Effect of Ascophyllan from Brown Algae Padina tetrastromatica on Cell Migration and Extracellular Matrix Stabilisation in Burn Wounds

Author(s): Mohsin Sulaiman*, Ragavar Kutty Mahadevan, Muraleedhara G. Kurup.

Journal Name: Current Bioactive Compounds

Volume 15 , Issue 5 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Burn injuries are the most common injuries and a major health problem affecting communities worldwide. Many alternative therapies are used as treatment for burns. The healing efficacy of sulphated polysaccharide ascophyllan was evaluated and studied its mechanism of action on experimental burn wounds in rats.

Methods: Ascophyllan fractions were extracted from marine brown algae Padina tetrastromatica (Dictyotaceae) and evaluated its burn wound healing potential. Full thickness burn wounds induced in male albino rats were used for in vivo study and evaluated wound healing parameters.

Results: The results showed that Ascophyllan Fraction 3 (AF3) had no cytotoxic effect and it increases cell migration and production of VEGF in fibroblasts. AF3 significantly reduced in vitro secretion of cytokines in blood mononuclear cells treated with Lipopolysaccharide (LPS). In vivo study showed that AF3 (5%) has significant wound healing activity in albino rats and this dose was used for studying the healing mechanism. The reference control used for the study was povidone-iodine ointment. Wound area contraction and reepithelialisation was faster in AF3 (5%) administered group. When applied topically, AF3 (5%) increased hydroxyproline and hexosamine content at the wound site. Uronic acid, DNA and proteins levels were also increased. Compared to the control groups, AF3 (5%) treatment showed an increase in neovascularization and fibroblast proliferation as evidenced by histopathology of granulation tissue.

Conclusion: Sulphated polysaccharide ascophyllan is beneficial for the wound environment as it enhances the healing process and suggested the safe usage of this algal polysaccharide as an alternative for replacing current synthetic wound healing agents in medicine.

Keywords: Sulphated polysaccharide, burn wound, cell migration, collagen, extra cellular matrix components, brown algae.

[1]
Arturson, G. Pathophysiology of the burn wound and pharmacological treatment. The Rudi Hermans Lecture, 1995. Burns, 1996, 22(4), 255-274.
[http://dx.doi.org/10.1016/0305-4179(95)00153-0] [PMID: 8781717]
[2]
Singer, A.J.; Clark, R.A. Cutaneous wound healing. N. Engl. J. Med., 1999, 341(10), 738-746.
[http://dx.doi.org/10.1056/NEJM199909023411006] [PMID: 10471461]
[3]
Sibbald, R.G.; Coutts, P.; Woo, K.Y. Reduction of bacterial burden and pain in chronic wounds using a new polyhexamethylene biguanide antimicrobial foam dressing-clinical trial results. Adv. Skin Wound Care, 2011, 24(2), 78-84.
[http://dx.doi.org/10.1097/01.ASW.0000394027.82702.16] [PMID: 21242737]
[4]
Parsons, D.; Bowler, P.G.; Jones, S. Silver antimicrobial dressings in wound management: A comparison of antibacterial, physical, and chemical characteristics. Wounds, 2005, 17(8), 222-232.
[5]
Thomas, G.W.; Rael, L.T.; Bar-Or, R.; Shimonkevitz, R.; Mains, C.W.; Slone, D.S.; Craun, M.L.; Bar-Or, D. Mechanisms of delayed wound healing by commonly used antiseptics. J. Trauma, 2009, 66(1), 82-90.
[http://dx.doi.org/10.1097/TA.0b013e31818b146d] [PMID: 19131809]
[6]
Cho Lee, A.R.; Leem, H.; Lee, J.; Park, K.C. Reversal of silver sulfadiazine-impaired wound healing by epidermal growth factor. Biomaterials, 2005, 26(22), 4670-4676.
[http://dx.doi.org/10.1016/j.biomaterials.2004.11.041] [PMID: 15722137]
[7]
Senni, K.; Pereira, J.; Gueniche, F.; Delbarre-Ladrat, C.; Sinquin, C.; Ratiskol, J.; Godeau, G.; Fischer, A.M.; Helley, D.; Colliec-Jouault, S. Marine polysaccharides: A source of bioactive molecules for cell therapy and tissue engineering. Mar. Drugs, 2011, 9(9), 1664-1681.
[http://dx.doi.org/10.3390/md9091664] [PMID: 22131964]
[8]
Ferraro, V.; Cruz, I.B.; Jorge, R.F.; Malcata, F.X.; Pintado, M.E.; Castro, P.M. Valorisation of natural extracts from marine source focused on marine by-products: a review. Food Res. Int., 2010, 43(9), 2221-2233.
[http://dx.doi.org/10.1016/j.foodres.2010.07.034]
[9]
Yeo, M.; Jung, W.K.; Kim, G.H. Fabrication, characterisation and biological activity of phlorotannin-conjugated PCL/b-TCP composite scaffolds for bone tissue regeneration. J. Mater. Chem., 2012, 22(8), 3568-3577.
[http://dx.doi.org/10.1039/c2jm14725d]
[10]
Pomin, V.H.; Mourão, P.A.S. Structure, biology, evolution, and medical importance of sulfated fucans and galactans. Glycobiology, 2008, 18(12), 1016-1027.
[http://dx.doi.org/10.1093/glycob/cwn085] [PMID: 18796647]
[11]
Rioux, L.E.; Turgeon, S.; Beaulieu, M. Characterization of polysaccharides extracted from brown seaweeds. Carbohydr. Polym., 2007, 69(3), 530-537.
[http://dx.doi.org/10.1016/j.carbpol.2007.01.009]
[12]
Ghosh, T.; Chattopadhyay, K.; Marschall, M.; Karmakar, P.; Mandal, P.; Ray, B. Focus on antivirally active sulfated polysaccharides: From structure-activity analysis to clinical evaluation. Glycobiology, 2009, 19(1), 2-15.
[http://dx.doi.org/10.1093/glycob/cwn092] [PMID: 18815291]
[13]
Jiang, Z.; Okimura, T.; Yokose, T.; Yamasaki, Y.; Yamaguchi, K.; Oda, T. Effects of sulfated fucan, ascophyllan, from the brown Alga Ascophyllum nodosum on various cell lines: a comparative study on ascophyllan and fucoidan. J. Biosci. Bioeng., 2010, 110(1), 113-117.
[http://dx.doi.org/10.1016/j.jbiosc.2010.01.007] [PMID: 20541128]
[14]
Nakayasu, S.; Soegima, R.; Yamaguchi, K.; Oda, T. Biological activities of fucose-containing polysaccharide ascophyllan isolated from the brown alga Ascophyllum nodosum. Biosci. Biotechnol. Biochem., 2009, 73(4), 961-964.
[http://dx.doi.org/10.1271/bbb.80845] [PMID: 19352011]
[15]
Mohsin, S.; Kurup, G.M.; Mahadevan, R. Effect of ascophyllan from brown algae Padina tetrastromatica on inflammation and oxidative stress in carrageenan-induced rats. Inflammation, 2013, 36(6), 1268-1278.
[http://dx.doi.org/10.1007/s10753-013-9665-4] [PMID: 23760559]
[16]
Radhika, A.; Jacob, S.S.; Sudhakaran, P.R. Influence of oxidatively modified LDL on monocyte-macrophage differentiation. Mol. Cell. Biochem., 2007, 305(1-2), 133-143.
[http://dx.doi.org/10.1007/s11010-007-9536-0] [PMID: 17660956]
[17]
Tada, H.; Shiho, O.; Kuroshima, K.; Koyama, M.; Tsukamoto, K. An improved colorimetric assay for interleukin 2. J. Immunol. Methods, 1986, 93(2), 157-165.
[http://dx.doi.org/10.1016/0022-1759(86)90183-3] [PMID: 3490518]
[18]
Jung, H.J.; Kim, S.G.; Nam, J.H. Isolation of saponins with the inhibitory effect on nitricoxide, PGE2 and TNF-α production from Pleurospermum kamtschati-cum. Biol. Pharm. Bull., 2005, 28(9), 1668-1671.
[http://dx.doi.org/10.1248/bpb.28.1668] [PMID: 16141537]
[19]
Goetsch, K.P.; Niesler, C.U. Optimization of the scratch assay for in vitro skeletal muscle wound healing analysis. Anal. Biochem., 2011, 411(1), 158-160.
[http://dx.doi.org/10.1016/j.ab.2010.12.012] [PMID: 21146491]
[20]
Gfeller, W.; Kobel, W.; Seifert, G. Overview of animal test methods for skin irritation. Food Chem. Toxicol., 1985, 23(2), 165-168.
[http://dx.doi.org/10.1016/0278-6915(85)90009-2] [PMID: 4040058]
[21]
Priya, K.S.; Gnanamani, A.; Radhakrishnan, N.; Babu, M. Healing potential of Datura alba on burn wounds in albino rats. J. Ethnopharmacol., 2002, 83(3), 193-199.
[http://dx.doi.org/10.1016/S0378-8741(02)00195-2] [PMID: 12426086]
[22]
Gupta, A.; Upadhyay, N.K.; Sawhney, R.C.; Kumar, R. A poly-herbal formulation accelerates normal and impaired diabetic wound healing. Wound Repair Regen., 2008, 16(6), 784-790.
[http://dx.doi.org/10.1111/j.1524-475X.2008.00431.x] [PMID: 19128249]
[23]
Nayak, B.S.; Sandiford, S.; Maxwell, A. Evaluation of the wound-healing activity of ethanolic extract of Morinda citrifolia L. Leaf. Evid. Based Complement. Alternat. Med., 2009, 6(3), 351-356.
[http://dx.doi.org/10.1093/ecam/nem127] [PMID: 18955257]
[24]
Elson, L.A.; Morgan, W.T. A colorimetric method for the determination of glucosamine and chondrosamine. Biochem. J., 1933, 27(6), 1824-1828.
[http://dx.doi.org/10.1042/bj0271824] [PMID: 16745305]
[25]
Bitter, T.; Muir, H.M. A modified uronic acid carbazole reaction. Anal. Biochem., 1962, 4(4), 330-334.
[http://dx.doi.org/10.1016/0003-2697(62)90095-7] [PMID: 13971270]
[26]
Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem., 1951, 193(1), 265-275.
[PMID: 14907713]
[27]
Burton, K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem. J., 1956, 62(2), 315-323.
[http://dx.doi.org/10.1042/bj0620315] [PMID: 13293190]
[28]
Dipasquale, G.; Meli, A. Effect of body weight changes on the formation of cotton pellet induced granuloma. J. Pharm. Pharmacol., 1965, 17(6), 379-382.
[http://dx.doi.org/10.1111/j.2042-7158.1965.tb07686.x] [PMID: 14324460]
[29]
Neuman, R.E.; Logan, M.A. The determination of hydroxyproline. J. Biol. Chem., 1950, 184(1), 299-306.
[PMID: 15421999]
[30]
Gurung, S.; Skalko-Basnet, N. Wound healing properties of Carica papaya latex: In-vivo evaluation in mice burn model. J. Ethnopharmacol., 2009, 121(2), 338-341.
[http://dx.doi.org/10.1016/j.jep.2008.10.030] [PMID: 19041705]
[31]
Woessner, J.F., Jr The determination of hydroxyproline in tissue and protein samples containing small proportions of this imino acid. Arch. Biochem. Biophys., 1961, 93(2), 440-447.
[http://dx.doi.org/10.1016/0003-9861(61)90291-0] [PMID: 13786180]
[32]
Liu, W.; Deng, Y.; Liu, Y.; Gong, W.; Deng, W. Stem cell models for drug discovery and toxicology studies. J. Biochem. Mol. Toxicol., 2013, 27(1), 17-27.
[http://dx.doi.org/10.1002/jbt.21470] [PMID: 23293059]
[33]
Laflamme, N.; Soucy, G.; Rivest, S. Circulating cell wall components derived from gram-negative, not gram-positive bacteria cause a profound induction of the gene encoding Toll like receptor-2 in the central nervous system. J. Neurochem., 2001, 79(3), 648-653.
[http://dx.doi.org/10.1046/j.1471-4159.2001.00603.x] [PMID: 11701768]
[34]
Guha, M.; Mackman, N. LPS induction of gene expression in human monocytes. Cell. Signal., 2001, 13(2), 85-94.
[http://dx.doi.org/10.1016/S0898-6568(00)00149-2] [PMID: 11257452]
[35]
Annabel, F.V.; Monica, C.; Jord, X.; Antonio, C. The differential time course of ERK activity correlates with macrophage response toward proliferation or activation. J. Biol. Chem., 2000, 275(10), 7403-7409.
[http://dx.doi.org/10.1074/jbc.275.10.7403] [PMID: 10702314]
[36]
Mantovani, A.; Sozzani, S.; Locati, M.; Allavena, P.; Sica, A. Macrophage polarization: Tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol., 2002, 23(11), 549-555.
[http://dx.doi.org/10.1016/S1471-4906(02)02302-5] [PMID: 12401408]
[37]
Gordon, S. Alternative activation of macrophages. Nat. Rev. Immunol., 2003, 3(1), 23-35.
[http://dx.doi.org/10.1038/nri978] [PMID: 12511873]
[38]
Fronza, M.; Heinzmann, B.; Hamburger, M.; Laufer, S.; Merfort, I. Determination of the wound healing effect of Calendula extracts using the scratch assay with 3T3 fibroblasts. J. Ethnopharmacol., 2009, 126(3), 463-467.
[http://dx.doi.org/10.1016/j.jep.2009.09.014] [PMID: 19781615]
[39]
Mohammad, A.B.; Javed, A. Harshita.; Raisuddin, A.; Mohammad, A.R.; Sarjeel K.; Satya, P.S.; Farhan, J.A. Formulation design of micronized silver sulfadiazine containing aloe vera gel for wound healing. Curr. Bioact. Compd., 2016, 12(2), 63-68.
[http://dx.doi.org/10.2174/157340721202160504220440]
[40]
Nissen, N.N.; Polverini, P.J.; Koch, A.E.; Volin, M.V.; Gamelli, R.L.; DiPietro, L.A. Vascular endothelial growth factor mediates angiogenic activity during the proliferative phase of wound healing. Am. J. Pathol., 1998, 152(6), 1445-1452.
[PMID: 9626049]
[41]
Sidhu, G.S.; Singh, A.K.; Thaloor, D.; Banaudha, K.K.; Patnaik, G.K.; Srimal, R.C.; Maheshwari, R.K. Enhancement of wound healing by curcumin in animals. Wound Repair Regen., 1998, 6(2), 167-177.
[http://dx.doi.org/10.1046/j.1524-475X.1998.60211.x] [PMID: 9776860]
[42]
Fatima-Ezzahrae, G.; Khalid, T.; Mohamed, O.; Nour Eddine, E. The effect of Salvia verbenaca extracts for healing of second-degree burn wounds in rats. Curr. Bioact. Compd., 2017, 12, 1-9.
[43]
Escámez, M.J.; García, M.; Larcher, F.; Meana, A.; Muñoz, E.; Jorcano, J.L.; Del Río, M. An in vivo model of wound healing in genetically modified skin-humanized mice. J. Invest. Dermatol., 2004, 123(6), 1182-1191.
[http://dx.doi.org/10.1111/j.0022-202X.2004.23473.x] [PMID: 15610532]
[44]
Martin, P. Wound healing--aiming for perfect skin regeneration. Science, 1997, 276(5309), 75-81.
[http://dx.doi.org/10.1126/science.276.5309.75] [PMID: 9082989]
[45]
Hu, M.; Sabelman, E.E.; Cao, Y.; Chang, J.; Hentz, V.R. Three-dimensional hyaluronic acid grafts promote healing and reduce scar formation in skin incision wounds. J. Biomed. Mater. Res. B Appl. Biomater., 2003, 67(1), 586-592.
[http://dx.doi.org/10.1002/jbm.b.20001] [PMID: 14528455]
[46]
Dunphy, J.E.; Edwards, L.C.; Udupa, K.N. Wound healing; A new perspective with particular reference to ascorbic acid deficiency. Ann. Surg., 1956, 144(3), 304-317.
[http://dx.doi.org/10.1097/00000658-195609000-00002] [PMID: 13363269]
[47]
Suguna, L.; Chandrakasan, G.; Joseph, K.T. Influence of honey on biochemical and biophysical parameters of wounds in rats. J. Clin. Biochem. Nutr., 1999, 14(2), 91-99.
[http://dx.doi.org/10.3164/jcbn.14.91]
[48]
Sumitra, M.; Manikandan, T.; Suguna, L.; Chettiar, G. Study of dermal wound healing activity of Trigonella foenum-graceum seeds in rats. J. Clin. Biochem. Nutr., 2000, 28(2), 59-67.
[http://dx.doi.org/10.3164/jcbn.28.59]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 15
ISSUE: 5
Year: 2019
Page: [562 - 572]
Pages: 11
DOI: 10.2174/1573407214666180327123118
Price: $58

Article Metrics

PDF: 11

Special-new-year-discount