New Benzodioxole-based Pyrazoline Derivatives: Synthesis and Anticandidal, In silico ADME, Molecular Docking Studies

Author(s): Ahmet Özdemir*, Belgin Sever, Mehlika Dilek Altıntop.

Journal Name: Letters in Drug Design & Discovery

Volume 16 , Issue 1 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Azoles are commonly used in the treatment and prevention of fungal infections. They suppress fungal growth by acting on the heme group of lanosterol 14α-demethylase enzyme (CYP51), thus blocking the biosynthesis of ergosterol.

Objectives: Due to the importance of pyrazolines in the field of antifungal drug design, we aimed to design and synthesize new pyrazoline-based anticandidal agents.

Methods: New pyrazoline derivatives were synthesized via the reaction of 1-(chloroacetyl)-3-(2- thienyl)-5-(1,3-benzodioxol-5-yl)-2-pyrazoline with aryl thiols. These compounds were evaluated for their in vitro antifungal effects on Candida species. Docking studies were performed to predict the affinity of the most effective anticandidal agents to substrate binding site of CYP51. Furthermore, MTT assay was performed to determine the cytotoxic effects of the compounds on NIH/3T3 mouse embryonic fibroblast cell line. A computational study for the prediction of ADME properties of all compounds was also carried out.

Results: Compounds 5, 8, 10 and 12 were found as the most potent anticandidal agents against Candida albicans and Candida glabrata in this series with the same MIC values of ketoconazole and they also exhibited low toxicity against NIH/3T3 cells. Docking results indicated that all these compounds showed good binding affinity into the active site of CYP51. In particular, chloro substituted compounds 8 and 12 bind to CYP51 through direct coordination with the heme group. According to in silico studies, compound 8 only violated one parameter of Lipinski’s rule of five, making it a potential orally bioavailable agent.

Conclusion: Compound 8 was defined as a promising candidate for further in vitro and in vivo studies.

Keywords: Pyrazoline, benzodioxole, CYP51, anticandidal activity, cytotoxicity, docking studies.

[1]
Antinori, S.; Milazzo, L.; Sollima, S.; Galli, M.; Corbellino, M. Candidemia and invasive candidiasis in adults: A narrative review. Eur. J. Intern. Med., 2016, 34, 21-28.
[2]
Whaley, S.G.; Berkow, E.L.; Rybak, J.M.; Nishimoto, A.T.; Barker, K.S.; Rogers, P.D. Azole antifungal resistance in Candida albicans and emerging non-albicans Candida species. Front. Microbiol., 2016, 7, 2173.
[3]
Fortún, J.; Gioia, F. Invasive candidiasis in the neutropenic patient. Rev. Esp. Quimioter., 2017, 30, 22-25.
[4]
Pfaller, M.; Neofytos, D.; Diekema, D.; Azie, N.; Meier-Kriesche, H.U.; Quan, S.P.; Horn, D. Epidemiology and outcomes of candidemia in 3648 patients: Data from the prospective antifungal therapy (PATH Alliance®) registry, 2004-2008. Diagn. Microbiol. Infect. Dis., 2012, 74, 323-331.
[5]
Pierce, C.G.; Lopez-Ribot, J.L. Candidiasis drug discovery and development: New approaches targeting virulence for discovering and identifying new drugs. Expert Opin. Drug Discov., 2013, 8, 1117-1126.
[6]
Sui, X.; Yan, L.; Jiang, Y.Y. The vaccines and antibodies associated with Als3p for treatment of Candida albicans infections. Vaccine, 2017, 35, 5786-5793.
[7]
Anderson, J.B. Evolution of antifungal-drug resistance: Mechanisms and pathogen fitness. Nat. Rev. Microbiol., 2005, 3, 547-556.
[8]
Ai, R.; Wei, J.; Ma, D.; Jiang, L.; Dan, H.; Zhou, Y.; Ji, N.; Zeng, X.; Chen, Q. A meta-analysis of randomized trials assessing the effects of probiotic preparations on oral candidiasis in the elderly. Arch. Oral Biol., 2017, 83, 187-192.
[9]
Kealey, C.; Creaven, C.A.; Murphy, C.D.; Brady, C.B. New approaches to antibiotic discovery. Biotechnol. Lett., 2017, 39, 805-817.
[10]
Chen, Z.F.; Ying, G.G. Occurrence, fate and ecological risk of five typical azole fungicides as therapeutic and personal care products in the environment: A review. Environ. Int., 2015, 84, 142-153.
[11]
Campoy, S.; Adrio, J.L. Antifungals. Biochem. Pharmacol., 2017, 133, 86-96.
[12]
Carmona, E.M.; Limper, A.H. Overview of treatment approaches for fungal infections. Clin. Chest Med., 2017, 38, 393-402.
[13]
Bano, S.; Javed, K.; Ahmad, S.; Rathish, I.G.; Singh, S.; Alam, M.S. Synthesis and biological evaluation of some new 2-pyrazolines bearing benzene sulfonamide moiety as potential anti-inflammatory and anti-cancer agents. Eur. J. Med. Chem., 2011, 46, 5763-5768.
[14]
Jadhav, S.A.; Kulkarni, K.M.; Patil, P.B.; Dhole, V.R.; Patil, S.S. Design, synthesis and biological evaluation of some novel pyrazoline derivatives. Der Pharma Chem, 2016, 8, 38-45.
[15]
Mishra, V.K.; Mishra, M.; Kashaw, V.; Kashaw, S.K. Synthesis of 1,3,5-trisubstituted pyrazolines as potential antimalarial and antimicrobial agents. Bioorg. Med. Chem., 2017, 25, 1949-1962.
[16]
Turan-Zitouni, G.; Özdemir, A.; Güven, K. Synthesis of some 1-[(N,N-disubstitutedthiocarbamoylthio)acetyl]-3-(2-thienyl)-5-aryl-2-pyrazoline derivatives and investigation of their antibacterial and antifungal activities. Arch. Pharm. Chem. Life Sci., 2005, 338, 96-104.
[17]
Kaplancıklı, Z.A.; Özdemir, A.; Turan-Zitouni, G.; Altintop, M.D.; Can, Ö.D. New Pyrazoline derivatives and their antidepressant activity. Eur. J. Med. Chem., 2010, 45, 4383-4387.
[18]
Özdemir, A.; Turan-Zitouni, G.; Kaplancıklı, Z.A.; Revial, G.; Demirci, F.; İşcan, G. Preparation of some pyrazoline derivatives and evaluation of their antifungal activities. J. Enzyme Inhib. Med. Chem., 2010, 25, 565-571.
[19]
Shaaban, M.R.; Mayhoub, A.S.; Farag, A.M. Recent advances in the therapeutic applications of pyrazolines. Expert Opin. Ther. Pat., 2012, 22, 253-291.
[20]
Altintop, M.D.; Özdemir, A.; Kaplancikli, Z.A.; Turan-Zitouni, G.; Temel, H.E.; Çiftçi Gülşen, A. Synthesis and biological evaluation of some pyrazoline derivatives bearing a dithiocarbamate moiety as new cholinesterase inhibitors. Arch. Pharm. Chem. Life Sci., 2013, 346, 189-199.
[21]
Marella, A.; Ali, M.R.; Alam, M.T.; Saha, R.; Tanwar, O.; Akhter, M.; Shaquiquzzaman, M.; Alam, M.M. Pyrazolines: A biological review. Mini Rev. Med. Chem., 2013, 13, 921-931.
[22]
Özdemir, A.; Altintop, M.D.; Kaplancıklı, Z.A.; Turan-Zitouni, G.; Karaca, H.; Tunalı, Y. Synthesis and biological evaluation of pyrazoline derivatives bearing an indole moiety as new antimicrobial agents. Arch. Pharm. Chem. Life Sci., 2013, 346, 463-469.
[23]
Özdemir, A.; Altıntop, M.D.; Kaplancıklı, Z.A.; Turan-Zitouni, G.; Çiftçi, G.A.; Ulusoylar Yıldırım, Ş. Synthesis of 1-acetyl-3-(2-thienyl)-5-aryl-2-pyrazoline derivatives and evaluation of their anticancer activity. J. Enzyme Inhib. Med. Chem., 2013, 28, 1221-1227.
[24]
Alex, J.M.; Kumar, R. 4,5-Dihydro-1H-pyrazole: An indispensable scaffold. J. Enzyme Inhib. Med. Chem., 2014, 29, 427-442.
[25]
Karabacak, M.; Altıntop, M.D.; Çiftçi, H.İ.; Koga, R.; Otsuka, M.; Fujita, M.; Özdemir, A. Synthesis and evaluation of new pyrazoline derivatives as potential anticancer agents. Molecules, 2015, 20, 19066-19084.
[26]
Altıntop, M.D.; Özdemir, A.; Turan-Zitouni, G.; Ilgın, S.; Atlı, Ö.; Demirel, R.; Kaplancıklı, Z.A. A novel series of thiazolylpyrazoline derivatives: Synthesis and evaluation of antifungal activity, cytotoxicity and genotoxicity. Eur. J. Med. Chem., 2015, 92, 342-352.
[27]
Shamsuzzaman, K. H.; Dar, A.M.; Siddiqui, N.; Rehman, S. Synthesis, characterization, antimicrobial and anticancer studies of new steroidal pyrazolines. J. Saudi Chem. Soc., 2016, 20, 7-12.
[28]
Shahavar Sulthana, S.; Arul Antony, S.; Balachandran, C.; Syed Shafi, S. Thiophene and benzodioxole appended thiazolylpyrazoline compounds: Microwave assisted synthesis, antimicrobial and molecular docking studies. Bioorg. Med. Chem. Lett., 2015, 25, 2753-2757.
[29]
Leite, A.C.; da Silva, K.P.; de Souza, I.A.; de Araújo, J.M.; Brondani, D.J. Synthesis, antitumour and antimicrobial activities of new peptidyl derivatives containing the 1,3-benzodioxole system. Eur. J. Med. Chem., 2004, 39, 1059-1065.
[30]
Attia, M.I.; El-Brollosy, N.R.; Kansoh, A.L.; Ghabbour, H.A.; Al-Wabli, R.I.; Fun, H.K. Synthesis, single crystal X-ray structure, and antimicrobial activity of 6-(1,3-benzodioxol-5-ylmethyl)-5-ethyl-2-[2-(morpholin-4-yl)ethyl]sulfanylpyrimidin-4(3H)-one. J. Chem., 2014, 2014, 1-8.
[31]
White, K.S.; Nicoletti, G.; Borland, R. Nitropropenyl benzodioxole, an anti-infective agent with action as a protein tyrosine phosphatase inhibitor. Open Med. Chem. J., 2014, 8, 1-16.
[32]
Gowri, M.; Sofi Beaula, W.; Biswal, J.; Dhamodharan, P.; Saiharish, R. Rohan prasad, S.; Pitani, R.; Kandaswamy, D.; Raghunathan, R.; Jeyakanthan, J.; Rayala, S.K.; Venkatraman, G. β-lactam substituted polycyclic fused pyrrolidine/pyrrolizidine derivatives eradicate C. albicans in an ex vivo human dentinal tubule model by inhibiting sterol 14α-demethylase and cAMP pathway. Biochim. Biophys. Acta, 2016, 1860, 636-647.
[33]
Sun, B.; Huang, W.; Liu, M. Evaluation of the combination mode of azoles antifungal inhibitors with CACYP51 and the influence of site-directed mutation. J. Mol. Graph. Model., 2017, 73, 157-165.
[34]
Koçyiğit-Kaymakçıoğlu, B.; Beyhan, N.; Tabanca, N.; Ali, A.; Wedge, D.E.; Duke, S.O.; Bernier, U.R.; Khan, I.A. Discovery and structure activity relationships of 2-pyrazolines derived from chalcones from a pest management perspective. Med. Chem. Res., 2015, 24, 3632-3644.
[35]
Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Approved Standard, M27-A2; Clinical and Laboratory Standards Institute (CLSI): Wayne, PA, USA, 2002.
[36]
Altıntop, M.D.; Özdemir, A.; Turan-Zitouni, G.; Ilgın, S.; Atlı, Ö.; Demirci, F.; Kaplancıklı, Z.A. Synthesis and in vitro evaluation of new nitro-substituted thiazolyl hydrazone derivatives as anticandidal and anticancer agents. Molecules, 2014, 19, 14809-14820.
[37]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 16, 55-63.
[38]
Keiser, K.; Johnson, C.C.; Tipton, D.A. Cytotoxicity of mineral trioxide aggregate using human periodontal ligament fibroblasts. J. Endod., 2000, 26, 288-291.
[39]
Altıntop, M.D.; Kaplancıklı, Z.A.; Turan-Zitouni, G.; Özdemir, A.; İşcan, G.; Akalın, G.; Ulusoylar Yıldırım, Ş. Synthesis and anticandidal activity of new triazolothiadiazine derivatives. Eur. J. Med. Chem., 2011, 46, 5562-5566.
[40]
Molinspiration. Cheminformatics on the web. Available from:. http://www.molinspiration.com (Accessed on August 2017).
[41]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46, 3-26.
[42]
Veber, D.F.; Johnson, S.R.; Cheng, H-Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem., 2002, 45, 2615-2623.
[43]
Gabr, M.T.; El-Gohary, N.S.; El-Bendary, E.R.; El-Kerdawy, M.M.; Ni, N. Synthesis, in vitro antitumor activity and molecular modeling studies of a new series of benzothiazole Schiff bases. Chin. Chem. Lett., 2016, 27, 380-386.
[44]
Höltje, H.D.; Fattorusso, C. Construction of a model of the Candida albicans lanosterol 14α-demethylase active site using the homology modelling technique. Pharm. Acta Helv., 1998, 72, 271-277.
[45]
Park, H.G.; Lee, I.S.; Chun, Y.J.; Yun, C.H.; Johnston, J.B.; Montellano, P.R.; Kim, D. Heterologous expression and characterization of the sterol 14α-demethylase CYP51F1 from Candida albicans. Arch. Biochem. Biophys., 2011, 509, 9-15.
[46]
Becher, R.; Wirsel, S.G. Fungal cytochrome P450 sterol 14α-demethylase (CYP51) and azole resistance in plant and human pathogens. Appl. Microbiol. Biotechnol., 2012, 95, 825-840.
[47]
Singh, A.; Paliwal, S.K.; Sharma, M.; Mittal, A.; Sharma, S.; Sharma, J.P. In silico and in vitro screening to identify structurally diversenon-azole CYP51 inhibitors as potent antifungal agent. J. Mol. Graph. Model., 2016, 63, 1-7.
[48]
Stana, A.; Vodnar, D.C.; Tamaian, R.; Pîrnău, A.; Vlase, L.; Ionuț, I.; Oniga, O.; Tiperciuc, B. Design, synthesis and antifungal activity evaluation of new thiazolin-4-ones as potential lanosterol 14α-demethylase inhibitors. Int. J. Mol. Sci., 2017, 18, 177-202.
[49]
Jacob, K.S.; Ganguly, S.; Kumar, P.; Poddar, R.; Kumar, A. Homology model, molecular dynamics simulation and novel pyrazole analogs design of Candida albicans CYP450 lanosterol 14α-demethylase, a target enzyme for antifungal therapy. J. Biomol. Struct. Dyn., 2017, 35, 1446-1463.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 1
Year: 2019
Page: [82 - 92]
Pages: 11
DOI: 10.2174/1570180815666180326152726
Price: $58

Article Metrics

PDF: 25
HTML: 4
PRC: 1