Phase Transitions in Nanocomposites Obtained by Introducing KNO3 into the Pores of Nanosized Al2O3 Films

Author(s): Alexey Y. Milinskiy*, Sergey V. Baryshnikov.

Journal Name: Nanoscience & Nanotechnology-Asia

Volume 9 , Issue 1 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Introduction: Comparative studies of phase transitions in nanocomposites on the base of KNO3 and Al2O3 films with pores of 240 and 45 nm were carried out.

Experiment: The temperature dependences of the linear dielectric constant and the amplitude of the third harmonic were measured. The measurements were carried out in the heating and cooling regime in the range from room temperature to 463 K. Anomalies, corresponding to structural phase transitions, were observed.

Results & Conclusion: A considerable expansion of the temperature range of the potassium nitrate ferroelectric phase III was observed upon cooling, which increased with decreasing pore size of the Al2O3 films. The structural transition upon heating from phase II to phase I for nanocomposites with a pore size of 45 nm shifted relative to the transition in bulk KNO3 by 2 K toward high temperatures, whereas the temperature change for the sample in the Al2O3 film with pores of 240 nm did not occur.

Keywords: Ferroelectricity, nanocomposite, size effects, permittivity, third-order harmonic generation, structural phase transition, Potassium nitrate.

Fokin, A.V.; Kumzerov, Yu.A.; Okuneva, N.M.; Naberezhnov, A.A.; Vakhrushev, S.B.; Golosovsky, I.V.; Kurbakov, A.I. Temperature evolution of sodium nitrite structure in a restricted geometry. Phys. Rev. Lett., 2002, 89(17), 175503-175504.
Vakhrushev, S.B.; Kumzerov, Yu.A.; Fokin, A.; Naberezhnov, A.A.; Zalar, B.; Lebar, A.; Blinc, R. 23Na spin-lattice relaxation of sodium nitrite in confined geometry. Phys. Rev. B, 2004, 70(13), 132102-132103.
Yadlovker, D.; Berger, S. Uniform orientation and size of ferroelectric domains. Phys. Rev. B, 2005, 71(18), 184112-184116.
Baryshnikov, S.V.; Charnaya, E.V.; Tien, C.; Michel, D.; Andriyanova, N.P.; Stukova, E.V. Dielectric parameters of mesoporous sieves filled with NaNO2. Phys. Solid State, 2007, 49(4), 791-795.
Martin, Ch.R. Nanomaterials: A membrane-based synthetic approach. Science, 1994, 266(5193), 1961-1966.
Steinhart, M.; Liang, Ch.; Lynn, G.W.; Gsele, U.; Dai, S. Direct synthesis of mesoporous carbon microwires and nanowires. Chem. Mater., 2007, 19(10), 2383-2385.
Rogazinskaya, O.V.; Milovidova, S.D.; Sidorkin, A.S.; Chernyshev, V.V.; Babicheva, N.G. Dielectric properties of porous aluminum and silicon oxides with inclusions of triglycine sulfate and its modified analogs. Phys. Solid State, 2009, 51(7), 1518-1520.
Baryshnikov, S.V.; Stukova, E.V.; Milinskiy, A.Yu.; Charnaya, E.V.; Tien, C. Ferroelectricity in Rochelle salt nanoparticles confined to porous alumina. Ferroelectrics, 2010, 396(1), 3-9.
Golitsyna, O.M.; Drozhdin, S.N.; Nechaev, V.N.; Viskovatykh, A.V.; Kashkarov, V.M.; Gridnev, A.E.; Chernyshev, V.V. Dielectric properties of porous aluminum and silicon oxides with inclusions of triglycine sulfate and its modified analogs. Phys. Solid State, 2013, 55(3), 529-535.
Tien, C.; Charnaya, E.V.; Lee, M.K.; Baryshnikov, S.V. Ferroelectricity and gradual melting in NaNO2 particles confined within porous alumina. Phys. Status Solidi., 2009, 246(10), 2346-2351.
Milinskii, A.Yu.; Baryshnikov, S.V.; Antonov, A.A. Phase transitions of SC(NH2)2 ferroelectrics in Al2O3-based nanoporous matrices. Phys. Solid State, 2017, 59(9), 1783-1788.
Poprawski, R.; Rysiakiewicz-Pasek, E.; Sieradzki, A.; Cizman, A.; Polanska, J. Ferroelectric phase transitions in KNO3 embedded into porous glasses. J. Non-Cryst. Solids, 2007, 353(47), 4457-4461.
Baryshnikov, S.V.; Charnaya, E.V.; Milinskiy, A.Yu.; Shatskaya, Yu.A.; Tien, C.; Michel, D. Stabilization of ferroelectricity in KNO3 embedded into MCM-41 molecular sieves. Physica B, 2010, 405(16), 3299-3302.
Baryshnikov, S.V.; Charnaya, E.V.; Milinskii, A.Yu.; Shatskaya, Yu.A.; Michel, D. Dielectric and calorimetric investigations of KNO3 in pores of nanoporous silica matrices MCM-41. Phys. Solid State, 2012, 54(3), 636-641.
Baryshnikov, S.V.; Charnaya, E.V.; Milinskiy, A.Yu.; Stukova, E.V.; Tien, C.; Michel, D. Phase transitions in K1-xNaxNO3 embedded into molecular sieves. J. Phys. Cond. Matter, 2009, 21(32), 325902.
Baryshnikov, S.V.; Charnaya, E.V.; Milinskiy, A.Y.; Patrushev, Y.V. Phase transitions in KNO3 embedded in MCM-41 films with regular nanopores. Phys. Solid State, 2013, 55(12), 2566-2570.
Chen, A.; Chernow, A. Nature of ferroelectricity in KNO3. Phys. Rev., 1967, 154(2), 493-505.
Deshpande, V.V.; Karkhanavala, M.D.; Rao, U.R.K. Phase transitions in potassium nitrate. J. Therm. Anal. Calorim., 1974, 6(6), 613-621.
Nimmo, J.K.; Lucas, B.W. The crystal structures of γ- and β-KNO3 and the α←γ←β phase transformations. Acta Cryst. B, 1976, 32(7), 1968-1971.
Ikeda, S.; Kominami, H.; Koyama, K.; Wada, I. Nonlinear dielectric constant and ferroelectric to paraelectric phase transition in copolymers of vinylidene fluoride and trifluoroethylene. J. Appl. Phys., 1987, 62(8), 3339-3342.
Zhong, W.L.; Wang, Y.G.; Zhang, P.L.; Qu, B.D. Phenomenological study of the size effect on phase transitions in ferroelectric particles. Phys. Rev. B, 1994, 50(2), 698-703.
Wang, C.L.; Xin, Y.; Wang, X.S.; Zhong, W.L. Size effects of ferroelectric particles described by the transverse Ising model. Phys. Rev. B, 2000, 62(17), 11423-11427.
Charnaya, E.V.; Pirozerskii, A.L.; Tien, C.; Lee, M.K. Ferroelectricity in an array of electrically coupled confined small particles. Ferroelectrics, 2007, 350(1), 75-80.
Morozovska, A.N.; Eliseev, E.A.; Glinchuk, M.D. Ferroelectricity enhancement in confined nanorods: Direct variational method. Phys. Rev. B, 2006, 73(21), 214106-214113.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Page: [128 - 132]
Pages: 5
DOI: 10.2174/2210681208666180403112631
Price: $58

Article Metrics

PDF: 16