Nano-formulations for Diagnostics and Therapeutics of Foot-and-Mouth Disease in Animals

Author(s): T. Anitha Sironmani *.

Journal Name: Nanoscience & Nanotechnology-Asia

Volume 9 , Issue 2 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Foot and mouth disease (FMD) is caused by a virus of the genus Aphthovirus, family Picornaviridae which includes several members of medical importance, Multiple subtypes or antigenic variants within each serotype, which make the vaccine from one serotype does not confer protection against the other serotype.

Methods: Green synthesized silver nanoparticles were functionalized with FMDV antigen /antibody. The functionalized silver nanoparticles were characterized by UV -Visible spectrophotometer, Fluorescence Spectrophotometer etc. Immunomodulation study, efficacy and toxicity tests on the final product were carried out.

Results: The protein profile after immunoprecipitation with AntiFMD antibody analysed on a 12.5% SDS-PAGE which corresponded to the viral proteins. The western blot analysis confirmed the same pattern. When the infected mice were treated with functionalised silver nanoparticles, all mice were recovered from the disease within 12 hrs. The field trial of these nanoformulations showed 100% recovery of the animals with minimum neutralizing antibody without any other physiological problems.

Conclusion: Surface modification of silver nanoparticles can create multifunctional materials with potential applications. Nanoformulations developed by functionalizing whole FMD viral protein /antibody with that of silver nanoparticles, elicite an optimal immuno-protective response and as diagnostic agent against foot and mouth disease causing virus The easy method of preparation of nanoparticle, the flexibility of functionalization techniques, long shelf life without cold chain protection and minimum single low dosage reveals the feasibility of this nanoformulation applications ranging from prophylactic vaccines, diagnostics, therapy for all infections leading to autoimmune diseases.

Keywords: FMD, nano-therapy, silver nanoparticles, nano-formulation, FMDV, immunoprecipitation.

[1]
Salas, E.M.; Saiz, M.; Sobrino, F. Foot-and-mouth disease virus.In Animal viruses: Molecular biology; Mettenleiter, T.C.; Sobrino, F., Eds.; Caister Academic Press: Norfolk, 2008, pp. 1-38.
[2]
Cottral, G.E. Persistence of foot and mouth disease virus in animals, their products and the environment. Bull. Office Int. Des-epizooties, 1969, 71, 549-568.
[3]
Alexandersen, S.; Zhang, Z.; Donaldson, A.I. Aspects of the persistence of foot-and-mouth disease virus in nimals â the carrier problem. Microbes Infect., 2002, 4, 1099-1010.
[4]
Brown, F. Foot-and-mouth disease: Vaccine design, past, present and future. Arch. Virol. Suppl., 1999, 15, 179-188.
[5]
Laporte, J. The structure of foot-and-mouth disease virus protein. J. Gen. Virol., 1969, 4, 631-634.
[6]
Rowlands, D.J.; Sangar, D.V.; Brown, F. Relationship of the antigenic structure of foot-and-mouth disease virus to the process of infection. J. Gen. Virol., 1971, 13, 85-93.
[7]
Bachrach, H.L.; Moore, D.M.; McKercher, P.D.; Polatnick, J. Immune and antibody responses to an isolated capsid protein of foot-and-mouth disease virus. J. Immunol., 1975, 115, 1636-1641.
[8]
Dimarchi, R.; Brooke, G.; Gale, C.; Cracknell, V.; Doll, T.R.; Mowat, N. Protection of cattle against foot-and-mouth disease by a synthetic peptide. Science, 1986, 232, 635-641.
[9]
Saiz, J.C.; Rodriguez, A.; Gonzalez, M.; Alonso, F.; Sobrino, F. Heterotypic lymphoproliferative response in pigs vaccinated with foot-and-mouth disease virus. Involvement of isolated capsid proteins. J. Gen. Virol., 1992, 73, 2601-2607.
[10]
Doel, T.R. FMD vaccines. Virus Res., 2003, 91, 81-89.
[11]
Rodriguez, L.L.; Barrera, J.; Kramer, E.; Lubroth, J.; Brown, F.; Golde, W.T. A synthetic peptide containing the consensus sequence of the G-H loop region of foot-and-mouth disease virus type-O VP1 and a promiscuous T-helper epitope induces peptide-specific antibodies but fails to protect cattle against viral challenge. Vaccine, 2003, 21, 3751-3756.
[12]
Balamurugan, V.; Renji, R.; Saha, S.N.; Reddy, G.R.; Gopalakrishna, S.; Suryanarayana, V.V.S. Protective immune response against foot-and-mouth disease virus challenge in guinea pigs vaccinated with recombinant P1 poly protein expressed in Pichia pastoris. Arch. Virol., 2005, 19, 513-516.
[13]
Pacheco, J.M.; Brum, M.C.; Moraes, M.P.; Golde, W.T.; Grubman, M.J. Rapid protection of cattle from direct challenge with foot-and-mouth disease virus (FMDV) by a single inoculation with an adenovirus-vectored FMDV subunit vaccine. Virology, 2005, 337, 205-209.
[14]
Eble, P.L.; de Bruin, M.G.; Bouma, A.; Kluitenberg, F.V.H.; Dekker, A. Comparison of immune responses after intra-typic heterologous and homologous vaccination against foot-and-mouth disease virus infection in pigs. Vaccine, 2006, 24, 1274-1281.
[15]
Lu, Z.; Bao, H.; Cao, Y.; Sun, P.; Guo, J.; Li, P. et al. Protection of guinea pigs and swine by a recombinant adenovirus expressing O serotype of foot-and-mouth disease virus whole capsid and 3C protease. Vaccine, 2008, 26, 48-53.
[16]
Li, Z.; Yi, Y.; Yin, X.; Zhang, Z.; Liu, J. Expression of foot-and-mouth disease virus capsid proteins in silkworm-baculovirus expression system and its utilization as a subunit vaccine. PLoS One, 2008, 3, 2273.
[17]
Yao, Q.; Qian, P.; Huang, Q.; Cao, Y.; Chen, H. Comparison of immune responses to different foot-and-mouth disease genetically engineered vaccines in guinea pigs. J. Virol. Methods, 2008, 147, 143-150.
[18]
Luis, L.R.; Marvin, J.G. Foot and mouth disease virus vaccines. Vaccine, 2009, 27, 90-94.
[19]
Zhang, L.; Zhang, J.; Chen, H.; Zhou, J.; Ma, L.; Ding, Y.; Liu, Y. Research in advance for FMD Novel Vaccines. Virol. J., 2011, 8, 268.
[20]
Volpina, O.M.; Yarov, A.V.; Zhmak, M.N.; Kuprianova, M.A.; Chepurkin, A.V.; Toloknov, A.S.; Ivanov, V.T. Synthetic vaccine against foot-and-mouth disease based on a palmitoyl derivative of the VP1 protein 135-159 fragment of the A22 virus strain. Vaccine, 1996, 14, 1375-1380.
[21]
Volpina, O.M.; Surovoy, A.Y.; Zhmak, M.N.; Kuprianova, M.A.; Koroev, D.O.; Chepurkin, A.V.; Toloknov, A.S.; Ivanov, V.T. A peptide construct containing B-cell and T-cell epitopes from the foot and mouth disease viral VP1 protein induces efficient antiviral protection. Vaccine, 1999, 17, 577-584.
[22]
Dykman, L.A.; Staroverov, S.A.; Mezhenny, P.V.; Fomin, A.S.; Kozlov, S.V.A.; Volkov, A.A.; Laskavy, V.N.; Shchyogolev, S.Y. Use of a synthetic foot-and-mouth disease virus peptide conjugated to gold nanoparticles for enhancing immunological response. Gold Bull., 2015, 48, 93-101.
[23]
Miller, M.A.; Leggat, G.; Berzofsky, J. Selective expansion of High or Low avidity Cytotoxic T lymphocytes and efficacy for adoptive immunotherapy. Proc. Natl. Acad. Sci. USA, 1996, 93, 4102-4107.
[24]
Fernandes, H.V.; Walter, U.; Bourgeois, C.; McLean, A.; Rocha, B. Response of Naïve and memory CD8+ T cells to antigen stimulation in vivo. Nat. Immunol., 2003, 1, 47-43.
[25]
Scheerlinck, J.P.; Gloster, S.; Gamvrellis, A.; Mottram, P.L.; Plebanski, M. Systemic immune responses in sheep, induced by a novel nano-bead adjuvant. Vaccine, 2006, 24, 1124-1131.
[26]
Manea, F.; Bindoli, C.; Fallarini, S.; Lombardi, G.; Polito, L.; Lay, L.; Bonomi, R.; Mancin, F.; Scrimin, P. Multivalent, saccharide functionalized gold nanoparticles as fully synthetic analogs of type A Neisseria meningitidis antigens. Adv. Mater., 2008, 20, 4348-4352.
[27]
Chen, Y.S.; Hung, Y.C.; Liau, I.; Huang, G.S. Assessment of the in vivo toxicity of gold nanoparticles. Nanoscale Res. Lett., 2009, 4, 858-864.
[28]
Dykman, L.A.; Staroverov, S.A.; Bogatyrev, V.A.; Shchyogolev, S.Y. Adjuvant properties of gold nanoparticles. Nanotechnol. Russ., 2010, 5, 748-761.
[29]
Staroverov, S.A.; Vidyasheva, I.V.; Gabalov, K.P.; Vasilenko, O.A.; Laskavyi, V.N.; Dykman, L.A. Immunostimulatory effect of gold nanoparticles conjugated with transmissible gastroenteritis virus. Bull. Exp. Biol. Med., 2011, 151, 436-439.
[30]
Dykman, L.A.; Khlebtsov, N.G. Gold nanoparticles in biomedical applications: Recent advances and perspectives. Chem. Soc. Rev., 2012, 41, 2256-2282.
[31]
Niikura, K.; Matsunaga, T.; Suzuki, T.; Kobayashi, S.; Yamaguchi, H.; Orba, Y.; Kawaguchi, A.; Hasegawa, H.; Kajino, K.; Ninomiya, T.; Ijiro, K.; Sawa, H. Gold nanoparticles as a vaccine platform: Influence of size and shape on immunological responses in vitro and in vivo. Am. Chem. Soc. Nano, 2013, 7, 3926-3938.
[32]
Stone, J.W.; Thornburg, N.J.; Blum, D.L.; Kuhn, S.J.; Wright, D.W.; Crowe, J.E. Jr. Gold nanorod vaccine for respiratory syncytial virus. Nanotechnology, 2013, 24295102
[33]
Tao, W.; Ziemer, K.S.; Gill, H.S. Gold nanoparticle–M2e conjugate coformulated with CpG induces protective immunity against influenza A virus. Nanomedicine (Lond.), 2014, 9, 237-351.
[34]
Gregory, A.E.; Judy, B.M.; Qazi, O.; Blumentritt, C.A.; Brown, K.A.; Shaw, A.M.; Torres, A.G.; Titball, R.W. A gold nanoparticle-linked glycol conjugate vaccine against Burkholderia mallei. Nanomedicine., 2015, 11, 447-456.
[35]
Gao, W.; Fang, R.H.; Thamphiwatana, S.; Luk, B.T.; Li, J.; Angsantikul, P.; Zhang, Q.; Hu, C.M.; Zhang, L. Modulating antibacterial immunity via bacterial membrane-coated nanoparticles. Nano Lett., 2015, 15, 1403-1409.
[36]
Rimmelzwaan, G.F.; Claas, E.C.; Amerongen, G.V.; Jong, J.C.D.; Osterhaus, A.D. ISCOM vaccine induced protection against a lethal challenge with a human H5N1 influenza virus. Vaccine, 1999, 17, 1355-1358.
[37]
Pearse, M.J.; Drane, D. ISCOMATIX adjuvant for antigen delivery. Adv. Drug Deliv. Rev., 2005, 57, 465-474.
[38]
Christie, R.J.; Findley, D.J.; Dunfee, M.; Hansen, R.D.; Olsen, S.C.; Grainger, D.W. Photopolymerized hydrogel carriers for live vaccine ballistic delivery. Vaccine, 2006, 24, 1462-1469.
[39]
Olsen, S.C.; Christie, R.J.; Grainger, D.W.; Stoffregen, W.S. Immunologic responses of bison to vaccination with Brucella abortus strain RB51: Comparison of parenteral to ballistic delivery via compressed pellets or photopolymerized hydrogels. Vaccine, 2006, 24, 1346-1353.
[40]
Harpin, S.; Hurley, D.J.; Mbikay, M.; Talbot, B.; Elazhary, Y. Vaccination of cattle with a DNA plasmid encoding the bovine viral diarrhoea virus major glycoprotein E2. J. Gen. Virol., 1999, 80, 3137-3144.
[41]
Kersten, G.; Drane, D.; Pearse, M.; Jiskoot, W.; Coulter, A. Novel vaccination strategies, SHE. Kaufmann (Ed.), Wiley-VCH Verlag Gmb H & Co. KGaA: Weinheim, 2004; 173-196.
[42]
Mueller, R.S.; Veir, J.; Fieseler, K.V.; Dow, S.W. Use of immunostimulatory liposome-nucleic acid complexes in allergen-specific immunotherapy of dogs with refractory atopic dermatitis – a pilot study. Vet. Dermatol., 2005, 16, 61-68.
[43]
Gregory, A.E.; Williamson, E.D.; Prior, J.L.; Butcher, W.A. Thompson. I.J.; Shaw, A.M. Conjugation of Y. pestis F1-antigen to gold nanoparticles improves immunogenicity. Vaccine, 2012, 30, 6777-6782.
[44]
Safari, D.; Marradi, M.; Chiodo, F.; Dekker, H.A.T.; Shan, Y.; Adamo, R.; Oscarson, S.; Rijkers, G.T.; Lahmann, M.; Kamerling, J.P.; Penadés, S.; Snippe, H. Gold nanoparticles as carriers for a synthetic Streptococcus pneumoniae type 14 conjugate vaccine. Nanomedicine (Lond.), 2012, 5, 651-662.
[45]
Mukherjee, P.; Ahmad, A.; Mandal, D.; Senapati, S.; Sudhakar, S.R.; Khan, M.I.; Parishcha, R.; Ajaykumar, P.V.; Alam, M.; Kumar, R. Murali sastry fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: A novel biological approach to nanoparticle synthesis. Nano Lett., 2001, 1, 515-519.
[46]
Chen, X.; Schluesener, H.J. Nanosilver: A nanoproduct in medical application. Toxicol. Lett., 2008, 176, 1-12.
[47]
Daniel, S.C.G.; Tharmaraj, V.; Sironmani, A.T.; Pitchumani, K. Toxicity and Immunological activity of Silver Nanoparticles. Appl. Clay Sci., 2010, 48, 547-551.
[48]
Sironmani, A.T.; Daniel, S.C.G. Silver Nanoparticles – Universal Multifunctional Nanoparticles for Bio Sensing, Imaging for Diagnostics and Targeted Drug Delivery for Therapeutic Applications., In: Drug Discovery and Development - Present and Future, Kapetanovic, I.M. Ed., InTech publishers, 2011; ISBN 978-953- 307-615-7.
[49]
Sironmani, A.T.; Daniel, S.C.G. Silver Nano formulations for diagnostics and therapeutics of foot and-mouth disease in animals. 2011: Patent Application No: 4337/CHE/2012.
[50]
Ananth, N.A.; Daniel, S.C.G.; Sironmani, A.T.; Umapathi, S. PVA and BSA stabilized silver nanoparticles based Surface-Enhanced Plasmon Resonance probes for protein detection. Colloids Surfaces B, 2011, 85, 138-144.
[51]
Daniel, S.C.G.; Sironmani, A.T.; Tharmaraj, V.; Pitchumani, K. Synthesis, characterization and in vivo studies of Fluorophore attached Silver Nanoparticles. Bull. Mater. Sci., 2011, 34, 639-644.
[52]
Golding, S.M.; Hedger, R.S.; Talbot, P.; Watson, J. Radial immunodiffusions and serum neutralization techniques for the assay of antibodies to swine vesicular disease. Res. Vet. Sci., 1976, 20, 142-147.
[53]
Bergmann, I.R.; Mello, P.A.; Neitzert, E.; Beck, E.; Gomes, I. Diagnosis of persistent aphtho virus infection and its differentiation from vaccination responses in cattle by use of enzyme-linked immunoelectrotransfer blot analysis with bioengineered nonstructural viral antigens. Am. J. Vet. Res., 1993, 54, 825-831.
[54]
Fondevila, N.; Sanchez, A.; Smitsaart, E.; Samuel, A.; Rodriguez, M.; Pratomurphy, M. et al. Studies in the persistence of Foot-and- Mouth- Disease Virus in bovines, ovines and Llamas (Lama glama). Session of the Research Group of the European Commission for the Control of Foot and Mouth Disease. Ma’ale Hachmisha, Israel. 1996.
[55]
Cheung, W.H.; Chan, V.S.F.; Pang, H.W.; Wong, M.K.; Guo, Z.H.; Tam, P.K.H.; Che, C.M.; Lin, C.L.; Yu, W.Y. Conjugation of latent membrane protein (LMP)-2 epitope to gold nanoparticles as highly immunogenic multiple antigenic peptides for induction of Epstein- Barr virus-specific cytotoxic T-lymphocyte responses in vitro. Bioconjug. Chem., 2009, 20, 24-31.
[56]
Staroverov, S.A.; Aksinenko, N.M.; Gabalov, K.P.; Vasilenko, O.A.; Vidyasheva, I.V.; Shchyogolev, S.Y.; Dykman, L.A. Effect of gold nanoparticles on the respiratory activity of peritoneal macrophages. Gold Bull., 2009, 42, 153-156.
[57]
Belsham, G.J. Distinctive features of foot-and-mouth disease virus, a member of the picornavirus family, and aspects of virus protein synthesis, protein processing and structure. Prog. Biophys. Mol. Biol., 1993, 60, 241-260.
[58]
Mason, P.W.; Grubman, M.J.; Baxt, B. Molecular basis of pathogenesis of FMDV. Virus Res., 2003, 91, 9-32.
[59]
Carrillo, C.; Tulman, E.R.; Delhon, G.; Lu, Z.; Carreno, A.; Vagnozzi, A.; Kutish, G.F.; Rock, D.L. Comparative genomics of foot and mouth disease virus. J. Virol., 2005, 79, 6487-6504.
[60]
Domingo, E.; Escarmis, C.; Baranowski, E.; Ruiz-Jarabo, C.M.; Carrillo, E.; Nunez, J.I.; Sobrino, F. Evolution of foot-and-mouth disease virus. Virus Res., 2003, 91, 47-63.
[61]
Pereira, H.G. Sub typing of foot and mouth disease virus. Dev. Biol. Stand., 1977, 35, 167-174.
[62]
Zhidkov, S.A.; Sergeev, V.A. A study of the properties of attenuated cold variant of type O foot-and-mouth disease virus. Veterinariia, 1969, 10, 29-31.
[63]
Barnett, P.V.; Carabin, H. A review of emergency foot-and-mouth disease (FMD) vaccines. Vaccine, 2002, 20, 1505-1514.
[64]
Sfiiz, J.C.; Rodriguez, T.A.; Gonzfilez, M.; Alonso, F.; Sobrino, F. Heterotypic lymphoproliferative response in pigs vaccinated with foot-and-mouth disease virus. Involvement of isolated capsid proteins. J. Gen. Virol., 1992, 73, 2601-2607.
[65]
Mulcahy, G.; Gale, C.; Robertson, P.; Iyishan, S.; Dimarchi, R.D.; Doel, T.R. Isotype responses of infected, virus-vaccinated and peptide-vaccinated cattle to foot-and-mouth disease virus. Vaccine, 1990, 8, 249-256.
[66]
Collen, T.; Doel, T.R. Analysis of specificity of T-cells reactive with foot-and-mouth disease (FMD) virus suggests that B cell presentation influences the memory repertoire in cattle. VIIth Meeting of the European Study Group on Picornaviruses (Europic 91), Canterbury, U.K.1991.
[67]
Zamvil, S.S.; Mitchell, D.J.; Lee, N.E.; Moore, A.C.; Waldors, M.K.; Sakai Rothbard, I.B.; McDevitt, H.O.; Steinman, L.; Acha-Orbea, H. Predominant expression of a T cell receptor V beta gene subfamily in autoimmune encephalomyelitis. J. Exp. Med., 1988, 167, 1586-1596.
[68]
Kobayashi, H.; Jo, S.K.; Kawamoto, S.; Yasuda, H.; Hu, X.; Knopp, M.V. Polyamine dendrimer-based MRI contrast agents for functional kidney imaging to diagnose acute renal failure. J. Magnet. Res. Imag, 2004, 20, 512-518.
[69]
Sukdeb Pal, T.; Kyung, Y.S.; Myong, J. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gramnegative bacterium Escherichia coli. Appl. Environ. Microbiol., 2007, 73, 1712-1720.
[70]
Chen, Y.S.; Hung, Y.C.; Lin, W.H.; Huang, G.S. Assessment of gold nanoparticles as a size-dependent vaccine carrier for enhancing the antibody response against synthetic foot-and-mouth disease virus peptide. Nanotechnology, 2010, 21195101
[71]
Zhao, L.; Seth, A.; Wibowo, N.; Zhao, C.X.; Mitter, N.; Yu, C.; Middelberg, A.P. Nanoparticle vaccines. Vaccine, 2014, 32, 327-337.
[72]
Liu, Y.; Xu, Y.; Tian, Y.; Chen, C.; Wang, C.; Jiang, X. Functional nanomaterials can optimize the efficacy of vaccines. Small, 2014, 10, 4505-4520.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 9
ISSUE: 2
Year: 2019
Page: [244 - 251]
Pages: 8
DOI: 10.2174/2210681208666180329152036
Price: $58

Article Metrics

PDF: 10
HTML: 1