Development of Novel Nanocomposites Based on Graphene/Graphene Oxide and Electrochemical Sensor Applications

Author(s): Mehmet Lütfi Yola*.

Journal Name: Current Analytical Chemistry

Volume 15 , Issue 2 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Until now, several methods such as spectroscopic methods and chromatographic techniques have been developed for the determination of biomolecules, drug or heavy metals. Nevertheless, the crucial interference problems are present in these methods. Due to these reasons, more sensitive, favorable portability, low-cost, simple and selective sensors based on nanocomposites are needed in terms of health safety. In the development of electrochemical nanosensor, the nanomaterials such as graphene/graphene oxide, carbon and carbon nitride nanotubes are utilized to improve the sensitivity.

Objective: The nanomaterials such as graphene/graphene oxide, carbon and carbon nitride nanotubes have important advantages such as high surface area, electrical conductivity, thermal and mechanical stability. Hence, we presented the highly selective methods for sensitive sensor applications by molecular imprinting technology in literature. This technology is a polymerization method around target molecule. This method provides the specific cavities to analyte molecule on the polymer surface. Hence, the selective sensor is easily created for biomedical and other applications. Novel electrochemical sensors based on nanocomposite whose surface is coated with Molecular Imprinting Polymer (MIP) are developed and then applied to the selective and sensitive detection in this study. Until now, we have presented several reports about nanocomposite based sensor with MIP.

Keywords: Electrochemistry, nanocomposite, sensor, graphene/graphene oxide, Molecular Imprinting Polymer (MIP), voltammetry.

[1]
Arabali, V.; Ebrahimi, M.; Abbasghorbani, M.; Gupta, V.K.; Farsi, M.; Ganjali, M.R.; Karimi, F. Electrochemical determination of vitamin C in the presence of NADH using a CdO nanoparticle/ionic liquid modified carbon paste electrode as a sensor. J. Mol. Liq., 2016, 213(1), 312-316.
[2]
Karimi-Maleh, H.; Biparva, P.; Hatami, M. A novel modified carbon paste electrode based on NiO/CNTs nanocomposite and (9, 10-dihydro-9, 10-ethanoanthracene-11, 12-dicarboximido)-4-ethylbenzene-1, 2-diol as a mediator for simultaneous determination of cysteamine, nicotinamide adenine dinucleotide and folic acid. Biosens. Bioelectron., 2013, 48, 270-275.
[3]
Aghazadeh, M.; Asadi, M.; Ghannadi Maragheh, M.; Ganjali, M.R.; Norouzi, P.; Faridbod, F. Facile preparation of MnO2 nanorods and evaluation of their supercapacitive characteristics. Appl. Surf. Sci., 2016, 364, 726-731.
[4]
Yola, M.L.; Atar, N. Electrochemical detection of atrazine by platinum nanoparticles/carbon nitride nanotubes with molecularly imprinted polymer. Ind. Eng. Chem. Res., 2017, 56(27), 7631-7639.
[5]
Yola, M.L.; Atar, N.A. Review: Molecularly imprinted electrochemical sensors for determination of biomolecules/drug. Curr. Anal. Chem., 2017, 13(1), 13-17.
[6]
Karimi-Maleh, H.; Tahernejad-Javazmi, F.; Ensafi, A.A.; Moradi, R.; Mallakpour, S.; Beitollahi, H. A high sensitive biosensor based on FePt/CNTs nanocomposite /N-(4-hydroxyphenyl)-3,5-dinitrobenzamide modified carbon paste electrode for simultaneous determination of glutathione and piroxicam. Biosens. Bioelectron., 2014, 60, 1-7.
[7]
Aghazadeh, M.; Ghannadi Maragheh, M.; Ganjali, M.R.; Norouzi, P.; Faridbod, F. Electrochemical preparation of MnO2 nanobelts through pulse base-electrogeneration and evaluation of their electrochemical performance. Appl. Surf. Sci., 2016, 364, 141-147.
[8]
Çolak, A.T.; Eren, T.; Yola, M.L.; Beşli, E.; Şahin, O.; Atar, N. Novel 3D polyoxometalate-functionalized graphene quantum dots with mono-metallic and bi-metallic nanoparticles for application in direct methanol fuel cells. J. Electrochem. Soc., 2016, 163(10), F1237-F1244.
[9]
Yola, M.L.; Eren, T.; Atar, N. A Molecular imprinted voltammetric sensor based on carbon nitride nanotubes: Application to determination of melamine. J. Electrochem. Soc., 2016, 163(13), B588-B593.
[10]
Yola, M.L.; Atar, N. Functionalized graphene quantum dots with bi-metallic nanoparticles composite: Sensor application for simultaneous determination of ascorbic acid, dopamine, uric acid and tryptophan. J. Electrochem. Soc., 2016, 163(14), B718-B725.
[11]
Wang, J. Stripping Analysis: Principle instrumentation and application; VCH Publication, 1985.
[12]
Heineman, W.R.; Mark, H.B.; Wise, J.A.; Roston, D.A. Laboratory techniques in electroanalytical chemistry,, P.T. Kissinger and WW.R. Heineman, Eds., Dekker, New York,. 1984.
[13]
Moradi, R.; Sebt, S.A.; Karimi-Maleh, H.; Sadeghi, R.; Karimi, F.; Bahari, A. Synthesis and application of FePt/CNTs nanocomposite as a sensor and novel amide ligand as a mediator for simultaneous determination of glutathione, nicotinamide adenine dinucleotide and tryptophan. Phys. Chem. Chem. Phys., 2013, 15, 5888-5897.
[14]
Ensafi, A.A.; Karimi-Maleh, H.; Mallakpour, S.; Hatami, M. Simultaneous determination of N-acetylcysteine and acetaminophen by voltammetric method using N-(3, 4-dihydroxyphenethyl)-3, 5-dinitrobenzamide modified multiwall carbon nanotubes paste electrode. Sens. Actuat. B., 2011, 155, 464-472.
[15]
Yokuş, Ö.A.; Kardaş, F.; Akyıldırım, O.; Eren, T.; Atar, N.; Yola, M.L. Sensitive voltammetric sensor based on polyoxometalate/reduced graphene oxide nanomaterial: Application to the simultaneous determination of L-tyrosine and L-tryptophan. Sens. Actuat. B., 2016, 233, 47-54.
[16]
Ertan, B.; Eren, T.; Ermiş, İ.; Saral, H.; Atar, N.; Yola, M.L. Sensitive analysis of simazine based on platinium nanoparticles on polyoxometalate/multi-walled carbon nanotubes. J. Colloid Interface Sci., 2016, 470, 14-21.
[17]
Farghaly, O.A.; Abdel Hameed, R.S.; Abu-Nawwas, A.A.H. Analytical application using modern electrochemical techniques. Int. J. Electrochem. Sci., 2014, 9, 3287-3318.
[18]
Brainina, Kh.Z. Film stripping voltammetry. Talanta, 1971, 18, 513-539.
[19]
Batley, G.E.; Florence, T.M. Determination of thallium in natural waters by anodic stripping voltammetry. J. Electroanal. Chem., 1975, 61, 205-211.
[20]
Holak, W. Determination of heavy metals in foods by ASV after sample decomposition with sodium and potassium nitrate fusion. J. Assoc. Off. Anal. Chem., 1975, 58, 777-780.
[21]
Sanghavi, B.J.; Srivastava, A.K. Adsorptive stripping differential pulse voltammetric determination of venlafaxine and desvenlafaxine employing Nafion–carbon nanotube composite glassy carbon electrode. Electrochim. Acta, 2011, 56, 4188-4196.
[22]
Sanghavi, B.J.; Srivastava, A.K. Adsorptive stripping voltammetric determination of imipramine, trimipramine and desipramine employing titanium dioxide nanoparticles and an Amberlite XAD-2 modified glassy carbon paste electrode. Analyst ., 2013, 138, 1395-1404.
[23]
Han, X.J.; Zhou, S.F.; Fan, H.L.; Zhang, Q.X.; Liu, Y.Q. Mesoporous MnFe2O4 nanocrystal clusters for electrochemistry detection of lead by stripping voltammetry. J. Electroanal. Chem., 2015, 755, 203-209.
[24]
Najafi, M.; Khalilzadeh, M.A.; Karimi-Maleh, H. A new strategy for determination of bisphenol A in the presence of Sudan I using a ZnO/CNTs/ionic liquid paste electrode in food samples. Food Chem., 2014, 158, 125-131.
[25]
Yola, M.L.; Gupta, V.K.; Atar, N. New molecular imprinted voltammetric sensor for determination of ochratoxin A. Mater. Sci. Eng. C, 2016, 61, 368-375.
[26]
Elçin, S.; Yola, M.L.; Eren, T.; Girgin, B.; Atar, N. Highly selective and sensitive voltammetric sensor based on ruthenium nanoparticle anchored calix [4]amidocrown-5 functionalized reduced graphene oxide: Simultaneous determination of quercetin, morin and rutin in grape wine. Electroanalysis, 2016, 28, 611-619.
[27]
Akyıldırım, O.; Kotan, G.; Yola, M.L.; Eren, T.; Atar, N. Fabrication of bimetallic Pt/Pd nanoparticles on 2-thiolbenzimidazole functionalized reduced graphene oxide for methanol oxidation. Ionics, 2016, 22, 593-600.
[28]
Yola, M.L.; Eren, T.; Atar, N.; Saral, H.; Ermiş, İ. Direct-methanol fuel cell based on functionalized graphene oxide with mono-metallic and bi-metallic nanoparticles: Electrochemical performances of nanomaterials for methanol oxidation. Electroanalysis, 2016, 28, 570-579.
[29]
Gupta, V.K.; Yola, M.L.; Özaltın, N.; Atar, N.; Üstündağ, Z.; Uzun, L. Molecular imprinted polypyrrole modified glassy carbon electrode for the determination of tobramycin. Electrochim. Acta, 2013, 112, 37-43.
[30]
Freitag, M.; Steiner, M.; Martin, Y.; Perebeinos, V.; Chen, Z.H.; Tsang, J.C.; Avouris, P. Energy dissipation in graphene field-effect transistors. Nano Lett., 2009, 9, 1883-1888.
[31]
Panzer, M.A.; Goodson, K.E. Thermal resistance between low-dimensional nanostructures and semi-infinite media. J. Appl. Phys., 2008, 103, 4301.
[32]
Veerapandian, M.; Lee, M.H.; Krishnamoorthy, K.; Yun, K. Synthesis, characterization and electrochemical properties of functionalized graphene oxide. Carbon, 2012, 50, 4228-4238.
[33]
Seger, B.; Kamat, P.V. Electrocatalytically active graphene-platinum nanocomposites. Role of 2-D carbon support in PEM Fuel cells. J. Phys. Chem. C, 2009, 113, 7990-7995.
[34]
Yola, M.L.; Atar, N.; Eren, T.; Maleh, H.K.; Wang, S. Sensitive and selective determination of aqueous triclosan based on gold nanoparticles on polyoxometalate/reduced graphene oxide nanohybrid. RSC Advances, 2015, 5, 65953-65962.
[35]
Yola, M.L.; Eren, T.; Atar, N. A sensitive molecular imprinted electrochemical sensor based on gold nanoparticles decorated graphene oxide: Application to selective determination of tyrosine in milk. Sens. Actuat. B., 2015, 210, 149-157.
[36]
Chen, J.H.; Jang, C.; Xiao, S.; Ishigami, M.; Fuhrer, M.S. Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat. Nanotechnol., 2008, 3, 206-209.
[37]
Geim, A.K.; Kim, P. Carbon wonderland. Sci. Am., 2008, 298, 90-97.
[38]
Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science, 2004, 306, 666-669.
[39]
Katsnelson, M.I. Graphene: Carbon in two dimensions. Mater. Today, 2007, 10, 20-27.
[40]
Kuzmenko, A.B.; Heumen, E.V.; Carbone, F.; Marel, D.V.D. Universal optical conductance of graphite. Phys. Rev. Lett., 2008, 100, 117401-117404.
[41]
Atar, N.; Yola, M.L.; Eren, T. Sensitive determination of citrinin based on molecular imprinted electrochemical sensor. Appl. Surf. Sci., 2016, 362, 315-322.
[42]
Yola, M.L.; Eren, T.; Atar, N. A novel and sensitive electrochemical DNA biosensor based on Fe@Au nanoparticles decorated graphene oxide. Electrochim. Acta, 2014, 125, 38-47.
[43]
Yola, M.L.; Atar, N.; Üstündağ, Z.; Solak, A.O. A novel voltammetric sensor based on p-Aminothiophenol functionalized graphene Oxide/Gold nanoparticles for determining quercetin in the presence of ascorbic acid. J. Electroanal. Chem., 2013, 698, 9-16.
[44]
Yola, M.L.; Gupta, V.K.; Eren, T.; Şen, A.E.; Atar, N. A Novel electroanalytical nanosensor based on graphene oxide/silver nanoparticles for simultaneous determination of quercetin and morin. Electrochim. Acta, 2014, 120, 204-211.
[45]
Yola, M.L.; Atar, N. A highly efficient nanomaterial with molecular imprinting polymer: Carbon nitride nanotubes decorated with graphene quantum dots for sensitive electrochemical determination of chlorpyrifos. J. Electrochem. Soc., 2017, 164(6), B223-B229.
[46]
Kotan, G.; Kardaş, F.; Yokuş, Ö.A.; Akyıldırım, O.; Saral, H.; Eren, T.; Yola, M.L.; Atar, N. A novel determination of curcumin via Ru@Au nanoparticles decorated nitrogen and sulfur-functionalized reduced graphene oxide nanomaterials. Anal. Methods, 2016, 8, 401-408.
[47]
Tahernejad-Javazmi, F.; Nooshabadi, M.S.; Karimi-Maleh, H. Analysis of glutathione in the presence of acetaminophen and tyrosine via an amplified electrode with MgO/SWCNTs as a sensor in the hemolyzed erythrocyte. Talanta, 2018, 176, 208-213.
[48]
Cheraghi, S.; Taher, M.A.; Karimi-Maleh, H. Highly sensitive square wave voltammetric sensor employing CdO/SWCNTs and room temperature ionic liquid for analysis of vanillin and folic acid in food samples. J. Food Compos. Anal., 2017, 62, 254-259.
[49]
Cheraghi, S.; Taher, M.A.; Karimi-Maleh, H. A sensitive amplified sensor based on improved carbon paste electrode with 1-methyl-3-octylimidazolium tetrafluoroborate and ZnO/CNTs nanocomposite for differential pulse voltammetric analysis of raloxifene. Appl. Surf. Sci., 2017, 420, 882-885.
[50]
Karimi-Maleh, H.; Bananezhad, A.; Ganjali, M.R.; Norouzi, P. Electrochemical nanostructure platform for the analysis of glutathione in the presence of uric acid and tryptophan. Anal. Methods, 2017, 9, 6228-6234.
[51]
Cheraghi, S.; Taher, M.A.; Karimi-Maleh, H.; Mirzaei, E.F. A nanostructure label-free DNA biosensor for ciprofloxacin analysis as a chemotherapeutic agent: An experimental and theoretical investigation. New J. Chem., 2017, 41, 4985-4989.
[52]
Elyasi, M.; Khalilzadeh, M.A.; Karimi-Maleh, H. High sensitive voltammetric sensor based on Pt/CNTs nanocomposite modified ionic liquid carbon paste electrode for determination of Sudan I in food samples. Food Chem., 2013, 141, 4311-4317.
[53]
Raoof, J.B.; Ojani, R.; Karimi-Maleh, H.; Hajmohamadi, M.R.; Biparva, P. Multi-wall carbon nanotubes as a sensor and ferrocene dicarboxylic acid as a mediator for voltammetric determination of glutathione in hemolysed erythrocyte. Anal. Methods, 2011, 3, 2637-2643.
[54]
Ensafi, A.A.; Tehrani, S.D.; Karimi-Maleh, H. A voltammetric sensor for the simultaneous determination of L-Cysteine and Tryptophan using a p-Aminophenol-Multiwall carbon nanotube paste electrode. Anal. Sci., 2011, 27, 409.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 15
ISSUE: 2
Year: 2019
Page: [159 - 165]
Pages: 7
DOI: 10.2174/1573411014666180320111246
Price: $58

Article Metrics

PDF: 31
HTML: 2
EPUB: 1