Eco-Friendly Methods of Gold Nanoparticles Synthesis

Author(s): Heba M. Fahmy*, Amena S. El-Feky, Taiseer M. Abd El-Daim, Merna M. Abd El-Hameed, Donia A. Gomaa, Amany M. Hamad, Alyaa A. Elfky, Yomna H. Elkomy, Nawal A. Farouk.

Journal Name: Nanoscience & Nanotechnology-Asia

Volume 9 , Issue 3 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Owing to the importance of metallic nanoparticles, different researches and studies have been induced to synthesize them in many ways. One of the ways that paid attention last years is the green synthesis methods of nanoparticles or the so-called ''eco-friendly methods''. The most common sources that has been used for green synthesis of nanoparticles are plants, leaves, fungi and microorganisms. The green synthesis methods are widely used because they are inexpensive, usable, and nontoxic. Moreover, plant extracts are rich in reducing and capping agents.

Methods: In the present review, green synthesis methods of gold nanoparticles (AuNps) using Chitosan, Klebsiella pneumoniae, Magnolia Kobus, Elettaria cardamomum (Elaichi) aqueous extract and other agents as a reducing/capping agents will be discussed in details. Moreover, we will make a comparison between different green routes of synthesis and the characterization of the obtained nanoparticles from each route.

Results: The characterization and applications of the prepared GNPs from different routes are reviewed.

Conclusion: The utilization of gold nanoparticles has been advocated because of their high biocomptability, administration in clinical applicability and in diverse aspects of life. It seems that plants are good candidates for nanoparticles production because they are inexpensive, available and renewable sources in addition, it is too simple to prepare extracts from them. Moreover, the great diversity in the types and amounts of reducing agents from plant extracts is responsible for the effortless generation of metallic nanoparticles of various shapes and morphologies.

Keywords: Green synthesis, gold nanoparticles, plant extracts based methods, microorganisms based methods, animalia based methods, food based methods.

[1]
Corma, A.; Garcia, H. Supported gold nanoparticles as catalysts for organic reactions. Chem. Soc. Rev., 2008, 37, 2096-2126.
[2]
Peng, H.P.; Liang, R.P.; Zhang, L.; Qiu, J.D. Facile preparation of novel core-shell enzyme Au-polydopamine Fe3O4 magnetic bionanoparticles for glucose sensor. Bioelectron, 2013, 42, 293-299.
[3]
Popovtzer, R.; Agrawal, A.; Kotov, N.A.; Popovtzer, A.; Balter, J.; Carey, T.E.; Kopelman, R. Targeted gold nanoparticles enable molecular CT imaging of cancer. Nano Lett., 2008, 8, 4593-4596.
[4]
Brown, S.D.; Nativo, P.; Smith, J.A.; Stirling, D.; Edwards, P.R.; Venugopal, B.; Flint, D.J.; Plumb, J.A.; Graham, D.; Wheate, N.J. Gold nanoparticles for the improved anticancer drug delivery of the active component of oxaliplatin. J. Am. Chem. Soc., 2010, 132, 4678-4684.
[5]
Kasten, B.B.; Liu, T.; Nedrow-Byers, J.R.; Benny, P.D.; Berkman, C.E. Targeting prostate cancer cells with PSMA inhibitor-guided gold nanoparticles. Bioinorg. Med. Chem. Lett., 2013, 23, 565-568.
[6]
Kalimuthu, K.; Venkataraman, D.; Suresh Babu, R.K.P.; Muniasamy, K.; Selvaraj, B.M.K.; Bose, K.; Sangiliyandi, G. Biosynthesis of silver and gold nanoparticles using Brevibacterium casei. Colloids Surf. B Biointerfaces, 2010, 257, 262-277.
[7]
Geddes, C.D.; Parfenov, A.; Gryczynski, I.; Lakowicz, J.R. Luminescent blinking of gold nanoparticles. Chem. Phys. Lett., 2003, 380, 269-272.
[8]
Boruah, S.K.; Boruah, P.K.; Sarma, P.; Medhi, C.; Medhi, O.K. Green synthesis of gold nanoparticles using camellia sinensis and kinetics of the reaction. Adv. Mat. Lett., 2012, 3, 481-486.
[9]
Nasir, S.M.; Nur, H. gold nanoparticles embedded on the surface of polyvinyl alcohol layer. J. Fundam. Appl. Sci., 2008, 4, 245-252.
[10]
Praba, P.S.; Jeyasundari, J.; Renuga, D.; Brightson, Y. Bio inspired synthesis of gold nanoparticles using Psidiumguajava leaf extract and its anti-bacterial activity. J. Chem. Chem. Sci., 2016, 6, 624-633.
[11]
Pratap, S.S.; Seema, G.; Nimisha, S. Green nanomedicine: An alchemy touch to cancer treatment. Int. J. Bioassays, 2013, 2, 1145-1151.
[12]
Iravani, S. Green synthesis of metal nanoparticles using plants. Green Chem., 2011, 13, 2638-2650.
[13]
Kumar, K.P.; Paul, W.; Sharma, C.P. Green synthesis of gold nanoparticles with Zingiber officinale extract: Characterization and blood compatibility. Process Biochem., 2011, 46, 2007-2013.
[14]
Shankar, S.S.; Rai, A.; Ahmad, A.; Sastry, M. Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J. Colloid Interface Sci., 2004, 275, 496-502.
[15]
Murphy, C.J.; Gole, A.M.; Stone, J.W.; Sisco, P.N.; Alkilany, A.M.; Goldsmith, E.C.; Baxter, S.C. Gold nanoparticles in biology: beyond toxicity to cellular imaging. Acc. Chem. Res., 2008, 41, 1721-1730.
[16]
Huang, X.; El-Sayed, M.A. Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy. J. Adv. Res., 2010, 1, 13-28.
[17]
Jain, P.K.; Lee, K.S.; El-Sayed, I.H.; El-Sayed, M.A. Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy. J. Phys. Chem. B, 2006, 110, 7238-7248.
[18]
Noruzi, M. Biosynthesis of gold nanoparticles using plant extracts. Bioprocess Biosyst. Eng., 2015, 38, 1-14.
[19]
Parida, U.K.; Bindhani, B.K.; Nayak, P. Green synthesis and characterization of gold nanoparticles using onion (Allium cepa) extract. WJNSE, 2011, 1, 93-98.
[20]
Mansour, S.E.; Pattanayak, M.; Nayak, P.L. Green synthesis of gold nano particles VII: Green synthesis and characterization of gold nano particles using the extract of lemon (Citrus limon) and study of its cytotoxicity properties. Middle East J. Sci. Res., 2014, 22, 313-319.
[21]
Monalisa, P.; Nayak, P.L. Green synthesis of gold nanoparticles using (aloe vera) aqueous extract. IJPAES, 2012, 1, 68-78.
[22]
Singh, A.K.; Talat, M.; Singh, D.P.; Srivastava, O.N. Biosynthesis of gold and silver nanoparticles by natural precursor clove and their functionalization with amine group. JNR, 2010, 12, 1667-1675.
[23]
Lal, S.S.; Nayak, P.L. Green synthesis of gold nanoparticles using various extract of plants and spices. IJSID, 2012, 2, 325-350.
[24]
Muralikrishna, T.; Pattanayak, M.; Nayak, P.L. Green synthesis of gold nanoparticles using (aloe vera) aqueous extract. WJNST, 2014, 3, 45-51.
[25]
Pattanayak, M.; Nayak, P.L. Green synthesis of gold nanoparticles using elettaria cardamomum (elaichi) aqueous extract. WJNST, 2013, 2, 1-5.
[26]
De Souza, M.I.T.; Silva, J.Q.; Gonclaves, P.D.S.; Pinotti, R.N. Rubber tree exploitation systems utilized in asian clones Prang Besar, in the West of São Paulo, Brazil. Pesqui. Agropecu. Bras., 2007, 42, 949-955.
[27]
Cabrera, F.C.; Mohan, H.; Dos Santos, R.J.; Agostini, D.L.S.; Aroca, R.F.; Rodríguez-Pérez, M.A.; Job, A.E. Green synthesis of gold nanoparticles with self-sustained natural rubber membranes. J. Nanomater., 2013, 2013, 1-10.
[28]
Aroca, R.F.; Alvarez-Puebla, R.A.; Pieczonka, N.; Sanchez-Cortez, S.; Garcia-Ramos, J.V. Surface-enhanced Raman scattering on colloidal nanostructures. Adv. Colloid Interface Sci., 2005, 45, 61-116.
[29]
Elavazhagan, T.; Arunachalam, K.D. Memecylon edule leaf extract mediated green synthesis of silver and gold nanoparticles. Int. J. Nanomed, 2011, 6, 1265-1278.
[30]
Shankar, S.S.; Rai, A.; Ahmad, A.; Sastry, M. Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J. Colloid Interface Sci., 2004, 275, 496-502.
[31]
Dubay, M.; Bhadauria, S.; Kushwah, B.S. Green synthesis of nanosilver particles from extract of eucalyptus hybrida (safeda) leaf. Dig. J. Nanomater. Biostruct., 2009, 4, 537-543.
[32]
Parashar, V.; Parashar, R.; Sharma, B.; Pandey, A.C. Parthenium leaf extract mediated synthesis of silver nanoparticles: A novel approach towards weed utilization. Dig. J. Nanomater. Biostruct., 2009, 4, 45-50.
[33]
Narayanan, K.B.; Sakthivel, N. Coriander leaf mediated biosynthesis of gold nanoparticles. Mater. Lett., 2008, 62, 4588-4590.
[34]
Huang, J.; Li, Q.; Sun, D.; Lu, Y.; Su, Y.; Yang, X.; Wang, H.; Wang, Y.; Shao, W.; He, N.; Hong, J.; Che, C. Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology, 2007, 18, 105-104.
[35]
Elia, P.; Zach, R.; Hazan, S.; Kolusheva, S.; Porat, Z.; Zeiri, Y. Green synthesis of gold nanoparticles using plant extracts as reducing agents. Int. J. Nanomed, 2014, 9, 4007-4021.
[36]
ASTM International. Standard test methods for zeta potential of colloids in water and waste water.In: The Annual Book of ASTM Standards; ASTM International: West Conshohocken, PA, 1985, pp. 4182-4187.
[37]
Salopek, B.; Krasiọć, D.; Filipoviọć, S. Measurement and application of zeta potential. Rud Geol Naft Zb, 1992, 4, 147-151.
[38]
Varun, S.; Sellappa, S. RafiqKhan, M.; Vijayakumar, S. Green synthesis of gold nanoparticles using Argemone mexicana L. leaf extract and its characterization. Int. J. Pharm. Sci. Rev. Res., 2015, 32, 42-44.
[39]
Dubey, S.P.; Lahtinen, M.; Sillanpää, M. Green synthesis and characterizations of silver and gold nanoparticles using leaf extract of Rosa rugosa. Colloids Surfaces A Physicochem. Eng. Aspects, 2010, 364, 34-41.
[40]
Parashar, U.K.; Saxenaa, P.S.; Srivastava, A. Bioinspired synthesis of silver nanoparticles. J. Nanomater. Biol., 2009, 4, 159-166.
[41]
Basu, S.; Ghosh, S.K.; Kundu, S.; Panigrahi, S.; Praharaj, S.; Pande, S.; Jana, S.T.; Pal, T. Biomolecule induced nanoparticle aggregation: Effect of particle size on interparticle coupling. J. Colloid Interface Sci., 2007, 313, 724-734.
[42]
Smitha, S.L.; Philip, D.; Gopchandran, K.G. Green synthesis of gold nanoparticles using Cinnamomum zeylanicum leaf broth. Spectrochim. Acta Mol. Biomol. Spectrosc., 2009, 74, 735-739.
[43]
Jian, Z.; Liqing, H.; Yongchang, W.; Yimin, L. Fluorescence spectrum properties of gold nanochains. Physicae , 2004, 25, 114-118.
[44]
Wang, D.S.; Hsu, F.Y.; Lin, C.W. Surface plasmon effects on two photon luminescence of gold nanorods. Optics. Express, 2009, 17, 11350-11359.
[45]
Li, Y.; Wu, T.Y.; Chen, S.M.; Ali, M.A.; AlHemaid, F.M.A. Green synthesis and electrochemical characterizations of gold nanoparticles using leaf extract of Magnolia kobus. Int. J. Electrochem. Sci., 2012, 7, 12742-12751.
[46]
Laemmli, U.K. Cleavage of structural proteins during assembly of bacteriophage T4. Nature, 1970, 227, 680-685.
[47]
Lowry, O.H.; Rosebrough, N.J.; Farr, L.; Randall, R.J. Protein measurement with the folin phenol reagent. J. Biol. Chem., 1951, 193, 265-275.
[48]
Megarajan, S.; Ahmed, K.B.A.; Reddy, G.R.K.; Kumar, P.S.; Anbazhagan, V. Phytoproteins in green leaves as building blocks for photosynthesis of gold nanoparticles: An efficient electrocatalyst towards the oxidation of ascorbic acid and the reduction of hydrogen peroxide. JPPB, 2016, 155, 7-12.
[49]
EVertt. D.H. Basic principles of colloidal science. J. Chem. Technol. Biotechnol., 1989, 45, 328-329.
[50]
El-Hussein, A.; Mfouo-Tynga, I.; Abdel-Harith, M.; Abrahamse, H. Comparative study between the photodynamic ability of gold and silver nanoparticles in mediating cell death in breast and lung cancer cell line. J. Photochem. Photobiol. B Biol, 2015, 153, 67-75.
[51]
Joseph, D.; Tyagi, N.; Geckeler, C.; Geckeler, K.E. Protein-coated pH-responsive gold nanoparticles: Microwave-assisted synthesis and surface charge-dependent anticancer activity. Beilstein J. Nanotechnol., 2014, 5, 1452-1462.
[52]
Muthukumar, T.; Sambandam, B.; Aravinthan, A.; Sastry, T.P.; Kim, J.H. Green synthesis of gold nanoparticles and their enhanced synergistic antitumor activity using HepG2 and MCF7 cells and its antibacterial effects. Process Biochem., 2016, 51, 384-391.
[53]
Fazal, S.; Jayasree, A.; Sasidharan, S.; Koyakutty, M.; Nair, S.V.; Menon, D. Green synthesis of anisotropic gold nanoparticles for photothermal therapy of cancer. ACS Appl. Mater. Interfaces, 2014, 6, 8080-8089.
[54]
Alam, N.; Das, S.; Batuta, S.; Roy, N.; Chatterjee, A.; Mandal, D.; Begum, N.A. Murraya koenegii spreng. leaf extract: An efficient green multifunctional agent for the controlled synthesis of Au nanoparticles. ACS Sustainable. Chem.& Eng., 2014, 2, 652-664.
[55]
Brayner, R.; Ferrari-Iliou, R.; Brivois, N.; Djediat, S.; Benedetti, M.F.; Fiévet, F. Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett., 2006, 6, 866-870.
[56]
Malarkodi, C.; Rajeshkumar, S.; Vanaja, M.; Paulkumar, K.; Gnanajobitha, G.; Annadurai, G. Eco-friendly synthesis and characterization of gold nanoparticles using Klebsiella pneumoniae. JNSC, 2013, 3, 30.
[57]
Manivasagan, P. Junghwan, Oh, J.; Production of a novel fucoidanase for the green synthesis of gold nanoparticles by Streptomyces sp. and its cytotoxic effect on HeLa cells. Marine. Drugs, 2015, 13, 6818-6837.
[58]
Narayanan, K.B.; Sakthivel, N. Facile green synthesis of gold nanostructures by NADPH-dependent enzyme from the extract of Sclerotium rolfsii. Bioscience, 2011, 380, 156-161.
[59]
Dhanaseka, N.N.; Rahul, G.R.; Narayanan, K.B.; Raman, G.; Sakthivel, N. Green chemistry approach for the synthesis of gold nanoparticles using the fungus Alternaria sp. J. Microbiol. Biotechnol., 2015, 25, 1129-1135.
[60]
Sosa, I.O.; Noguez, C.; Barrera, R.G. Optical properties of metal nanoparticles with arbitrary shapes. J. Phys. Chem. B, 2003, 107, 6269-6627.
[61]
Songr, J.Y.; Jang, H.K.; Kim, B.S. Biological synthesis of gold nanoparticles using Magnolia kobus and Diopyros kaki leaf extracts. Proc Biochem., 2009, 44, 1133-113867.
[62]
Vag’o, A.; Szakacs, G.; S’afr’an, G.; Horvath, R.; P’ecz, B.; Lagzi, I. One-step green synthesis of gold nanoparticles by mesophilic filamentous fungi. Chem. Phys. Lett., 2015, 645, 1-4.
[63]
Das, S.K.; Marsili, E. A green chemical approach for the synthesis of gold nanoparticles: Characterization and mechanistic aspect. Rev. Environ. Sci. Biotechnol., 2010, 9, 199-204.
[64]
Kitching, M.; Ramani, M.; Marsili, E. Fungal biosynthesis of gold nanoparticles: Mechanism and scale up. Microb. Biotechnol., 2015, 8, 904-917.
[65]
Lundqvist, M.; Stigler, J.; Elia, G.; Lynch, I.; Cedervall, T.; Dawson, K.A. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts‏. Proc. Natl. Acad. Sci. USA, 2008, 105, 14265-14270.
[66]
Kim, H.K.; Choi, M.J.; Cha, S.H.; Koo, Y.K.; Jun, S.H.; Cho, S.; Park, Y. Earthworm extracts utilized in the green synthesis of gold nanoparticles capable of reinforcing the anticoagulant activities of heparin‏. J. Nanosci. Nanotechnol., 2013, 8, 2068-2076.
[67]
Han, L.; Kim, Y.S.; Cho, S.; Park, Y. Invertebrate water extracts as biocompatible reducing agents for the green synthesis of gold and silver nanoparticles.‏. Nat. Prod. Commun., 2013, 8, 1149-1152.
[68]
Im, A.R.; Park, Y.; Sim, J.S.; Zhang, Z.; Liu, Z.; Linhardt, R.J.; Kim, Y.S. Glycosaminoglycans from earthworms (Eisenia andrei). Glycoconj. J., 2010, 8, 249-257.
[69]
Philip, D. Honey mediated green synthesis of gold nanoparticles. Spectrochimica Acta Part A, 2009, 73, 650-653.
[70]
Kannan, P.; John, S.A. Synthesis of mercaptothiadiazole-functionalized gold nanoparticles and their self-assembly on Au substrates. Nanotechnology, 2008, 19, 1-10.
[71]
Shankar, S.S.; Rai, A.; Ahmad, A.; Sastry, M. Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J. Colloid Interface Sci., 2004, 275, 496-502.
[72]
Mandal, D.; Bolander, M.E.; Mukhopadhay, D.; Sarkar, G.; Mukherjee, P. The use of microorganisms for the formation of metal nanoparticles and their application. Appl. Microbiol. Biotechnol., 2006, 69, 485-492.
[73]
Ankawar, B.; Chaudhary, M.; Sastry, M. Gold nanotri-angles biologically synthesized using tamarind leaf extract and potential application in vapor sensing. Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 2005, 35, 19-26.
[74]
Hirsch, L.R.; Stafford, R.; Bankson, J.; Sershen, S.; Rivera, B.; Price, R.; Hazle, J.; Halas, N.; West, J. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl. Acad. Sci., 2003, 100, 13549-13554.
[75]
Stern, J.M.; Stanfield, J.; Lotan, Y.; Park, S.; Hsieh, J.T.; Cadeddu, J.A. Activated gold nanoshells in ablating prostate cancer cells in vitro. Endourol. J. Nanomed., 2007, 21, 939-943.
[76]
Ghosh, P.; Han, G.; De, M.; Kim, C.K.; Rotello, V.M. Gold nanoparticles in delivery applications. Adv. Drug Deliv. Rev., 2008, 60, 1307-1315.
[77]
Gibson, J.D.; Khanal, B.P.; Zubarev, E.R. Paclitaxel-functionalized gold nanoparticles. J. Am. Chem. Soc., 2007, 129, 11653-11661.
[78]
Dasary, S.S.; Singh, A.K.; Senapati, D.; Yu, H.; Ray, P.C. Gold nanoparticle based label-free SERS probe for ultrasensitive and selective detection of trinitrotoluene. J. Am. Chem. Soc., 2009, 131, 13806-13812.
[79]
Ding, X.; Kong, L.; Wang, J.; Fang, F.; Li, D.; Liu, J. Highly sensitive SERS detection of Hg2+ ions in aqueous media using gold nanoparticles/graphene heterojunctions. ACS Appl. Mater. Interfaces, 2013, 5, 7072-7078.
[80]
Qian, X.M.; Nie, S. Single-molecule and single-nanoparticle SERS: From fundamental mechanisms to biomedical applications. Chem. Soc. Rev., 2008, 37, 912-920.
[81]
Zamarion, V.M.; Timm, R.A.; Araki, K.; Toma, H.E. Ultrasensitive SERS nanoprobes for hazardous metal ions based on trimercaptotriazine-modified gold nanoparticles. Inorg. Chem., 2008, 47, 2934-2936.
[82]
Huang, X.; El-Sayed, I.H.; Qian, W.; El-Sayed, M.A. Cancer cells assemble and align gold nanorods conjugated to antibodies to produce highly enhanced, sharp, and polarized surface raman spectra: A potential cancer diagnostic marker. Nano Lett., 2007, 7, 1591-1597.
[83]
Grubisha, D.S.; Lipert, R.J.; Park, H.Y.; Driskell, J.; Porter, M.D. Femtomolar detection of prostate-specific antigen: An immunoassay based on surface-enhanced raman scattering and immunogold labels. Anal. Chem., 2003, 75, 5936-5943.
[84]
Neng, J.; Harpster, M.H.; Zhang, H.; Mecham, J.O.; Wilson, W.C.; Johnson, P.A. A versatile SERS-based immunoassay for immunoglobulin detection using antigen-coated gold nanoparticles and malachite green-conjugated protein A/G. Biosens. Bioelectron., 2010, 26, 1009-1015.
[85]
Kneipp, K.; Haka, A.S.; Kneipp, H.; Badizadegan, K.; Yoshizawa, N.; Boone, C. ShaferPeltier, K.E.; Motz, J.T.; Dasari, R.R.; Feld, M.S. Surface-enhanced raman spectroscopy in single living cells using gold nanoparticles. Appl. Spectrosc., 2002, 56, 150-154.
[86]
Liu, J.; Lu, Y. A colorimetric lead biosensor using dnazyme-directed assembly of gold nanoparticles. J. Am. Chem. Soc., 2003, 125, 6642-6643.
[87]
Luo, X.L.; Xu, J.J.; Du, Y.; Chen, H.Y. A glucose biosensor based on chitosan-glucose oxidase-gold nanoparticles biocomposite formed by one-step electrodeposition. Anal. Biochem., 2004, 334, 284-289.
[88]
Han, A.; Dufva, M.; Belleville, E.; Christensen, C.B. Detection of analyte binding to microarrays using gold nanoparticle labels and a desktop scanner. Lab Chip, 2003, 3, 329-332.
[89]
Nair, A.S.; Pradeep, T. Extraction of chlorpyrifos and malathion from water by metal nanoparticles. J. Nanosci. Nanotechnol, 2007, 17, 187-1877.
[90]
Nair, A.S.; Tom, R.T.; Pradee, T. Detection and extraction of endosulfan by metal nanoparticles. J. Nanosci. Nanotechnol., 2007, J. Environ. Monit., 2003, 5, 363-365.
[91]
Das, S.K.; Das, A.R.; Guh, A.K. Gold nanoparticles: Microbial synthesis and application in water hygiene management. Langmuir, 2009, 25, 8192-8199.
[92]
Sreelakshmi, C.; Datta, K.K.; Yadav, J.S.; Reddy, B.V. Honey derivatized Au and Ag nanoparticles and evaluation of its antimicrobial activity. J. Nanosci. Nanotechnol., 2011, 11, 6995-7000.
[93]
Kumar, M.; Mandal, B.K.; Sinha, M.; Krishnakumar, V. Terminalia chebula mediated green and rapid synthesis of gold nanoparticles. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2012, 86, 490-494.
[94]
Lopez, N.; Janssens, T.; Clausen, B.; Xu, Y.; Mavrikakis, M.; Bligaard, T.; Nørskov, J.K. On the origin of the catalytic activity of gold nanoparticles for low-temperature CO oxidation. J. Catal., 2004, 223, 232-235.
[95]
Herna’ndez, J.; Solla-Gullo’n, J.; Herrero, E.; Aldaz, A.; Feliu, J.M. Methanol oxidation on gold nanoparticles in alkaline media: Unusual electrocatalytic activity. Bioprocess Biosyst. Eng., 2006, 52, 1662-1669.
[96]
Claus, P.; Bru¨ckner, A.; Mohr, C.; Hofmeister, H. Supported gold nanoparticles from quantum dot to mesoscopic size scale: Effect of electronic and structural properties on catalytic hydrogenation of conjugated functional groups. J. Am. Chem. Soc., 2000, 122, 11430-11439.
[97]
Dykman, L.A.; Khlebtsov, N.G. Gold nanoparticles in biology and medicine: Recent advances and prospects. Acta Naturae, 2011, 3, 34-55.
[98]
Wang, G.; Stender, A.S.; Sun, W.; Fang, N. Optical imaging of non-fluorescent nanoparticle probes in live cells. Anal. Chem., 2010, 135, 215-221.
[99]
Klein, S.; Petersen, S.; Taylor, U.; Rath, D.; Barcikowski, S. Quantitative visualization of colloidal and intracellular gold nanoparticles by confocal microscopy. J. Biomed. Opt., 2010, 15, 1-11.
[100]
Khlebtsov, N.G.; Dykman, L.A. Optical properties and biomedical applications of plasmonic nanoparticles. J. Quant. Radiat. Transfer, 2010, 111, 1-3.
[101]
Abraham, G.E.; Himmel, P.B. Management of rheumatoid arthritis: rationale for the use of colloidal metallic gold. J. Nutr. Med., 1997, 7, 295-305.
[102]
Paciotti, G.F.; Myer, L.; Weinreich, D.; Goia, D.; Pavel, N.; McLaughlin, R.E.; Tamarkin, L. Colloidal gold: A novel nanoparticle vector for tumor directed drug delivery. Drug Deliv., 2004, 11, 169-18.
[103]
Paciotti, G.F.; Kingston, D.G.I.; Tamarkin, L. Colloidal gold nanoparticles: A novel nanoparticle platform for developing multifunctional tumor targeted drug delivery vectors. Drug Dev. Res., 2006, 67, 47-54.
[104]
Cabrera, F.C.; Aoki, P.H.B.; Aroca, R.F.; Constantino, C.J.L. Constantino, dos Santos, D.S.; Job, A.E. Portable smart films for ultrasensitive detection and chemical analysis using SERS and SERRS. J. Raman Spectrosc., 2012, 43, 474-477.
[105]
Armendariz, V.; Herrera, I.; Jose-yacaman, M.; Troiani, H.; Santiago, P.; Gardea-Torresdey, J.L. Size controlled gold nanoparticle formation by Avena sativa biomass: Use of plants in nanobiotechnology. J. Nanoparticle. Res., 2004, 6, 377-382.
[106]
Nualkaew, S.; Rattanamanee, K.; Thongpraditchote, S.; Wongkrajang, Y.; Nahrstedt, A. Anti-inflammatory, analgesic and wound healing activities of the leaves of Memecylon edule Roxb. J. Ethnopharmacol., 2009, 121, 278-281.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 9
ISSUE: 3
Year: 2019
Page: [311 - 328]
Pages: 18
DOI: 10.2174/2210681208666180328154926
Price: $58

Article Metrics

PDF: 15
HTML: 3
EPUB: 1
PRC: 2