Copper-catalyzed Convenient Synthesis and SAR Studies of Substituted-1,2,3-triazole as Antimicrobial Agents

Author(s): Aniket P. Sarkate*, Kshipra S. Karnik, Pravin S. Wakte, Ajinkya P. Sarkate, Ashwini V. Izankar, Devanand B. Shinde.

Journal Name: Letters in Drug Design & Discovery

Volume 16 , Issue 1 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: A novel copper-catalyzed synthesis of substituted-1,2,3-triazole derivatives has been developed and performed by Huisgen 1,3-dipolar cycloaddition reaction of azides with alkynes. The reaction is one-pot multicomponent.

Objective: We state the advancement and execution of a methodology allowing for the synthesis of some new substituted 1,2,3-triazole analogues with antimicrobial activity.

Methods: A series of triazole derivatives was synthesized by Huisgen 1,3-dipolar cycloaddition reaction of azides with alkynes. The structures of the synthesized compounds were elucidated and confirmed by 1H NMR, IR, MS and elemental analysis. All the synthesized compounds were tested for their antimicrobial activity against a series of strains of Bacillus subtilis, Staphylococcus aureus and Escherichia coli for antibacterial activity and against the strains of Candida albicans, Aspergillus flavus and Aspergillus nigar for antifungal activity, respectively.

Results and Conclusion: From the antimicrobial data, it was observed that all the newly synthesized compounds showed good to moderate level of antibacterial and antifungal activity.

Keywords: 1, 2, 3-triazole, copper, huisgen 1, 3-dipolar cycloaddition reaction, antibacterial, antifungal, antimicrobial.

[1]
Dofe, V.S.; Sarkate, A.P.; Shaikh, Z.M.; Gill, C.H. Ultrasound mediated synthesis of novel 1,2,3-triazole based pyrazole and pyrimidine derivatives as antimicrobial agents. J. Het. Chem., 2017, 54(6), 3195-3201.
[2]
Dofe, V.S.; Sarkate, A.P.; Lokwani, D.K.; Kathwate, S.H.; Gill, C.H. Synthesis, antimicrobial evaluation, and molecular docking studies of novel chromone based 1,2,3-triazoles. Res. Chem. Int., 2017, 43(1), 15-28.
[3]
Buckle, D.R.; Rockell, C.J.M.; Smith, H.; Spicer, B.A. Studies on 1,2,3,-triazoles. 10. Synthesis and antiallergic properties of 9-oxo-1H,9H-benzothiopyrano[2,3-d]-1,2,3-triazoles and their S oxides. J. Med. Chem., 1984, 27(2), 223-227.
[4]
Doherty, W.; Adler, N.; Knox, A.; Nolan, D.; McGouran, J.; Nikalje, A.P.; Lokwani, D.; Sarkate, A.; Evans, P. Synthesis and evaluation of 1,2,3-triazole-containing vinyl and allyl sulfones as anti-trypanosomal agents. Eur. J. Org. Chem., 2017, 1, 175-185.
[5]
Elamari, H.; Slimi, R.; Chabot, G.G.; Quentin, L.; Scherman, D.; Girard, C. Synthesis and in vitro evaluation of potential anticancer activity of mono- and bis-1,2,3-triazole derivatives of bis-alkynes. Eur. J. Med. Chem., 2013, 60, 360-364.
[6]
Akhtar, T.; Hameed, S.; Al-Masoudi, N.A.; Khan, K.M. Synthesis and anti-HIV activity of new chiral 1,2,4-triazoles and 1,3,4-thiadiazoles. Heteroatom Chem., 2007, 18(3), 316-322.
[7]
Bao, G.W.; Shi, C.Y.; Xiao, Y.C.; Yong, Z.Y.; Hong, G.H.; Wu, Q.Y. Design synthesis and biological evaluation of 3-substituted triazole derivatives. Chin. Chem. Lett., 2011, 22(5), 519-522.
[8]
Phillips, O.A.; Udo, E.E.; Abdel-Hamid, M.; Varghese, R. Synthesis and antibacterial activity of novel 5-(4-methyl-1H-1,2,3-triazole) methyl oxazolidinones. Eur. J. Med. Chem., 2009, 44(8), 3217-3227.
[9]
Albadi, J.; Keshavarz, M.; Abedini, M.; Vafaie-nezhad, M. Copper iodide nanoparticles on poly(4-vinyl pyridine) as new and green catalyst for multicomponent click synthesis of 1,4-disubstituted-1,2,3-triazoles in water. Chin. Chem. Lett., 2012, 23(7), 797-800.
[10]
Rostovtsev, V.V.; Green, L.G.; Fokin, V.V.; Sharpless, K.B. A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Ed., 2002, 41(14), 2596-2599.
[11]
Zhang, J.; Jin, G. G.; Xiao, S.; Wu, J.J.; Cao, S. Novel synthesis of 1,4,5-trisubstituted 1,2,3-triazoles via a one-pot threecomponent reaction of boronic acids, azide, and active methylene ketones. Tetrahedron, 2013, 69(10), 2352-2356.
[12]
Pereira, D.; Fernandes, P. Synthesis and antibacterial activity of novel 4-aryl-[1,2,3]-triazole containing macrolides. Bioorg. Med. Chem. Lett., 2011, 21(1), 510-513.
[13]
Kumar, D.; Reddy, V.B.; Varma, R.S. A facile and regioselective synthesis of 1,4-disubstituted 1,2,3-triazoles using click chemistry. Tet. Lett., 2009, 50(18), 2065-2068.
[14]
González, J.; Pérez, V.M.; Jiménez, D.O.; Lopez-Valdez, G.; Corona, D.; Cuevas-Yañez, E. Effect of temperature on triazole and bistriazole formation through copper-catalyzed alkyne–azide cycloaddition. Tet. Lett., 2011, 52(27), 3514-3517.
[15]
Kushwaha, K.; Kaushik, N. Lata; Jain, S.C. Design and synthesis of novel 2H-chromen-2-one derivatives bearing 1,2,3-triazole moiety as lead antimicrobials. Bioorg. Med. Chem. Lett., 2014, 24(7), 1795-1801.
[16]
Kamal, A.; Hussaini, M.A.; Shaikh, F.; Poornachandra, Y.; Reddy, N.; Kumar, C.G.; Rajput, V.S.; Rani, C.; Sharma, R.; Khan, I.; Babu, N.J. Anti-tubercular agents. Part 8: Synthesis, antibacterial and antitubercular activity of 5-nitrofuran based 1,2,3-triazoles. Bioorg. Med. Chem. Lett., 2013, 23(24), 6842-6846.
[17]
Vantikommu, J.; Palle, S.; Reddy, P.S.; Ramanatham, V.; Khagga, M.; Pallapothula, V.R. Synthesis and cytotoxicity evaluation of novel 1,4-disubstituted 1,2,3-triazoles via CuI catalysed 1,3-dipolar cycloaddition. Eur. J. Med. Chem., 2010, 45(11), 5044-5050.
[18]
Xu, Z.; Bo, W.L.; Jun, R.L.; Chun, W.X.; Jian, F.L.; Liu, Y. Design, synthesis and antimicrobial activities of 1,2,3-triazole derivatives. Chin. Chem. Lett., 2012, 23(8), 933-935.
[19]
Xue, Z.C.; Wei, L.; Zhen, D.H.; Chun, X.K. Sodium hydridemediated synthesis of 1,5-diaryl-1,2,3-triazoles from anti-3-aryl-2,3-dibromopropanoic acids and organic azides. Chin. Chem. Lett., 2013, 24(8), 764-766.
[20]
Furniss, B.S.; Hannaford, A.J.; Smith, P.W.G.; Tatchell, A.R. Textbook of Practical Organic Chemistry, 5th ed; John Wiley & Sons, Inc.: New York, 1989.
[21]
Shelke, R.N.; Pansare, D.N.; Pawar, C.D.; Shinde, D.B.; Thore, S.N.; Pawar, R.P.; Bembalkar, S.R. Synthesis of novel 2hpyrano[2,3-d]thiazole-6-carbonitrile derivatives in aqueous medium. Res. Rev.: J. Chem., 2016, 5(2), 29-36.
[22]
Pawar, C.D.; Shinde, D.B. Synthesis and antimicrobial evaluation of novel substituted acetamido-4-subtituted-thiazole-5-indazole derivatives. Res. Rev.: J. Chem., 2016, 5(3), 28-33.
[23]
Pawar, C.D.; Pansare, D.N.; Shinde, D.B. Synthesis and antimicrobial evaluation of novel sulfonyl and amide coupling derivatives. EC Micro., 2017, 8(1), 14-28.
[24]
Aher, N.G.; Pore, V.S.; Mishra, N.N.; Kumar, A.; Shukla, P.K.; Sharma, A.; Bhat, M.K. Synthesis and antifungal activity of 1,2,3-triazole containing fluconazole analogues. Bioorg. Med. Chem. Lett., 2009, 19(3), 759-763.
[25]
Xian, L.W.; Wan, K.; Cheng, H.Z. Synthesis of novel sulfanilamidederived 1,2,3-triazoles and their evaluation for antibacterial and antifungal activities. Eur. J. Med. Chem., 2010, 45(10), 4631-4639.
[26]
Duraiswamy, B.; Mishra, S.K.; Subhashini, V.; Dhanraj, S.A.; Suresh, B. Studies on the antimicrobial potential of Mahonia leschenaultii Takeda root and root bark. Indian J. Pharm. Sci., 2006, 68(3), 389-391.
[27]
Saundane, A.R.; Rudresh, K.; Satyanarayan, N.D.; Hiremath, S.P. Pharmacological screening of 6H, 11H-Indolo [3, 2-c]isoquinolin-5-ones and their derivatives. Indian J. Pharm. Sci., 1998, 60(6), 379-983.
[28]
Therese, K.L.; Bhagyalaxmi, R.; Madhavan, H.N.; Deepa, P. Invitro susceptibility testing by agar dilution method to determine the minimum inhibitory concentrations of amphotericin B, fluconazole and ketoconazole against ocular fungal isolates. Int. J. Med. Microbiol., 2006, 24(4), 273-279.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 1
Year: 2019
Page: [3 - 10]
Pages: 8
DOI: 10.2174/1570180815666180326153322
Price: $58

Article Metrics

PDF: 30
HTML: 2