Yves Winum*.

Journal Name: Current Medicinal Chemistry

Volume 26 , Issue 15 , 2019

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer

Abstract:

The utilization of bacterial metalloenzymes, especially ones not having mammalian (human) counterparts, has drawn attention to develop novel antibacterial agents to overcome drug resistance and especially multidrug resistance. In this review, we focus on the recent achievements on the development of inhibitors of bacterial enzymes peptide deformylase (PDF), metallo-β-lactamase (MBL), methionine aminopeptidase (MetAP) and UDP-3-O-acyl- N-acetylglucosamine deacetylase (LpxC). The state of the art of the design and investigation of inhibitors of bacterial metalloenzymes is presented, and challenges are outlined and discussed.

Keywords: Metalloenzymes, inhibitors, bacteria, peptide deformylase, methionine aminopeptidase, metallo-β- lactamase, UDP-3-O-acylglucosamine deacetylase.

[1]
Available at:World Health Organization: Infectious diseases. Available at: http://www.who.int/topics/infec-tious_diseases/en/ [Accessed November 2017].
[2]
AMR Review: Tackling drug-resistant infections globally: final report and recommendations (review on antimicrobial resistance 2016. Available at: https://amr-review.org/ [Accessed November 2017].
[3]
Brown, E.D.; Wright, G.D. Antibacterial drug discovery in the resistance era. Nature, 2016, 529(7586), 336-343.
[http://dx.doi.org/10.1038/nature17042] [PMID: 26791724]
[4]
Kealey, C.; Creaven, C.A.; Murphy, C.D.; Brady, C.B. New approaches to antibiotic discovery. Biotechnol. Lett., 2017, 39(6), 805-817.
[http://dx.doi.org/10.1007/s10529-017-2311-8] [PMID: 28275884]
[5]
Brown, E.D.; Wright, G.D. New targets and screening approaches in antimicrobial drug discovery. Chem. Rev., 2005, 105(2), 759-774.
[http://dx.doi.org/10.1021/cr030116o] [PMID: 15700964]
[6]
Gualerzi, C.O.; Brandi, L.; Fabbretti, A.; Pon, C.L. Antibiotics Targets, Mechanisms and Resistance; Wiley & Sons: New York, 2014, p. 576.
[7]
Winum, J-Y.; Köhler, S.; Scozzafava, A.; Montero, J-L.; Supuran, C.T. Targeting bacterial metalloenzymes: a new strategy for the development of anti-infective agents. Antiinfect. Agents Med. Chem., 2008, 7(3), 169-179.
[http://dx.doi.org/10.2174/187152108784911232]
[8]
Supuran, C.T.; Carta, F.; Scozzafava, A. Metalloenzyme inhibitors for the treatment of gram-negative bacterial infections: a patent review (2009-2012). Expert Opin. Ther. Pat., 2013, 23(7), 777-788.
[http://dx.doi.org/ 10.1517/13543776.2013.777042] [PMID: 23458841]
[9]
Capasso, C.; Supuran, C.T. Inhibition of bacterial carbonic anhydrases as a novel approach to escape drug resistance. Curr. Top. Med. Chem., 2017, 17(11), 1237-1248.
[http://dx.doi.org/10.2174/1568026617666170104101058] [PMID: 28049405]
[10]
Capasso, C.; Supuran, C.T. An overview of the selectivity and efficiency of the bacterial carbonic anhydrase inhibitors. Curr. Med. Chem., 2015, 22(18), 2130-2139.
[http://dx.doi.org/10.2174/0929867321666141012174921] [PMID: 25312213]
[11]
Lopez, M.; Köhler, S.; Winum, J-Y. Zinc metalloenzymes as new targets against the bacterial pathogen Brucella. J. Inorg. Biochem., 2012, 111, 138-145.
[http://dx.doi.org/10.1016/j.jinorgbio.2011.10.019] [PMID: 22196018]
[12]
Köhler, S.; Ouahrani-Bettache, S.; Winum, J-Y. Brucella suis carbonic anhydrases and their inhibitors: Towards alternative antibiotics? J. Enzyme Inhib. Med. Chem., 2017, 32(1), 683-687.
[http://dx.doi.org/10.1080/14756366.2017.1295451] [PMID: 28274160]
[13]
Monti, S.M.; De Simone, G.; D’Ambrosio, K. L-Histidinol dehydrogenase as a new target for old diseases. Curr. Top. Med. Chem., 2016, 16(21), 2369-2378.
[http://dx.doi.org/10.2174/1568026616666160413140000] [PMID: 27072690]
[14]
Aubart, K.; Zalacain, M. Peptide deformylase inhibitors for addressing the issue of bacterial resistance: Progress in Medicinal Chemistry; King, F.D; Lawton, G., Eds.; Elsevier Science: Amsterdam, 2006, 44, pp.109-143.
[15]
Giglione, C.; Fieulaine, S.; Meinnel, T. N-terminal protein modifications: Bringing back into play the ribosome. Biochimie, 2015, 114, 134-146.
[http://dx.doi.org/10.1016/j.biochi.2014.11.008] [PMID: 25450248]
[16]
Rajagopalan, P.T.R.; Pei, D. Oxygen-mediated inactivation of peptide deformylase. J. Biol. Chem., 1998, 273(35), 22305-22310.
[http://dx.doi.org/10.1074/jbc.273.35.22305] [PMID: 9712848]
[17]
Sangshetti, J.N.; Khan, F.A.; Shinde, D.B. Peptide Deformylase Inhibitors. Curr. Med. Chem., 2015, 22(2), 214-236.
[http://dx.doi.org/10.2174/0929867321666140826115734] [PMID: 25174923]
[18]
Sharma, A.; Khuller, G.K.; Sharma, S. Peptide deformylase--a promising therapeutic target for tuberculosis and antibacterial drug discovery. Expert Opin. Ther. Targets, 2009, 13(7), 753-765.
[http://dx.doi.org/10.1517/14728220903005590] [PMID: 19530983]
[19]
Chen, D.; Yuan, Z. Therapeutic potential of peptide deformylase inhibitors. Expert Opin. Investig. Drugs, 2005, 14(9), 1107-1116.
[http://dx.doi.org/10.1517/13543784.14.9.1107] [PMID: 16144495]
[20]
Chen, D.Z.; Patel, D.V.; Hackbarth, C.J.; Wang, W.; Dreyer, G.; Young, D.C.; Margolis, P.S.; Wu, C.; Ni, Z.J.; Trias, J.; White, R.J.; Yuan, Z. Actinonin, a naturally occurring antibacterial agent, is a potent deformylase inhibitor. Biochemistry, 2000, 39(6), 1256-1262.
[http://dx.doi.org/10.1021/bi992245y] [PMID: 10684604]
[21]
Yoo, J.S.; Zheng, C.J.; Lee, S.; Kwak, J.H.; Kim, W.G.; Macrolactin, N. A new peptide deformylase inhibitor produced by Bacillus subtilis. Bioorg. Med. Chem. Lett., 2006, 16(18), 4889-4892.
[http://dx.doi.org/10.1016/j.bmcl.2006.06.058] [PMID: 16809037]
[22]
East, S.P. Actinonin and Analogs: Inhibitors of Bacterial Peptide Deformylase: Antimicrobials: New and Old Molecules in the Fight Against Multi-Resistant Bacteria; Flavia, M; Olga, G., Ed.; Springer: Berlin, 2014, pp. 287-305.
[http://dx.doi.org/10.1007/978-3-642-39968-8]
[23]
Fieulaine, S.; Boularot, A.; Artaud, I.; Desmadril, M.; Dardel, F.; Meinnel, T.; Giglione, C. Trapping conformational states along ligand-binding dynamics of peptide deformylase: the impact of induced fit on enzyme catalysis. PLoS Biol., 2011, 9(5)e1001066
[http://dx.doi.org/10.1371/journal.pbio.1001066] [PMID: 21629676]
[24]
Gao, J.; Liang, L.; Zhu, Y.; Qiu, S.; Wang, T.; Zhang, L. Ligand and structure-based approaches for the identification of peptide deformylase inhibitors as antibacterial drugs. Int. J. Mol. Sci., 2016, 17(7), 1141.
[http://dx.doi.org/10.3390/ijms17071141] [PMID: 27428963]
[25]
Merzoug, A.; Chikhi, A.; Bensegueni, A.; Boucherit, H.; Okay, S. Virtual screening approach of bacterial peptide deformylase inhibitors results in new antibiotics. Mol. Inform., in press
[http://dx.doi.org/10.1002/minf.201700087] [PMID: 28991412]
[26]
Lv, F.; Chen, C.; Tang, Y.; Wei, J.; Zhu, T.; Hu, W. New peptide deformylase inhibitors design, synthesis and pharmacokinetic assessment. Bioorg. Med. Chem. Lett., 2016, 26(15), 3714-3718.
[http://dx.doi.org/10.1016/j.bmcl.2016.05.077] [PMID: 27293070]
[27]
Singh, A.; Srivastava, R.; Singh, R.K. Design, synthesis, and antibacterial activities of novel heterocyclic arylsulphonamide derivatives. Interdiscip. Sci., 2018, 10(4), 748-761.
[http://dx.doi.org/10.1007/s12539-016-0207-2] [PMID: 28194576]
[28]
Khan, F.A.; Patil, R.H.; Patil, M.; Arote, R.; Shinde, D.B.; Sangshetti, J.N. Bacterial peptide deformylase inhibition of tetrazole-substituted biaryl acid analogs: synthesis, biological evaluations, and Molecular Docking Study. Arch. Pharm. (Weinheim), 2016, 349(12), 934-943.
[http://dx.doi.org/10.1002/ardp.201600254] [PMID: 27859538]
[29]
Khan, F.A.; Patil, R.H.; Shinde, D.B.; Sangshetti, J.N. Design and synthesis of 4′-((5-benzylidene-2,4-dioxothiazolidin-3-yl)methyl)biphenyl-2-carbonitrile analogs as bacterial peptide deformylase inhibitors. Chem. Biol. Drug Des., 2016, 88(6), 938-944.
[http://dx.doi.org/10.1111/cbdd.12817] [PMID: 27401234]
[30]
Khan, F.A.K.; Jadhav, K.S.; Patil, R.H.; Shinde, D.B.; Arote, R.B.; Sangshetti, J.N. Biphenyl tetrazole-thiazolidinediones as novel bacterial peptide deformylase inhibitors: Synthesis, biological evaluations and molecular docking study. Biomed. Pharmacother., 2016, 83, 1146-1153.
[http://dx.doi.org/10.1016/j.biopha.2016.08.036] [PMID: 27551762]
[31]
Khan, F.A.; Patil, R.H.; Shinde, D.B.; Sangshetti, J.N. Bacterial Peptide deformylase inhibition of cyano substituted biaryl analogs: Synthesis, in vitro biological evaluation, molecular docking study and in silico ADME prediction. Bioorg. Med. Chem., 2016, 24(16), 3456-3463.
[http://dx.doi.org/10.1016/j.bmc.2016.05.051] [PMID: 27269198]
[32]
Green, B.G.; Toney, J.H.; Kozarich, J.W.; Grant, S.K. Inhibition of bacterial peptide deformylase by biaryl acid analogs. Arch. Biochem. Biophys., 2000, 375(2), 355-358.
[http://dx.doi.org/10.1006/abbi.1999.1673] [PMID: 10700392]
[33]
Lee, H.Y.; An, K.M.; Jung, J.; Koo, J.M.; Kim, J.G.; Yoon, J.M.; Lee, M.J.; Jang, H.; Lee, H.S.; Park, S.; Kang, J.H. Identification of novel aminopiperidine derivatives for antibacterial activity against Gram-positive bacteria. Bioorg. Med. Chem. Lett., 2016, 26(13), 3148-3152.
[http://dx.doi.org/10.1016/j.bmcl.2016.04.086] [PMID: 27173797]
[34]
Fieulaine, S.; Alves de Sousa, R.; Maigre, L.; Hamiche, K.; Alimi, M.; Bolla, J.M.; Taleb, A.; Denis, A.; Pagès, J.M.; Artaud, I.; Meinnel, T.; Giglione, C. A unique peptide deformylase platform to rationally design and challenge novel active compounds. Sci. Rep., 2016, 6, 35429.
[http://dx.doi.org/10.1038/srep35429] [PMID: 27762275]
[35]
Bonomo, R.A. β-Lactamases: A focus on current challenges. Cold Spring Harb. Perspect. Med., 2017, 7(1)a025239
[http://dx.doi.org/10.1101/cshperspect.a025239] [PMID: 27742735]
[36]
Gonzalez, M.M.; Vila, A.J. An Elusive Task: A Clinically Useful Inhibitor of Metallo-β-Lactamases: Topics in Medicinal Chemistry; Claudiu, T. S.; Clemente, C., Eds.; Springer: Switzerland, 2017, 22, pp.1-34. [http://dx.doi.org/ 10.1007/7355_2016_6]
[37]
Khan, A.U.; Maryam, L.; Zarrilli, R. Structure, genetics and worldwide spread of new delhi Metallo-β-lactamase (NDM): a threat to public health. BMC Microbiol., 2017, 17(1), 101.
[http://dx.doi.org/10.1186/s12866-017-1012-8] [PMID: 28449650]
[38]
Bush, K.; Jacoby, G.A. Updated functional classification of β-lactamases. Antimicrob. Agents Chemother., 2010, 54(3), 969-976.
[http://dx.doi.org/10.1128/AAC.01009-09] [PMID: 19995920]
[39]
Palzkill, T. Metallo-β-lactamase structure and function. Ann. N. Y. Acad. Sci., 2013, 1277, 91-104.
[http://dx.doi.org/10.1111/j.1749-6632.2012.06796.x] [PMID: 23163348]
[40]
Mojica, M.F.; Bonomo, R.A.; Fast, W. B1-Metallo-β-Lactamases: Where do we stand? Curr. Drug Targets, 2016, 17(9), 1029-1050.
[http://dx.doi.org/10.2174/1389450116666151001105622] [PMID: 26424398]
[41]
Hou, C-F.D.; Phelan, E.K.; Miraula, M.; Ollis, D.L.; Schenk, G.; Mitic, N. Unusual metallo-β-lactamases may constitute a new subgroup in this family of enzymes. Am. J. Mol. Biol., 2014, 4(1), 11-15.
[http://dx.doi.org/10.4236/ajmb.2014.41002]
[42]
Crowder, M.W.; Spencer, J.; Vila, A.J. Metallo-beta-lactamases: novel weaponry for antibiotic resistance in bacteria. Acc. Chem. Res., 2006, 39(10), 721-728.
[http://dx.doi.org/10.1021/ar0400241] [PMID: 17042472]
[43]
Phelan, E.K.; Miraula, M.; Selleck, C.; Ollis, D.L.; Schenk, G.; Mitic, N. Metallo-β-lactamases: a major threat to human health. Am. J. Mol. Biol., 2014, 4(3), 89-104.
[http://dx.doi.org/10.4236/ajmb.2014.43011]
[44]
Zhang, H.; Hao, Q. Crystal structure of NDM-1 reveals a common β-lactam hydrolysis mechanism. FASEB J., 2011, 25(8), 2574-2582.
[http://dx.doi.org/10.1096/fj.11-184036] [PMID: 21507902]
[45]
Garau, G.; Bebrone, C.; Anne, C.; Galleni, M.; Frère, J.M.; Dideberg, O. A metallo-β-lactamase enzyme in action: crystal structures of the monozinc carbapenemase CphA and its complex with biapenem. J. Mol. Biol., 2005, 345(4), 785-795.
[http://dx.doi.org/10.1016/j.jmb.2004.10.070] [PMID: 15588826]
[46]
Lisa, M.N.; Palacios, A.R.; Aitha, M.; González, M.M.; Moreno, D.M.; Crowder, M.W.; Bonomo, R.A.; Spencer, J.; Tierney, D.L.; Llarrull, L.I.; Vila, A.J. A general reaction mechanism for carbapenem hydrolysis by mononuclear and binuclear metallo-β-lactamases. Nat. Commun., 2017, 8(1), 538.
[http://dx.doi.org/10.1038/s41467-017-00601-9] [PMID: 28912448]
[47]
Olsen, I. New promising β-lactamase inhibitors for clinical use. Eur. J. Clin. Microbiol. Infect. Dis., 2015, 34(7), 1303-1308.
[http://dx.doi.org/10.1007/s10096-015-2375-0] [PMID: 25864193]
[48]
Drawz, S.M.; Bonomo, R.A. Three decades of beta-lactamase inhibitors. Clin. Microbiol. Rev., 2010, 23(1), 160-201.
[http://dx.doi.org/10.1128/CMR.00037-09] [PMID: 20065329]
[49]
Walter, M.W.; Felici, A.; Galleni, M.; Soto, R.P.; Adlington, R.M.; Baldwin, J.E.; Frère, J-M.; Gololobov, M.; Schofield, C.J. Trifluoromethyl alcohol and ketone inhibitors of metallo-β- lactamases. Bioorg. Med. Chem. Lett., 1996, 6(20), 2455-2458.
[http://dx.doi.org/10.1016/0960-894X(96)00453-2]
[50]
Rotondo, C.M.; Wright, G.D. Inhibitors of metallo-β-lactamases. Curr. Opin. Microbiol., 2017, 39, 96-105.
[http://dx.doi.org/10.1016/j.mib.2017.10.026] [PMID: 29154026]
[51]
McGeary, R.P.; Tan, D.T.; Schenk, G. Progress toward inhibitors of metallo-β-lactamases. Future Med. Chem., 2017, 9(7), 673-691.
[http://dx.doi.org/10.4155/fmc-2017-0007] [PMID: 28504895]
[52]
Chen, A.Y.; Thomas, P.W.; Stewart, A.C.; Bergstrom, A.; Cheng, Z.; Miller, C.; Bethel, C.R.; Marshall, S.H.; Credille, C.V.; Riley, C.L.; Page, R.C.; Bonomo, R.A.; Crowder, M.W.; Tierney, D.L.; Fast, W.; Cohen, S.M. Dipicolinic Acid Derivatives as Inhibitors of New Delhi Metallo-β-lactamase-1. J. Med. Chem., 2017, 60(17), 7267-7283.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00407] [PMID: 28809565]
[53]
King, A.M.; Reid-Yu, S.A.; Wang, W.; King, D.T.; De Pascale, G.; Strynadka, N.C.; Walsh, T.R.; Coombes, B.K.; Wright, G.D. Aspergillomarasmine A overcomes metallo-β-lactamase antibiotic resistance. Nature, 2014, 510(7506), 503-506.
[http://dx.doi.org/10.1038/nature13445] [PMID: 24965651]
[54]
Zhang, J.; Wang, S.; Wei, Q.; Guo, Q.; Bai, Y.; Yang, S.; Song, F.; Zhang, L.; Lei, X. Synthesis and biological evaluation of Aspergillomarasmine A derivatives as novel NDM-1 inhibitor to overcome antibiotics resistance. Bioorg. Med. Chem., 2017, 25(19), 5133-5141.
[http://dx.doi.org/10.1016/j.bmc.2017.07.025] [PMID: 28784300]
[55]
Chang, Y.N.; Xiang, Y.; Zhang, Y.J.; Wang, W.M.; Chen, C.; Oelschlaeger, P.; Yang, K.W. Carbamylmethyl Mercaptoacetate Thioether: A Novel scaffold for the development of L1 Metallo-β-lactamase Inhibitors. ACS Med. Chem. Lett., 2017, 8(5), 527-532.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00058] [PMID: 28523105]
[56]
Xiang, Y.; Chang, Y.N.; Ge, Y.; Kang, J.S.; Zhang, Y.L.; Liu, X.L.; Oelschlaeger, P.; Yang, K.W. Azolylthioacetamides as a potent scaffold for the development of metallo-β-lactamase inhibitors. Bioorg. Med. Chem. Lett., 2017, 27(23), 5225-5229.
[http://dx.doi.org/10.1016/j.bmcl.2017.10.038] [PMID: 29122480]
[57]
Shin, W.S.; Bergstrom, A.; Bonomo, R.A.; Crowder, M.W.; Muthyala, R.; Sham, Y.Y. Discovery of 1-Hydroxypyridine-2(1H)-thione-6-carboxylic acid as a first-in-class low-cytotoxic nanomolar metallo β-lactamase inhibitor. ChemMedChem, 2017, 12(11), 845-849.
[http://dx.doi.org/10.1002/cmdc.201700182] [PMID: 28482143]
[58]
Skagseth, S.; Akhter, S.; Paulsen, M.H.; Muhammad, Z.; Lauksund, S.; Samuelsen, Ø.; Leiros, H.S.; Bayer, A. Metallo-β-lactamase inhibitors by bioisosteric replacement: Preparation, activity and binding. Eur. J. Med. Chem., 2017, 135, 159-173.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.035] [PMID: 28445786]
[59]
Cahill, S.T.; Cain, R.; Wang, D.Y.; Lohans, C.T.; Wareham, D.W.; Oswin, H.P.; Mohammed, J.; Spencer, J.; Fishwick, C.W.; McDonough, M.A.; Schofield, C.J.; Brem, J. Cyclic boronates inhibit all classes of β-lactamases. Antimicrob. Agents Chemother., 2017, 61(4), e02260-e16.
[http://dx.doi.org/10.1128/AAC.02260-16] [PMID: 28115348]
[60]
McGeary, R.P.; Tan, D.T.C.; Selleck, C.; Monteiro Pedroso, M.; Sidjabat, H.E.; Schenk, G. Structure-activity relationship study and optimisation of 2-aminopyrrole-1-benzyl-4,5-diphenyl-1H-pyrrole-3-carbonitrile as a broad spectrum metallo-β-lactamase inhibitor. Eur. J. Med. Chem., 2017, 137, 351-364.
[http://dx.doi.org/10.1016/j.ejmech.2017.05.061] [PMID: 28614759]
[61]
Miller, C.G.; Kukral, A.M.; Miller, J.L.; Movva, N.R. pepM is an essential gene in Salmonella typhimurium. J. Bacteriol., 1989, 171(9), 5215-5217.
[http://dx.doi.org/10.1128/jb.171.9.5215-5217.1989] [PMID: 2670909]
[62]
Chang, S.Y.; McGary, E.C.; Chang, S. Methionine aminopeptidase gene of Escherichia coli is essential for cell growth. J. Bacteriol., 1989, 171(7), 4071-4072.
[http://dx.doi.org/10.1128/jb.171.7.4071-4072.1989] [PMID: 2544569]
[63]
Walker, K.W.; Bradshaw, R.A. Yeast methionine aminopeptidase I can utilize either Zn2+ or Co2+ as a cofactor: a case of mistaken identity? Protein Sci., 1998, 7(12), 2684-2687.
[http://dx.doi.org/10.1002/pro.5560071224] [PMID: 9865965]
[64]
D’souza, V.M.; Holz, R.C. The methionyl aminopeptidase from Escherichia coli can function as an iron(II) enzyme. Biochemistry, 1999, 38(34), 11079-11085.
[http://dx.doi.org/10.1021/bi990872h] [PMID: 10460163]
[65]
Ye, Q-Z.; Xie, S-X.; Huang, M.; Huang, W-J.; Lu, J-P.; Ma, Z-Q. Metalloform-selective inhibitors of Escherichia coli methionine aminopeptidase and X-ray structure of a Mn(II)-form enzyme complexed with an inhibitor. J. Am. Chem. Soc., 2004, 126(43), 13940-13941.
[http://dx.doi.org/10.1021/ja045864p] [PMID: 15506752]
[66]
Huang, Q-Q.; Huang, M.; Nan, F-J.; Ye, Q-Z. Metalloform-selective inhibition: synthesis and structure-activity analysis of Mn(II)-form-selective inhibitors of Escherichia coli methionine aminopeptidase. Bioorg. Med. Chem. Lett., 2005, 15(24), 5386-5391.
[http://dx.doi.org/10.1016/j.bmcl.2005.09.019] [PMID: 16219464]
[67]
Xie, S.X.; Huang, W.J.; Ma, Z.Q.; Huang, M.; Hanzlik, R.P.; Ye, Q.Z. Structural analysis of metalloform-selective inhibition of methionine aminopeptidase. Acta Crystallogr. D Biol. Crystallogr., 2006, 62(Pt 4), 425-432.
[http://dx.doi.org/10.1107/S0907444906003878] [PMID: 16552144]
[68]
Huang, M.; Xie, S-X.; Ma, Z-Q.; Huang, Q-Q.; Nan, F-J.; Ye, Q-Z. Inhibition of monometalated methionine aminopeptidase: inhibitor discovery and crystallographic analysis. J. Med. Chem., 2007, 50(23), 5735-5742.
[http://dx.doi.org/10.1021/jm700930k] [PMID: 17948983]
[69]
Vedantham, P.; Guerra, J.M.; Schoenen, F.; Huang, M.; Gor, P.J.; Georg, G.I.; Wang, J.L.; Neuenswander, B.; Lushington, G.H.; Mitscher, L.A.; Ye, Q-Z.; Hanson, P.R. Ionic immobilization, diversification, and release: application to the generation of a library of methionine aminopeptidase inhibitors. J. Comb. Chem., 2008, 10(2), 185-194.
[http://dx.doi.org/10.1021/cc700085c] [PMID: 18163595]
[70]
Chai, S.C.; Wang, W-L.; Ye, Q-Z.F.E.F.E. (II) is the native cofactor for Escherichia coli methionine aminopeptidase. J. Biol. Chem., 2008, 283(40), 26879-26885.
[http://dx.doi.org/10.1074/jbc.M804345200] [PMID: 18669631]
[71]
Lu, J-P.; Chai, S.C.; Ye, Q-Z. Catalysis and inhibition of Mycobacterium tuberculosis methionine aminopeptidase. J. Med. Chem., 2010, 53(3), 1329-1337.
[http://dx.doi.org/10.1021/jm901624n] [PMID: 20038112]
[72]
Lu, J-P.; Ye, Q-Z. Expression and characterization of Mycobacterium tuberculosis methionine aminopeptidase type 1a. Bioorg. Med. Chem. Lett., 2010, 20(9), 2776-2779.
[http://dx.doi.org/10.1016/j.bmcl.2010.03.067] [PMID: 20363127]
[73]
Yuan, H.; Chai, S.C.; Lam, C.K.; Howard, X.H.; Ye, Q-Z. Two methionine aminopeptidases from Acinetobacter baumannii are functional enzymes. Bioorg. Med. Chem. Lett., 2011, 21(11), 3395-3398.
[http://dx.doi.org/10.1016/j.bmcl.2011.03.116] [PMID: 21524572]
[74]
Wang, W-L.; Chai, S.C.; Ye, Q-Z. Synthesis and biological evaluation of salicylate-based compounds as a novel class of methionine aminopeptidase inhibitors. Bioorg. Med. Chem. Lett., 2011, 21(23), 7151-7154.
[http://dx.doi.org/10.1016/j.bmcl.2011.09.080] [PMID: 22001086]
[75]
Wangtrakuldee, P.; Byrd, M.S.; Campos, C.G.; Henderson, M.W.; Zhang, Z.; Clare, M.; Masoudi, A.; Myler, P.J.; Horn, J.R.; Cotter, P.A.; Hagen, T.J. Discovery of inhibitors of Burkholderia pseudomallei methionine aminopeptidase with antibacterial activity. ACS Med. Chem. Lett., 2013, 4(8), 699-703.
[http://dx.doi.org/10.1021/ml400034m] [PMID: 24376907]
[76]
Huguet, F.; Melet, A.; Alves de Sousa, R.; Lieutaud, A.; Chevalier, J.; Maigre, L.; Deschamps, P.; Tomas, A.; Leulliot, N.; Pages, J-M.; Artaud, I. Hydroxamic acids as potent inhibitors of Fe(II) and Mn(II) E. coli methionine aminopeptidase: biological activities and X-ray structures of oxazole hydroxamate-EcMetAP-Mn complexes. ChemMedChem, 2012, 7(6), 1020-1030.
[http://dx.doi.org/10.1002/cmdc.201200076] [PMID: 22489069]
[77]
Schiffmann, R.; Heine, A.; Klebe, G.; Klein, C.D.P. Metal ions as cofactors for the binding of inhibitors to methionine aminopeptidase: a critical view of the relevance of in vitro metalloenzyme assays. Angew. Chem. Int. Ed. Engl., 2005, 44(23), 3620-3623.
[http://dx.doi.org/10.1002/anie.200500592] [PMID: 15880695]
[78]
Schiffmann, R.; Neugebauer, A.; Klein, C.D. Metal-mediated inhibition of Escherichia coli methionine aminopeptidase: structure-activity relationships and development of a novel scoring function for metal-ligand interactions. J. Med. Chem., 2006, 49(2), 511-522.
[http://dx.doi.org/10.1021/jm050476z] [PMID: 16420038]
[79]
Altmeyer, M.A.; Marschner, A.; Schiffmann, R.; Klein, C.D. Subtype-selectivity of metal-dependent methionine aminopeptidase inhibitors. Bioorg. Med. Chem. Lett., 2010, 20(14), 4038-4044.
[http://dx.doi.org/10.1016/j.bmcl.2010.05.093] [PMID: 20621724]
[80]
Chen, X.; Chong, C.R.; Shi, L.; Yoshimoto, T.; Sullivan, D.J., Jr; Liu, J.O. Inhibitors of Plasmodium falciparum methionine aminopeptidase 1b possess antimalarial activity. Proc. Natl. Acad. Sci. USA, 2006, 103(39), 14548-14553.
[http://dx.doi.org/10.1073/pnas.0604101103] [PMID: 16983082]
[81]
Kishor, C.; Arya, T.; Reddi, R.; Chen, X.; Saddanapu, V.; Marapaka, A.K.; Gumpena, R.; Ma, D.; Liu, J.O.; Addlagatta, A. Identification, biochemical and structural evaluation of species-specific inhibitors against type I methionine aminopeptidases. J. Med. Chem., 2013, 56(13), 5295-5305.
[http://dx.doi.org/10.1021/jm400395p] [PMID: 23767698]
[82]
Oefner, C.; Douangamath, A.; D’Arcy, A.; Häfeli, S.; Mareque, D.; Mac Sweeney, A.; Padilla, J.; Pierau, S.; Schulz, H.; Thormann, M.; Wadman, S.; Dale, G.E. The 1.15A crystal structure of the Staphylococcus aureus methionyl-aminopeptidase and complexes with triazole based inhibitors. J. Mol. Biol., 2003, 332(1), 13-21.
[http://dx.doi.org/10.1016/S0022-2836(03)00862-3] [PMID: 12946343]
[83]
Marino, J.P., Jr; Fisher, P.W.; Hofmann, G.A.; Kirkpatrick, R.B.; Janson, C.A.; Johnson, R.K.; Ma, C.; Mattern, M.; Meek, T.D.; Ryan, M.D.; Schulz, C.; Smith, W.W.; Tew, D.G.; Tomazek, T.A., Jr; Veber, D.F.; Xiong, W.C.; Yamamoto, Y.; Yamashita, K.; Yang, G.; Thompson, S.K. Highly potent inhibitors of methionine aminopeptidase-2 based on a 1,2,4-triazole pharmacophore. J. Med. Chem., 2007, 50(16), 3777-3785.
[http://dx.doi.org/10.1021/jm061182w] [PMID: 17636946]
[84]
Huang, M.; Xie, S-X.; Ma, Z-Q.; Hanzlik, R.P.; Ye, Q-Z. Metal mediated inhibition of methionine aminopeptidase by quinolinyl sulfonamides. Biochem. Biophys. Res. Commun., 2006, 339(2), 506-513.
[http://dx.doi.org/10.1016/j.bbrc.2005.11.042] [PMID: 16300729]
[85]
Luo, Q-L.; Li, J-Y.; Liu, Z-Y.; Chen, L-L.; Li, J.; Qian, Z.; Shen, Q.; Li, Y.; Lushington, G.H.; Ye, Q-Z.; Nan, F-J. Discovery and structural modification of inhibitors of methionine aminopeptidases from Escherichia coli and Saccharomyces cerevisiae. J. Med. Chem., 2003, 46(13), 2631-2640.
[http://dx.doi.org/10.1021/jm0300532] [PMID: 12801227]
[86]
Li, J-Y.; Chen, L-L.; Cui, Y-M.; Luo, Q-L.; Gu, M.; Nan, F-J.; Ye, Q-Z. Characterization of full length and truncated type I human methionine aminopeptidases expressed from Escherichia coli. Biochemistry, 2004, 43(24), 7892-7898.
[http://dx.doi.org/10.1021/bi0360859] [PMID: 15196033]
[87]
Luo, Q-L.; Li, J-Y.; Liu, Z-Y.; Chen, L-L.; Li, J.; Ye, Q-Z.; Nan, F-J. Inhibitors of type I MetAPs containing pyridine-2-carboxylic acid thiazol-2-ylamide. Part 1: SAR studies on the determination of the key scaffold. Bioorg. Med. Chem. Lett., 2005, 15(3), 635-638.
[http://dx.doi.org/10.1016/j.bmcl.2004.11.034] [PMID: 15664828]
[88]
Luo, Q-L.; Li, J-Y.; Chen, L-L.; Li, J.; Ye, Q-Z.; Nan, F-J. Inhibitors of type I MetAPs containing pyridine-2-carboxylic acid thiazol-2-ylamide. Part 2: SAR studies on the pyridine ring 3-substituent. Bioorg. Med. Chem. Lett., 2005, 15(3), 639-644.
[http://dx.doi.org/10.1016/j.bmcl.2004.11.035] [PMID: 15664829]
[89]
Cui, Y-M.; Huang, Q-Q.; Xu, J.; Chen, L-L.; Li, J-Y.; Ye, Q-Z.; Li, J.; Nan, F-J. Identification of potent type I MetAP inhibitors by simple bioisosteric replacement. Part 1: Synthesis and preliminary SAR studies of thiazole-4-carboxylic acid thiazol-2-ylamide derivatives. Bioorg. Med. Chem. Lett., 2005, 15(16), 3732-3736.
[http://dx.doi.org/10.1016/j.bmcl.2005.05.055] [PMID: 15993057]
[90]
Cui, Y-M.; Huang, Q-Q.; Xu, J.; Chen, L-L.; Li, J-Y.; Ye, Q-Z.; Li, J.; Nan, F-J. Identification of potent type I MetAPs inhibitors by simple bioisosteric replacement. Part 2: SAR studies of 5-heteroalkyl substituted TCAT derivatives. Bioorg. Med. Chem. Lett., 2005, 15(18), 4130-4135.
[http://dx.doi.org/10.1016/j.bmcl.2005.06.005] [PMID: 16005224]
[91]
Wang, W-L.; Chai, S.C.; Huang, M.; He, H-Z.; Hurley, T.D.; Ye, Q-Z. Discovery of inhibitors of Escherichia coli methionine aminopeptidase with the Fe(II)-form selectivity and antibacterial activity. J. Med. Chem., 2008, 51(19), 6110-6120.
[http://dx.doi.org/10.1021/jm8005788] [PMID: 18785729]
[92]
Keding, S.J.; Dales, N.A.; Lim, S.; Beaulieu, D.; Rich, D.H. Synthesis of (3R)-amino-(2S)-hydroxy amino acids for inhibition of methionine aminopeptidase-1. Synth. Commun., 1998, 28(23), 4463-4470.
[http://dx.doi.org/10.1080/00397919808004481]
[93]
Li, J-Y.; Chen, L-L.; Cui, Y-M.; Luo, Q-L.; Li, J.; Nan, F-J.; Ye, Q-Z. Specificity for inhibitors of metal-substituted methionine aminopeptidase. Biochem. Biophys. Res. Commun., 2003, 307(1), 172-179.
[http://dx.doi.org/10.1016/S0006-291X(03)01144-6] [PMID: 12849997]
[94]
Hu, X.; Zhu, J.; Srivathsan, S.; Pei, D. Peptidyl hydroxamic acids as methionine aminopeptidase inhibitors. Bioorg. Med. Chem. Lett., 2004, 14(1), 77-79.
[http://dx.doi.org/10.1016/j.bmcl.2003.10.031] [PMID: 14684302]
[95]
Mitra, S.; Sheppard, G.; Wang, J.; Bennett, B.; Holz, R.C. Analyzing the binding of Co(II)-specific inhibitors to the methionyl aminopeptidases from Escherichia coli and Pyrococcus furiosus. J. Biol. Inorg. Chem., 2009, 14(4), 573-585.
[http://dx.doi.org/10.1007/s00775-009-0471-2] [PMID: 19198897]
[96]
Evdokimov, A.G.; Pokross, M.; Walter, R.L.; Mekel, M.; Barnett, B.L.; Amburgey, J.; Seibel, W.L.; Soper, S.J.; Djung, J.F.; Fairweather, N.; Diven, C.; Rastogi, V.; Grinius, L.; Klanke, C.; Siehnel, R.; Twinem, T.; Andrews, R.; Curnow, A. Serendipitous discovery of novel bacterial methionine aminopeptidase inhibitors. Proteins, 2007, 66(3), 538-546.
[http://dx.doi.org/10.1002/prot.21207] [PMID: 17120228]
[97]
Lowther, W.T.; Orville, A.M.; Madden, D.T.; Lim, S.; Rich, D.H.; Matthews, B.W. Escherichia coli methionine aminopeptidase: implications of crystallographic analyses of the native, mutant, and inhibited enzymes for the mechanism of catalysis. Biochemistry, 1999, 38(24), 7678-7688.
[http://dx.doi.org/10.1021/bi990684r] [PMID: 10387007]
[98]
Douangamath, A.; Dale, G.E.; D’Arcy, A.; Almstetter, M.; Eckl, R.; Frutos-Hoener, A.; Henkel, B.; Illgen, K.; Nerdinger, S.; Schulz, H.; Mac Sweeney, A.; Thormann, M.; Treml, A.; Pierau, S.; Wadman, S.; Oefner, C. Crystal structures of Staphylococcus aureus methionine aminopeptidase complexed with keto heterocycle and aminoketone inhibitors reveal the formation of a tetrahedral intermediate. J. Med. Chem., 2004, 47(6), 1325-1328.
[http://dx.doi.org/10.1021/jm034188j] [PMID: 14998322]
[99]
Sin, N.; Meng, L.; Wang, M.Q.W.; Wen, J.J.; Bornmann, W.G.; Crews, C.M. The anti-angiogenic agent fumagillin covalently binds and inhibits the methionine aminopeptidase, MetAP-2. Proc. Natl. Acad. Sci. USA, 1997, 94(12), 6099-6103.
[http://dx.doi.org/10.1073/pnas.94.12.6099] [PMID: 9177176]
[100]
Altmeyer, M.; Amtmann, E.; Heyl, C.; Marschner, A.; Scheidig, A.J.; Klein, C.D. Beta-aminoketones as prodrugs for selective irreversible inhibitors of type-1 methionine aminopeptidases. Bioorg. Med. Chem. Lett., 2014, 24(22), 5310-5314.
[http://dx.doi.org/10.1016/j.bmcl.2014.09.047] [PMID: 25293447]
[101]
Wang, W-L.; Chai, S.C.; Ye, Q-Z. Synthesis and structure-function analysis of Fe(II)-form-selective antibacterial inhibitors of Escherichia coli methionine aminopeptidase. Bioorg. Med. Chem. Lett., 2009, 19(4), 1080-1083.
[http://dx.doi.org/10.1016/j.bmcl.2009.01.011] [PMID: 19167218]
[102]
Haldar, M.K.; Scott, M.D.; Sule, N.; Srivastava, D.K.; Mallik, S. Synthesis of barbiturate-based methionine aminopeptidase-1 inhibitors. Bioorg. Med. Chem. Lett., 2008, 18(7), 2373-2376.
[http://dx.doi.org/10.1016/j.bmcl.2008.02.066] [PMID: 18343108]
[103]
Krátký, M.; Vinšová, J.; Novotná, E.; Mandíková, J.; Wsól, V.; Trejtnar, F.; Ulmann, V.; Stolaříková, J.; Fernandes, S.; Bhat, S.; Liu, J.O. Salicylanilide derivatives block Mycobacterium tuberculosis through inhibition of isocitrate lyase and methionine aminopeptidase. Tuberculosis (Edinb.), 2012, 92(5), 434-439.
[http://dx.doi.org/10.1016/j.tube.2012.06.001] [PMID: 22765970]
[104]
Towbin, H.; Bair, K.W.; DeCaprio, J.A.; Eck, M.J.; Kim, S.; Kinder, F.R.; Morollo, A.; Mueller, D.R.; Schindler, P.; Song, H.K.; van Oostrum, J.; Versace, R.W.; Voshol, H.; Wood, J.; Zabludoff, S.; Phillips, P.E. Proteomics-based target identification: bengamides as a new class of methionine aminopeptidase inhibitors. J. Biol. Chem., 2003, 278(52), 52964-52971.
[http://dx.doi.org/10.1074/jbc.M309039200] [PMID: 14534293]
[105]
Lu, J-P.; Yuan, X-H.; Yuan, H.; Wang, W-L.; Wan, B.; Franzblau, S.G.; Ye, Q-Z. Inhibition of Mycobacterium tuberculosis methionine aminopeptidases by bengamide derivatives. ChemMedChem, 2011, 6(6), 1041-1048.
[http://dx.doi.org/10.1002/cmdc.201100003] [PMID: 21465667]
[106]
Young, K.; Silver, L.L.; Bramhill, D.; Cameron, P.; Eveland, S.S.; Raetz, C.R.; Hyland, S.A.; Anderson, M.S. The envA permeability/cell division gene of Escherichia coli encodes the second enzyme of lipid A biosynthesis. UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase. J. Biol. Chem., 1995, 270(51), 30384-30391.
[http://dx.doi.org/10.1074/jbc.270.51.30384] [PMID: 8530464]
[107]
Barb, A.W.; Zhou, P. Mechanism and inhibition of LpxC: an essential zinc-dependent deacetylase of bacterial lipid A synthesis. Curr. Pharm. Biotechnol., 2008, 9(1), 9-15.
[http://dx.doi.org/10.2174/138920108783497668] [PMID: 18289052]
[108]
Boucher, H.W.; Talbot, G.H.; Bradley, J.S.; Edwards, J.E.; Gilbert, D.; Rice, L.B.; Scheld, M.; Spellberg, B.; Bartlett, J. Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin. Infect. Dis., 2009, 48(1), 1-12.
[http://dx.doi.org/10.1086/595011] [PMID: 19035777]
[109]
Zhang, J.; Chan, A.; Lippa, B.; Cross, J.B.; Liu, C.; Yin, N.; Romero, J.A.; Lawrence, J.; Heney, R.; Herradura, P.; Goss, J.; Clark, C.; Abel, C.; Zhang, Y.; Poutsiaka, K.M.; Epie, F.; Conrad, M.; Mahamoon, A.; Nguyen, K.; Chavan, A.; Clark, E.; Li, T.C.; Cheng, R.K.; Wood, M.; Andersen, O.A.; Brooks, M.; Kwong, J.; Barker, J.; Parr, I.B.; Gu, Y.; Ryan, M.D.; Coleman, S.; Metcalf, C.A. III Structure-based discovery of LpxC inhibitors. Bioorg. Med. Chem. Lett., 2017, 27(8), 1670-1680.
[http://dx.doi.org/10.1016/j.bmcl.2017.03.006] [PMID: 28302397]
[110]
Zhang, J.; Zhang, L.; Li, X.; Xu, W. UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase (LpxC) inhibitors: a new class of antibacterial agents. Curr. Med. Chem., 2012, 19(13), 2038-2050.
[http://dx.doi.org/10.2174/092986712800167374] [PMID: 22414079]
[111]
Mansoor, U.F.; Vitharana, D.; Reddy, P.A.; Daubaras, D.L.; McNicholas, P.; Orth, P.; Black, T.; Siddiqui, M.A. Design and synthesis of potent Gram-negative specific LpxC inhibitors. Bioorg. Med. Chem. Lett., 2011, 21(4), 1155-1161.
[http://dx.doi.org/10.1016/j.bmcl.2010.12.111] [PMID: 21273067]
[112]
Jain, R.K.; Gordeev, M.F.; Lewis, J.G. Preparation of pyrrolidinecarboxamide derivatives as antibac-terial agents. W.O. Patent 069,020A2; 069,021A2, 2007.
[113]
Montgomery, J.I.; Brown, M.F.; Reilly, U.; Price, L.M.; Abramite, J.A.; Arcari, J.; Barham, R.; Che, Y.; Chen, J.M.; Chung, S.W.; Collantes, E.M.; Desbonnet, C.; Doroski, M.; Doty, J.; Engtrakul, J.J.; Harris, T.M.; Huband, M.; Knafels, J.D.; Leach, K.L.; Liu, S.; Marfat, A.; McAllister, L.; McElroy, E.; Menard, C.A.; Mitton-Fry, M.; Mullins, L.; Noe, M.C.; O’Donnell, J.; Oliver, R.; Penzien, J.; Plummer, M.; Shanmugasundaram, V.; Thoma, C.; Tomaras, A.P.; Uccello, D.P.; Vaz, A.; Wishka, D.G. Pyridone methylsulfone hydroxamate LpxC inhibitors for the treatment of serious gram-negative infections. J. Med. Chem., 2012, 55(4), 1662-1670.
[http://dx.doi.org/10.1021/jm2014875] [PMID: 22257165]
[114]
Onishi, H.R.; Pelak, B.A.; Gerckens, L.S.; Silver, L.L.; Kahan, F.M.; Chen, M.H.; Patchett, A.A.; Galloway, S.M.; Hyland, S.A.; Anderson, M.S.; Raetz, C.R. Antibacterial agents that inhibit lipid A biosynthesis. Science, 1996, 274(5289), 980-982.
[http://dx.doi.org/10.1126/science.274.5289.980] [PMID: 8875939]
[115]
Clements, J.M.; Coignard, F.; Johnson, I.; Chandler, S.; Palan, S.; Waller, A.; Wijkmans, J.; Hunter, M.G. Antibacterial activities and characterization of novel inhibitors of LpxC. Antimicrob. Agents Chemother., 2002, 46(6), 1793-1799.
[http://dx.doi.org/10.1128/AAC.46.6.1793-1799.2002] [PMID: 12019092]
[116]
Kurasaki, H.; Tsuda, K.; Shinoyama, M.; Takaya, N.; Yamaguchi, Y.; Kishii, R.; Iwase, K.; Ando, N.; Nomura, M.; Kohno, Y.; Lpx, C.; Lpx, C. Inhibitors: design, synthesis, and biological evaluation of oxazolidinones as gram-negative antibacterial agents. ACS Med. Chem. Lett., 2016, 7(6), 623-628.
[http://dx.doi.org/10.1021/acsmedchemlett.6b00057] [PMID: 27326338]
[117]
Murphy-Benenato, K.E.; Olivier, N.; Choy, A.; Ross, P.L.; Miller, M.D.; Thresher, J.; Gao, N.; Hale, M.R. Synthesis, Structure, and SAR of Tetrahydropyran-Based LpxC Inhibitors. ACS Med. Chem. Lett., 2014, 5(11), 1213-1218.
[http://dx.doi.org/10.1021/ml500210x] [PMID: 25408833]
[118]
Gao, N.; McLeod, S.M.; Hajec, L.; Olivier, N.B.; Lahiri, S.D.; Bryan Prince, D.; Thresher, J.; Ross, P.L.; Whiteaker, J.D.; Doig, P.; Li, A.H.; Hill, P.J.; Cornebise, M.; Reck, F.; Hale, M.R. Overexpression of Pseudomonas aeruginosa LpxC with its inhibitors in an acrB-deficient Escherichia coli strain. Protein Expr. Purif., 2014, 104, 57-64.
[http://dx.doi.org/10.1016/j.pep.2014.09.006] [PMID: 25240855]
[119]
Lee, C.J.; Liang, X.; Gopalaswamy, R.; Najeeb, J.; Ark, E.D.; Toone, E.J.; Zhou, P. Structural basis of the promiscuous inhibitor susceptibility of Escherichia coli LpxC. ACS Chem. Biol., 2014, 9(1), 237-246.
[http://dx.doi.org/10.1021/cb400067g] [PMID: 24117400]
[120]
Liang, X.; Lee, C.J.; Zhao, J.; Toone, E.J.; Zhou, P. Synthesis, structure, and antibiotic activity of aryl-substituted LpxC inhibitors. J. Med. Chem., 2013, 56(17), 6954-6966.
[http://dx.doi.org/10.1021/jm4007774] [PMID: 23914798]
[121]
Hale, M.R.; Hill, P.; Lahiri, S.; Miller, M.D.; Ross, P.; Alm, R.; Gao, N.; Kutschke, A.; Johnstone, M.; Prince, B.; Thresher, J.; Yang, W. Exploring the UDP pocket of LpxC through amino acid analogs. Bioorg. Med. Chem. Lett., 2013, 23(8), 2362-2367.
[http://dx.doi.org/10.1016/j.bmcl.2013.02.055] [PMID: 23499237]
[122]
Caughlan, R.E.; Jones, A.K.; Delucia, A.M.; Woods, A.L.; Xie, L.; Ma, B.; Barnes, S.W.; Walker, J.R.; Sprague, E.R.; Yang, X.; Dean, C.R. Mechanisms decreasing in vitro susceptibility to the LpxC inhibitor CHIR-090 in the gram-negative pathogen Pseudomonas aeruginosa. Antimicrob. Agents Chemother., 2012, 56(1), 17-27.
[http://dx.doi.org/10.1128/AAC.05417-11] [PMID: 22024823]
[123]
Liang, X.; Lee, C.J.; Chen, X.; Chung, H.S.; Zeng, D.; Raetz, C.R.; Li, Y.; Zhou, P.; Toone, E.J. Syntheses, structures and antibiotic activities of LpxC inhibitors based on the diacetylene scaffold. Bioorg. Med. Chem., 2011, 19(2), 852-860.
[http://dx.doi.org/10.1016/j.bmc.2010.12.017] [PMID: 21194954]
[124]
Cole, K.E.; Gattis, S.G.; Angell, H.D.; Fierke, C.A.; Christianson, D.W. Structure of the metal-dependent deacetylase LpxC from Yersinia enterocolitica complexed with the potent inhibitor CHIR-090. Biochemistry, 2011, 50(2), 258-265.
[http://dx.doi.org/10.1021/bi101622a] [PMID: 21171638]
[125]
Barb, A.W.; Zhou, P. Mechanism and inhibition of LpxC: an essential zinc-dependent deacetylase of bacterial lipid A synthesis. Curr. Pharm. Biotechnol., 2008, 9(1), 9-15.
[http://dx.doi.org/10.2174/138920108783497668] [PMID: 18289052]
[126]
Barb, A.W.; Jiang, L.; Raetz, C.R.; Zhou, P. Structure of the deacetylase LpxC bound to the antibiotic CHIR-090: Time-dependent inhibition and specificity in ligand binding. Proc. Natl. Acad. Sci. USA, 2007, 104(47), 18433-18438.
[http://dx.doi.org/10.1073/pnas.0709412104] [PMID: 18025458]
[127]
Barb, A.W.; McClerren, A.L.; Snehelatha, K.; Reynolds, C.M.; Zhou, P.; Raetz, C.R. Inhibition of lipid A biosynthesis as the primary mechanism of CHIR-090 antibiotic activity in Escherichia coli. Biochemistry, 2007, 46(12), 3793-3802.
[http://dx.doi.org/10.1021/bi6025165] [PMID: 17335290]
[128]
McClerren, A.L.; Endsley, S.; Bowman, J.L.; Andersen, N.H.; Guan, Z.; Rudolph, J.; Raetz, C.R. A slow, tight-binding inhibitor of the zinc-dependent deacetylase LpxC of lipid A biosynthesis with antibiotic activity comparable to ciprofloxacin. Biochemistry, 2005, 44(50), 16574-16583.
[http://dx.doi.org/10.1021/bi0518186] [PMID: 16342948]
[129]
Piizzi, G.; Parker, D.T.; Peng, Y.; Dobler, M.; Patnaik, A.; Wattanasin, S.; Liu, E.; Lenoir, F.; Nunez, J.; Kerrigan, J.; McKenney, D.; Osborne, C.; Yu, D.; Lanieri, L.; Bojkovic, J.; Dzink-Fox, J.; Lilly, M.D.; Sprague, E.R.; Lu, Y.; Wang, H.; Ranjitkar, S.; Xie, L.; Wang, B.; Glick, M.; Hamann, L.G.; Tommasi, R.; Yang, X.; Dean, C.R. Design, synthesis, and properties of a potent inhibitor of Pseudomonas aeruginosa deacetylase LpxC. J. Med. Chem., 2017, 60(12), 5002-5014.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00377] [PMID: 28549219]
[130]
Jackman, J.E.; Fierke, C.A.; Tumey, L.N.; Pirrung, M.; Uchiyama, T.; Tahir, S.H.; Hindsgaul, O.; Raetz, C.R. Antibacterial agents that target lipid A biosynthesis in gram-negative bacteria. Inhibition of diverse UDP-3-O-(r-3-hydroxymyristoyl)-n-acetylglucosamine deacetylases by substrate analogs containing zinc binding motifs. J. Biol. Chem., 2000, 275(15), 11002-11009.
[http://dx.doi.org/10.1074/jbc.275.15.11002] [PMID: 10753902]
[131]
Pirrung, M.C.; Tumey, L.N.; Raetz, C.R.; Jackman, J.E.; Snehalatha, K.; McClerren, A.L.; Fierke, C.A.; Gantt, S.L.; Rusche, K.M. Inhibition of the antibacterial target UDP-(3-O-acyl)-N-acetylglucosamine deacetylase (LpxC): isoxazoline zinc amidase inhibitors bearing diverse metal binding groups. J. Med. Chem., 2002, 45(19), 4359-4370.
[http://dx.doi.org/10.1021/jm020183v] [PMID: 12213077]
[132]
Cuny, G.D. A new class of UDP-3-O-(R-3-hydroxymyristol)-N-acetylglucosamine deacetylase (LpxC) inhibitors for the treatment of Gram-negative infections: PCT application WO 2008027466. Expert Opin. Ther. Pat., 2009, 19(6), 893-899.
[http://dx.doi.org/10.1517/13543770902766829] [PMID: 19473108]
[133]
Whittington, D.A.; Rusche, K.M.; Shin, H.; Fierke, C.A.; Christianson, D.W. Crystal structure of LpxC, a zinc-dependent deacetylase essential for endotoxin biosynthesis. Proc. Natl. Acad. Sci. USA, 2003, 100(14), 8146-8150.
[http://dx.doi.org/10.1073/pnas.1432990100] [PMID: 12819349]
[134]
Shin, H.; Gennadios, H.A.; Whittington, D.A.; Christianson, D.W. Amphipathic benzoic acid derivatives: synthesis and binding in the hydrophobic tunnel of the zinc deacetylase LpxC. Bioorg. Med. Chem., 2007, 15(7), 2617-2623.
[http://dx.doi.org/10.1016/j.bmc.2007.01.044] [PMID: 17296300]
[135]
Buetow, L.; Dawson, A.; Hunter, W.N. The nucleotide-binding site of Aquifex aeolicus LpxC. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun., 2006, 62(Pt 11), 1082-1086.
[http://dx.doi.org/10.1107/S1744309106041893] [PMID: 17077484]
[136]
Barb, A.W.; Leavy, T.M.; Robins, L.I.; Guan, Z.; Six, D.A.; Zhou, P.; Hangauer, M.J.; Bertozzi, C.R.; Raetz, C.R. Uridine-based inhibitors as new leads for antibiotics targeting Escherichia coli LpxC. Biochemistry, 2009, 48(14), 3068-3077.
[http://dx.doi.org/10.1021/bi900167q] [PMID: 19256534]
[137]
Cohen, S.M.; Puerta, D.T.; Perez, C. Inhibitors of LpxC. W.O. Patent 0,852,380,611, 2015.
[138]
Hoekstra, W.J. Yates, Christopher M.; Rafferty, Stephen W. Preparation of naphthyridine and isoquinoline derivatives as metalloenzyme inhibitors. W.O. Patent 1,170,900,731, 2014.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 26
ISSUE: 15
Year: 2019
Page: [2690 - 2714]
Pages: 25
DOI: 10.2174/0929867325666180403154018
Price: $58

Article Metrics

PDF: 32
HTML: 3